On a Generalization of Groups with All Subgroups Subnormal.

A. ARIKAN (*) - T. ÖZEN (**)
THEOREM. Let G be a Fitting p-group. If for every proper subgroup H of G, $H^G \neq G$ and $H^{(n)}$ is hypercentral for a non-negative integer n, then $G' \neq G$.

2. Proper normal closures.

Let $\phi_0(x) = x$. Define
\[
\phi_i(x_1, \ldots, x_{2^i}) = [\phi_{i-1}(x_1, \ldots, x_{2^{i-1}}), \phi_{i-1}(x_{2^{i-1}+1}, \ldots, x_{2^i})].
\]
Now a group G is soluble if and only if there is a positive integer n such that $\phi_n(G) = 1$.

Our results are closely related to the class of groups with the following property: for every given sequence x_1, x_2, \ldots of elements in the group there exists a natural number d such that
\[
\phi_d(x_1, \ldots, x_{2^d}) = 1.
\]

Let denote the class of groups having the above property by ρ. Now we give some properties of this class of groups.

LEMMA 2.1. Let G be a group. If every given sequence x_1, x_2, \ldots of elements in G there exists a natural number d such that
\[
\phi_d(x_1, \ldots, x_{2^d}) = 1,
\]
then G is hyperabelian and $G' \neq G$.

PROOF. It is enough to prove that G contains a nontrivial normal abelian subgroup for the first part of the assertion. Suppose that this is not the case. Clearly there exist elements $x_1, x_2 \in G$ such that $\phi_1(x_1, x_2) = [x_1, x_2] \neq 1$. Assume that we have found elements $x_1, x_2, \ldots, x_{2^d}$ in G such that
\[
y = \phi_d(x_1, \ldots, x_{2^d}) \neq 1.
\]
Now by the assumption $\langle y \rangle^G$ cannot be soluble. This implies that
\[
[\langle y \rangle, (\langle y \rangle^G)^{(i)}] \neq 1.
\]
Hence there exist elements $x_{2^{i+1}}, \ldots, x_{2^{i+1}}$ in $\langle y \rangle^G$ such that
\[
\phi_{i+1}(x_1, \ldots, x_{2^{i+1}}) = [\phi_i(x_1, \ldots, x_{2^i}), \phi_i(x_{2^i+1}, \ldots, x_{2^{i+1}})] \neq 1.
\]
This means that there exists a sequence of elements x_1, x_2, \ldots in G such
that \(\phi_i(x_1, \ldots, x_2) \neq 1 \) for every natural number \(i \). But this is a contradiction.

Now assume that \(G' = G \), then \(Z_2(G) = Z_1(G) \) by Grün’s Lemma, i.e., \(Z(G/Z(G)) = 1 \). Since the property given in the hypothesis is inherited to homomorphic images we may assume that \(Z(G) = 1 \). Let \(x_1, x_2 \) be elements in \(G \) such that \(\phi_1(x_1, x_2) = [x_1, x_2] \neq 1 \), as above. Assume that we have found elements \(x_1, x_2, \ldots, x_2^n \) in \(G \) such that

\[
y = \phi_i(x_1, \ldots, x_2) \neq 1.
\]

Now we can find an element \(x \) in \(G \) such that \([x, y] \neq 1 \). Since \(G \) is perfect, \(x \in G^{(i+1)} \) and hence we can find elements \(x_2^{i+1}, \ldots, x_2^{i+1} \) in \(G \) such that

\[
\phi_{i+1}(x_1, \ldots, x_2^{i+1}) = [y, \phi_i(x_2^{i+1}, \ldots, x_2^{i+1})] = [\phi_i(x_1, \ldots, x_2), \phi_i(x_2^{i+1}, \ldots, x_2^{i+1})] \neq 1.
\]

Thus we see that there exist elements \(x_1, x_2, \ldots \) in \(G \) such that \(\phi_i(x_1, \ldots, x_2) \neq 1 \) for every natural number \(i \), a contradiction.

Let \(G \) be the direct product of a non-soluble hypercentral \(p \)-group (Example 6.12 of [8] for example) and a non-hypercentral soluble \(p \)-group of derived length \(n \) (see Example 6.10 of [8]). Then \(G^{(n)} \) is hypercentral and proof of the theorem shows that \(G \) has the above property. This example shows that the class of all soluble groups and the class of all hypercentral groups are proper subclasses of \(\gamma_\infty \) and \(\gamma_\infty \) is a proper subclass of the class of all hyperabelian groups, since McLain’s group \(M(Q, F) \) where \(F \) is a field of characteristic \(p > 0 \) (see 12.1.9 of [6]) is an example of a perfect hyperabelian group.

Now we give some auxiliary lemmas to prove the theorem.

Lemma 2.2. Let \(G \) be a locally nilpotent perfect \(p \)-group. Suppose that for every proper subgroup \(H \) of \(G \) and for every given sequence of elements \(x_1, x_2, \ldots \) in \(H \) there exists a natural number \(d \) such that

\[
\phi_d(x_1, \ldots, x_2) = 1
\]

and \(H^0 \neq G \). Then there exist a proper normal subgroup \(N \), a finite subgroup \(U \) of \(G \) such that

\[
\bigcap_{y \in G \setminus N} \langle U, y \rangle \neq U
\]

and \(Z(G/N) = 1 \).
PROOF. Assume that the assertion is false. By the first part of the proof of Lemma 4 of [4], for every finite subgroup U of G, element $a \in G \setminus U$, proper subgroup T of G and outer commutator word $\phi(x_1, \ldots, x_n)$ (see [4] for the definition) there exist y_1, \ldots, y_n in G such that $\phi(y_1, \ldots, y_n) \notin T$ and $a \notin \langle U, y_1, \ldots, y_n \rangle$. Let K be a proper subgroup of G. If we put $Z(G/K) = Z/K^G$ then $Z \neq G$ and $Z(G/Z) = 1$, since G is perfect. Now

$$\bigcap_{z \in G \setminus Z} \langle z \rangle = 1$$

by hypothesis. If a is a non-trivial element in G then there exists an element z_1 in $G \setminus Z$ such that $a \notin \langle z_1 \rangle$. Assume that we have found elements z_2, \ldots, z_w in G such that $\phi_a(z_1, \ldots, z_w) \notin Z$ and $a \notin \langle z_1, \ldots, z_w \rangle$. Now there exist elements $z_{2^w+1}, \ldots, z_{2^{w+1}}$ in G such that

$$\phi_a(z_{2^w+1}, \ldots, z_{2^{w+1}}) \notin C_G(\phi_a(z_1, \ldots, z_w)Z)$$

and $a \notin \langle z_1, \ldots, z_w, z_{2^w+1}, \ldots, z_{2^{w+1}} \rangle$, since $Z(G/Z) = 1$. This implies that

$$\phi_{a+1}(z_1, \ldots, z_w, z_{2^w+1}, \ldots, z_{2^{w+1}}) =$$

$$[\phi_a(z_1, \ldots, z_w), \phi_a(z_{2^w+1}, \ldots, z_{2^{w+1}})] \notin Z.$$

Put $X = \langle z_i : i = 1, 2, \ldots \rangle$. Then X is a proper subgroup of G, since $a \notin X$ and $\phi_a(z_1, \ldots, z_w) \neq 1$ for all natural number d. But this is a contradiction.

The following lemma is a version of (5) Lemma of [4].

Lemma 2.3. Let G be a Fitting p-group. If $H^G \neq G$ and for every given sequence of elements x_1, x_2, \ldots in H and for every proper subgroup H of G there exists a natural number d such that

$$\phi_d(x_1, \ldots, x_w) = 1,$$

then $G' \neq G$.

Proof. Assume that $G' = G$. By Lemma 2.2

$$\bigcap_{y \in G \setminus N} \langle U, y \rangle \neq U$$

for a finite subgroup U of G and for a proper normal subgroup N of G
such that \(Z(G/N) = 1 \). Let
\[
a \in \left(\bigcap_{y \in G/N} \langle U, y \rangle \right) \setminus U
\]
and put \(M = \langle U, a \rangle N \) and \(Z(G/M) = Z/M \). Now \(Z(G/Z) = 1 \). Since \(G/Z \)
is hyperabelian there exists an element \(y \) in \(G \) such that \(\langle y \rangle Z/Z \) is an infinite elementary abelian \(p \)-group. Now \(\langle y, a, U \rangle \) is nilpotent and
\(\langle y, a, U \rangle \cap (\langle y, a, U \rangle \cap Z) \) is an infinite elementary abelian \(p \)-group. Put \(R = \langle y, a, U \rangle \cap Z \). By (6) Satz of [3] there exists a subgroup \(V \) of
\(\langle y, a, U \rangle \) such that \(U < V, a \notin V \) and \(VR/R \) is infinite. But then there exists an element \(v \in V \setminus N \) such that \(a \notin \langle U, v \rangle \), a contradiction.

Proof of the Theorem. Since \(H^{(n)} \) is hypercentral, there exists an ordinal \(\beta \) such that
\[
1 = Z_0(H) \triangleleft Z_1(H^{(n)}) \triangleleft \cdots \triangleleft Z_\beta(H^{(n)}) = H^{(n)} \triangleleft H.
\]
Put \(Z_\gamma(H^{(n)}) = L_\gamma \) for all ordinals \(\gamma \leq \beta \) and \(L_{\beta+1} = H \). Let \(x_1, x_2, \ldots \) be a given sequence of elements in \(H \). Assume that \(\phi_n(x_1, \ldots, x_{2^n}) \neq 1 \) for all \(n \). Put \(y_1 = \phi_n(x_1, \ldots, x_{2^n}) \). Then there exists an ordinal \(\alpha_1 \) such that \(y_1 \in L_{\alpha_1+1} \setminus L_{\alpha_1} \). Now we have
\[
y_2 = \phi_{n+1}(x_1, \ldots, x_{2^{n+1}}) = [y_1, \phi_n(x_{2^n+1}, \ldots, x_{2^{n+1}})] \in L_{\alpha_1},
\]
and thus there exists an ordinal \(\alpha_2 \) such that \(\alpha_1 > \alpha_2 \). By continuing in this way we see that \(\alpha_1 > \alpha_2 > \cdots \) is an infinite descending chain of ordinals, a contradiction. Now we have that \(\phi_n(x_1, \ldots, x_{2^n}) = 1 \) for a natural number \(d \). By Lemma 2.3 \(G' \neq G \).

Corollary. Let \(G \) be a Fitting \(p \)-group and let for every proper subgroup \(H \) of \(G \), \(H^G \neq G \). Then,

(i) if every proper subgroup of \(G \) is soluble then \(G \) is soluble.

(ii) if every proper subgroup of \(G \) is hypercentral then \(G' \neq G \).

Both authors are grateful to the referee for many helpful suggestions and comments.

References

Manoscritto pervenuto in redazione il 27 giugno 2003.