Complements of the Socle in Almost Simple Groups.

A. LUCCHINI (*) - F. MENEGAZZO (***) - M. MORIGI (***)

Assume that a finite group H has a unique minimal normal subgroup, say N, and that N has a complement in H. We want to bound the number of conjugacy classes of complements of N in H; in particular we are looking for a bound which depends on the order of N. When $N = \text{soc} \ H$ is abelian, the conjugacy classes of complements of N in H are in bijective correspondence with the elements of the first cohomology group $H^1(H/N, N)$. Using the classification of finite simple groups, Aschbacher and Guralnick [1] proved that $|H^1(H/N, N)| < |N|$; therefore, when $\text{soc} \ H = N$ is abelian, there are at most $|N|$ conjugacy classes of complements of N in H. To study the case when $N = \text{soc} \ H$ is nonabelian we can employ a result proved by Gross and Kovács ([6], Theorem 1): there exists a finite group K containing a (non necessarily unique) minimal normal subgroup S which is simple and nonabelian (indeed S is isomorphic to a composition factor of N) and there is a correspondence between conjugacy classes of complements of N in H and conjugacy classes of complements of S in K. Using this result it is not difficult to prove that there exists an absolute constant $c \leq 4$ such that the number of conjuga-

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università degli Studi di Brescia, Via Valotti n. 9, 25123 Brescia, Italy. E-mail: lucchini@ing.unibs.it

(**) Indirizzo dell’A.: Dipartimento di Matematica, Pura ed Applicata, Università di Padova, Via Belzoni n. 7, 35131 Padova, Italy.
E-mail: federico@math.unipd.it

(***) Indirizzo dell’A.: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato n. 5, 40126 Bologna, Italy.
E-mail: mmorigi@dm.unibo.it

Investigation supported by MIUR (project Teoria dei gruppi e applicazioni) and the Universities of Bologna (funds for selected research topics), Brescia and Padova.
cy classes of complements of N in H is at most $|N|^c$ (see, for example, [9] Lemma 2.8). We conjecture that one can take $c = 1$, as occurs when N is abelian.

In this paper we deal with this conjecture in the case of finite almost simple groups. Let G be a finite simple group. As $G \cong \text{Inn}(G)$, we may identify G with $\text{Inn}(G)$. We will prove the following

Theorem. Let G be a finite non-abelian simple group and assume that $H \leq \text{Aut}(G)$ contains G. Then the number of conjugacy classes of complements of G in H is less than $|G|$.

When $G = \text{Alt}(n)$ with $n \neq 6$ or G is a sporadic simple group, it is well known that $|H:G| \leq 2$; if $H \ncong G$, then the complements of G in H are in bijective correspondence with the involutions of H which are not contained in G; hence the number of complements for G in H is strictly smaller than $|G|$. The case $G = \text{Alt}(6) \cong \text{PSL}(2, 9)$ is dealt with as a group of lie type.

We may now assume that G is a finite simple group of Lie type over a field $K = GF(p^m)$ of order p^m, for some prime p. We will follow the definitions and notations of the book [4], unless otherwise stated. So G will be a group of the form $G = \Sigma_l(q)$ where l is the Lie rank of G and $q = p^m$, for some prime p.

Also, ϕ denotes the Frobenius map and Γ denotes the group of graph automorphisms of G.

If G has no complement in $\text{Aut}(G)$ there is nothing to prove, so we may assume that there exists $C \leq H$ such that $H = GC$ and $G \cap C = 1$.

Then we have that C is isomorphic to a subgroup of $\text{Out}(G)$, whose structure is well known. In particular, C is at most 3-generated. Also, if x, y, z are generators of C and C' is any other complement for G in H, then C' is generated by three elements of the form xu_i, yu_i, zu_i satisfying the same relations as x, y, z and with $u_i \in G$, for $i = 1, 2, 3$.

In the whole paper, C will be a fixed complement for G in H.

1. Preliminary results.

We collect in this section some results which will be very useful in the sequel. The first is actually a corollary of Lang’s theorem, in the general form proved by Steinberg.
Proposition 1.1. Let G be an untwisted finite simple group of Lie type over the field K with p^m elements. Let $\phi' a \in \text{Aut}(G)$, with $a \in \text{InnDiag}(G)\Gamma$, and assume that $|\phi' a| = m/r$. If $x \in \text{InnDiag}(G)$ is such that $|\phi' ax| = m/r$ then $\phi' a$ and $\phi' ax$ are $\text{InnDiag}(G)$-conjugate.

Proof. Let $G = \Sigma(p^m)$ and let \mathcal{G} be the connected algebraic group over the algebraic closure K of K such that \mathcal{G} is adjoint and $G = O^p(C_\mathcal{G}(\phi^m))$ (see [4, Theorem 2.2.6 (e)]). By Lemma 2.5.8. (a) of [4] we have that $	ext{InnDiag}(G)$.

Let r_x be the inner automorphism of \mathcal{G} induced by x. There exists $a \in \text{Aut}(\mathcal{G})$ such that a is the product of a graph automorphism and an inner automorphism, and a induces a on G. We note that $(\phi' a)^{m/r} = (\phi' a)^{m/r} = \phi^w$. So $\phi' a$ is a surjective homomorphism ψ of \mathcal{G} whose set of fixed points in \mathcal{G} is finite. By the Lang-Steinberg theorem (see [Theorem 2.1.1] [4]) there exists $w \in \mathcal{G}$ such that $x = (w^{-1})^w \psi$.

Let $s = m/r$. We have that: $\phi^w = (\psi r_x)^w = \psi r_x r_x^{-1} r_x^{w-2} \cdots r_x^w r_x^{-1} = \phi^w r_x r_x^{-1} r_x^{w-2} \cdots r_x^w r_x = 1$. As $x = (w^{-1})^w \psi$ we obtain that $(r_x)^{w-1} r_x = 1$, so $r_x^{w-1} r_x^{-1} = 1$, that is $w \in \text{InnDiag}(G)$.

It follows that $(\phi' a)^w = w^{-1} \phi' a w = \phi' a(w^{-1})^w = \phi' a(w^{-1})^w = \phi' a$, as we wanted to prove.

We will also need a lemma proved in [8].

Lemma 1.2. Let G be a finite simple group of Lie type, and let $a \in \text{Aut}(G)$ then there exists $g \in G$ such that $|a| \neq |ag|$.

Our first results are easy consequences of the proposition and lemma above.

Proposition 1.3. Let G be a finite simple group of Lie type, $G \leq H \leq \text{Aut}(G)$ and assume that a complement C for G in H is cyclic. Then the number of complements for G in H is less than $|G|$.

Proof. If $C = \langle a \rangle$, then any other complement C' is generated by an element of the form ag, with $g \in G$ and $|ag| = |a|$, and lemma 1.2 applies.

Corollary 1.4. Let G be a finite simple group of one of the following types: $^3D_4(q), G_2(q), F_4(q), E_6(q), ^2F_4(q)$ or $^4G_2(q)$ and let $G \leq H \leq \text{Aut}(G)$. Then the number of complements for G in H is less than $|G|$.
PROOF. By Theorem 2.5.12 of [4] the groups listed above have cyclic outer automorphism group, so proposition 1.3 applies.

PROPOSITION 1.5. Let G be an untwisted finite simple group of Lie type over the field K. Assume that $C = \langle \phi^*a, b \rangle$, with $a \in \text{InnDiag}(G)$, $b \in \text{InnDiag}(G) \backslash \text{Inn}(G)$ and $|\phi^*a| = |\phi^*|$. Then the number of G-conjugacy classes of complements for G in H is less than $|G|$.

PROOF. If C' is another complement for G in H, then the first generator of C' is of the form ϕ^*ag, with $g \in G$ and $|\phi^*ag| = |\phi^*a| = |\phi^*|$, so by proposition 1.1 we have at most $d = |\text{InnDiag}(G) : G|$ choices for it, up to G-conjugation. Moreover, again by proposition 1.1, we may assume that $\phi^*ag = (\phi^*)^x$ for some $x \in \text{InnDiag}(G)$. So $C' = \langle \phi^*, (bv)^{x^{-1}} \rangle$, for some $v \in G$. We now need to count the choices for the second generator, which is of the form yu^x, where $y = b^{x^{-1}}$ and $v = u^{x^{-1}}$. By lemma 1.2 we have less than $|G|$ choices for u, as $|yu| = |y|$. Moreover, as we are counting G-conjugacy classes of complements, we may count the elements of the form yu up to conjugation by elements of the centralizer of ϕ^* in G. If $G = \Sigma_1(q)$ then $\Sigma_1(p) \leq \text{Inn}(\phi^*)$. We have that $[yu, \Sigma_1(p)] \neq 1$ (see [Lemma 2.5.7] [4]), so that $C_{\Sigma_1(p)}(yu)$ is a proper subgroup of $\Sigma_1(p)$. As the index of a maximal subgroup of $\Sigma_1(p)$ is at least d (see Table 5.2 A of [p. 175] [7]) each orbit of the set $\{yu | u \in G\}$ under the action of $\Sigma_1(p)$ by conjugation has at least d elements. This concludes the proof.

PROPOSITION 1.6. Let G be an untwisted finite simple group of Lie type over the field K. Assume that $C = \langle \phi^*a, b \rangle$, with $a, b \in \text{InnDiag}(G) \backslash \text{Inn}(G)$ and $|\phi^*a| = |\phi^*|$. Then the number of G-conjugacy classes of complements for G in H is less than $|G|$.

PROOF. If C' is another complement, by proposition 1.1 we may assume that the first generator of C' is $(\phi^*)^x$, for some $x \in \text{InnDiag}(G)$. Let $C' = \langle (\phi^*)^x, bv \rangle$, where $u \in G$. As $\text{InnDiag}(G) \leq H = GC'$ we have that $x = yz$ for some $z \in G$ and some $y \in C'$, so that $C' = \langle (\phi^*)^z, (bv)^{y^{-1}} \rangle$ is G-conjugate to a complement of the form $C'' = \langle (\phi^*)^z, v \rangle$. It follows that the first generator of C' is uniquely determined, up to G-conjugation. By lemma 1.2 the number of choices for the second generator of C' are less than $|G|$, and the conclusion follows.

We recall that if $a \in H$, then a is of one of the following types: inner, inner-diagonal, graph, field or graph-field (see [4], definition 2.5.13).
Complements of the socle etc. 145

Proposition 1.7. Let G be a finite simple group of Lie type over the field K. Assume that $C = \langle a, b \rangle$, where the type of a is known and b normalizes $\langle a \rangle$. Then the number of conjugacy classes of complements for G in H is bounded by rs, where r is the number of G-conjugacy classes of elements of H of the same type and order as a and s is the order of a maximal subgroup of G.

Proof. If C' is another complement for G in H, we have that $C' = \langle au, bv \rangle$, for some $u, v \in G$, where $|au| = |a|$, $|bv| = |b|$ and if $a^k = a^t$ for some integer t, then $(au)^{bv} = (au)^t$. There are at most r choices for au, up to G-conjugacy. Moreover, any two elements bv' and bv'' such that $(au)^{bv'} = (au)^{bv''}$ satisfy $(bv')^{-1}bv'' \in C_G(au)$, so there are at most $|C_G(au)|$ choices for the second generator, and the conclusion follows.

2. The special linear groups.

Let K be the finite field with q elements, with $q = p^m$ for some prime number p. As usual $GL(n, q)$ (resp. $SL(n, q)$) will denote the general (resp. special) linear group of degree n over the field K. In the following we will identify the multiplicative group K^\times of K with the subgroup of $GL(n, q)$ consisting of scalar matrices. Then $PGL(n, q) = GL(n, q)/K^\times$, $PSL(n, q) = SL(n, q)K^\times/K^\times$ and if $g \in GL(n, q)$ its image in $PGL(n, q)$ will be denoted with \overline{g}. Also, as usual, $\det(g)$ will indicate the determinant of a matrix g and $\text{diag}(a_1, \ldots, a_n)$ will denote a diagonal matrix, whose entries on the diagonal are those listed between the brackets.

In the whole section, we will consider $G = A_{n-1}(q) = PSL(n, q)$, for n and q fixed. Let ϕ be the Frobenius automorphism of $GL(n, q)$, given by: $(a_i^\phi) = (a_i^q)$, for $i = 1, \ldots, n$.

Let $\tau : GL(n, q) \to GL(n, q)$ be the automorphism defined by $g^\tau = (g^\top)^{-1}$, where g^\top denotes the transposed matrix of g.

Both ϕ and τ induce automorphisms of $PGL(n, q)$, which we will still indicate by ϕ and τ. ϕ generates the group of field automorphisms, τ is a graph automorphism if $n \geq 3$, and it is an inner automorphism if $n = 2$. Also, $PGL(n, q)/G$ is cyclic of order $d = (n, q - 1)$.

We have that C is isomorphic to a subgroup of $Out(G) = \langle \phi G, \tau G, aG \rangle$, where $a \in PGL(n, q)$, $(aG)^\phi = a^\phi G, (aG)^\tau = a^{-1}G$, $[\phi G, \tau G] = 1$ and $|aG| = d, |\phi G| = m, |\tau G| = 2$.
Case A: C is 3-generated

In this case C has the group $Z_2 \times Z_2 \times Z_2$ as an epimorphic image and d is even, so that p is odd and $n \geq 4$ is even.

We may assume that $C = \langle \phi^{*}N_1, rM_1, U_1 \rangle$, where $M_1, N_1, U_1 \in GL(n, q)$ and $r|m$. Also we have that U_1 has order d', with $2 | d' | d$ and we also have that $(\phi^{*}N_1)^{mir} \in \langle U_1 \rangle$.

Lemma 2.1. In the above setting, we may also assume that $[\phi^{*}N_1, rM_1] = 1$ and rM_1 has order 2.

Proof. As C is isomorphic to a subgroup of Out(G), it will be isomorphic to a subgroup T of the group $X = \langle a, b, c | a^d = b^{2^r} = c^m = 1, a^k = = a^{-1}, a^r = a^r, b^r = b \rangle$ where p is a prime and $p^m \equiv 1 \mod d$. Since T is not 2-generated, $T \cap \langle a, b \rangle$ and $T\langle a \rangle/\langle a \rangle$ are not cyclic; in particular m is even. Set $\langle a^l \rangle = T \cap \langle a \rangle$. If $b \in T$, easy calculations prove that $T = = \langle a^l, b, c^k \rangle$ where both a^l and c^k have even order. Assume that $b \not\in T$ and $ba \in T$. Note that $C_X(ba) = \langle a^{q_2}, ba, u \rangle$ where $u = ca^{\frac{p-1}{2}}$. Similar computations prove that $T = \langle a^l, ba, u^k \rangle$, where l is even, and the orders of a^l and of $u^k \langle a \rangle$ are even. As any subgroup of X which is not 2-generated is $\langle a \rangle$-conjugate to a subgroup containing either b or ba, the result follows.

Observation. With the notation of lemma 2.1 we note that it is possible that T does not split over $T \cap \langle a, b \rangle$. Namely, $T = \langle a^l, ba, u^k \rangle$ is not 2-generated and does not split over $T \cap \langle a, b \rangle$ if $p \not= 2, l, d, m/k$ are even, $\frac{p^m-1}{d}$ is odd, the order of a^l is divisible by 4, and finally $r_2 < \max((p^k-1)_2, (p^k+1)_2)$ where we denote by x_2 the 2-part of the integer x. Also, if T does not split over $T \cap \langle a, b \rangle$ we have that u^m has order 2.

Case I: $(\phi^{*}N_1)^{mir} = 1$

We may assume that another complement C' for G in H is generated by $\phi^{*}N_1 X, rM_1 U$, with $X \in G, M_1, U \in PGL(n, q)$, satisfying the same relations as $\phi^{*}N_1, rM_1, U_1$. In particular $(\phi^{*}N_1 X)^{mir} = 1$, so by proposition 1.1 there are at most d possibilities for the choice of $\phi^{*}N_1 X$, up to conjugation by elements of G. Moreover, again by proposition 1.1, we have that $\phi^{*}N_1 X = (\phi^{*})^S$, with $S \in PGL(n, q)$. Changing no-
tations for the last two generators, we may now assume that $C' = \langle \phi' \rangle^5$, $(\tau M)^5$, $(U)^5$.

We now have to count how many possibilities there are for the other two generators. From the fact that τM has order 2 it follows that $M^T = a\tau M$, with $a \in K$ and as $(M^T)^T = M$ we have that $a^2 = 1$, so that M is symmetric or skew-symmetric.

From the fact that $[\phi', \tau M] = 1$ it follows that $M^{\phi'} = \beta M$, with $\beta \in K$. This implies that $m_{ij}^{\phi'} = \beta$ for each $i, j = 1, \ldots, n$ such that $m_{ij} \neq 0$. Choose h, k such that $m_{hk} \neq 0$. Thus, for each $i, j = 1, \ldots, n$ we have that $m_{ij} m_{hk}^{-1} \in \Gamma(p')$, i.e., $m_{ij} = m_{hk} m_{ij}'$ for some $m_{ij}' \in \Gamma(p')$. It follows that $M = \tau m_{bk} M'$, with $M' \in \Gamma(n, p')$. Choosing M' instead of M as a pre-image of M we may assume that $M \in \Gamma(n, p')$.

As we are counting conjugacy classes of complements, we note that to count the possibilities for the second generator of C' we are still free to conjugate it by an element H of G centralizing ϕ', that is $H \in \Gamma(n, p')$. Note that in that case we have that $(\tau M)^H = \tau H^T \tau M H$, and by [3] there exists $H \in \Gamma(n, p')$ such that $H^T M H$ has one of the following forms: identity, diag($a, 1, \ldots, 1$), where a is a non-square in $\Gamma(p')$, or a block-diagonal matrix whose blocks on the diagonal are all equal to

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]

As we are allowed to conjugate by matrices in $\Gamma(n, q)$ and not in $\Gamma(n, q)$, we have at most $3d$ possibilities for M.

We now count the number of choices for U. We have that $(U)^{\tau M} = (U)^{-1}$, so $U^{\tau M} = \gamma U$, with $\gamma^2 = 1$, and we have at most $q^{n(n+1)/2}$ possibilities for U for each choice of γ. So we have at most $2q^{n(n+1)/2} / (q - 1)$ possibilities for U, and thus at most $6d^2 q^{n(n+1)/2} / (q - 1) < |G|$ possibilities for C', as $6q^{n+1} < (q^2 - 1)(q - 1)$ for $n \geq 4$ and $q \geq 9$.

Case II: $(\phi' N_1)^{\phi'} \neq 1$

In this case $\frac{m}{r}$ is even. Actually, if $\frac{m}{r}$ is odd, putting $x = \tau M_1$, $y = \phi' N_1$, if $m = 2s$, with $\frac{m}{r} | s$, then $C = \langle x, x^{\phi'}, y, U \rangle = \langle x^{\phi'}, U \rangle$, as $y^{\phi'} \in \langle y^{\phi'} \rangle \in (U)$. So C is 2-generated, contradicting the assumptions.

Again, we may assume that another complement C' is generated by $\phi' N$, τM, U, satisfying the same relations as $\phi' N_1$, τM_1, U_1. In particular $(\tau M)^2 = 1$. As in Case I, it follows that M is symmetric or skew-symmetric, and conjugating by a suitable element of $\Gamma(n, q)$ we have at
most 3d possibilities for \mathcal{M}. Namely, we may assume that $\tau \mathcal{M}$ is of one of the following types:

i) $\tau ^3$,

ii) $(\tau A)^3$, with $A = \text{diag}(a, 1, \ldots, 1)$, where a is a non-square in K,

iii) $(\tau B)^3$, where B is a block-diagonal matrix whose blocks on the diagonal are all equal to $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Changing notations for the generators, we may assume that $C' = = \langle (\phi ' N)^3, (\tau \mathcal{M})^3, (U)^3 \rangle$, with $\mathcal{M} \in \{T, A, B\}$. Also, there is no loss in generality in assuming $S = 1$, as this does not affect calculations.

We now consider the generator $\phi ' N$. Let $\mu = \det(N)$ and $(\phi ' N)^{\mu/r} = L$.

In cases i) and iii) we have that $(\tau M, \phi ' N) = [\tau \mathcal{M}, N] = 1$, so that $N^2 = \mathcal{M} = N$. It follows that $(N^{-1})^T = \gamma N$, with $\gamma \in K^\times$, and $\mu^2 \in K^n$ (here K^n is the set of elements of K which are n-th powers).

As $\frac{m}{r}$ is even and p is odd it follows that $2 \mid \frac{p^r - 1}{p^r - 1}$, so that $\det(L) = \mu^{p^r - 1} \in K^n$, which implies that $(\phi ' N)^{\mu/r} \in C \cap G = 1$ and $(\phi ' N)^{\mu/r} = (\phi ' N)^{\mu/r} = 1$, a contradiction.

We now deal with case ii). From $[(\tau A), (\phi ' N)] = 1$ it follows that $N^2 = \bar{A}^T \bar{N}$, so that $N^{-1} = \gamma A^\phi N^{-1}$, with $\gamma \in K^\times$ and $\mu^2 = a^r - a^r \gamma^{-n}$.

As before, $\det(L) = \mu^{(p^r - 1)} \equiv a^{1 - p} \frac{p^r - 1}{2p^r - 1} \equiv -1$ modulo K^n, so that $L^2 = 1$ (note that $\frac{p^r - 1}{2}$ is odd, as it is stated in the observation after lemma 2.1).

We distinguish two subcases:

a) $r \leq \frac{m}{4}$. We first bound the choices for the generator of the form $\phi ' N$. By [p. 52] [5], $\phi ' B$ and $\phi ' C$ are conjugate in GL(n, q) if and only if $(\phi ' B)^{\mu/r}$ and $(\phi ' C)^{\mu/r}$ have the same property, so we need to count PGL(n, q)-conjugacy classes of involutions $(\phi ' N)^{\mu/r} \in \text{PGL}(n, q) \setminus \text{PSL}(n, q)$. By Table 4.5.1 of [4] there are at most $n/2$ choices for $(\phi ' N)^{\mu/r}$, which means at most $\frac{n}{2}$, PGL(n, q)-conjugacy classes of elements of the form $\phi ' N$, that is at most $d \frac{n}{2}$ choices for $\phi ' N$, up to PSL(n, q)-conjugation.

Now once we have chosen an element τV as a second generator, from the fact that $(\phi ' N)^{\gamma} = \phi ' N$ it follows that all the other possible choices...
for the second generator are of the form rVU, where $U \in C_G(\phi'N)$.

Let K the algebraic closure of K. By the Lang-Steinberg theorem [p. 32] we have that $\phi'N$ is conjugate to ϕ' in $\text{PGL}(n, K)$, so $|C_{\text{PSL}(n, K)}(\phi'N)| = |\text{PGL}(n, p')|$. So we have at most $|\text{PGL}(n, p')|$ choices for rV.

By our hypothesis, there exists R such that $(rV)^{R^{-1}}$ is of the form rA, with $A = \text{diag}(a, 1, \ldots, 1)$, where a is a non-square in K.

We may assume that the third generator is of the form $(U)^R$.

We have that $U^{R(rV)} = (U)^R(U^A)^R = (U^A)^R$, and as $(U^R)^{rV} = (U^{R-1})^R$, it follows that $U^{rA} = U$, that is $U^{rA} = \gamma U$, with $\gamma \in \{\pm 1\}$.

This means that, fixed γ, U is determined by its entries along and above the diagonal, so we have at most $2q \frac{n(n + 1)}{2}$ choices for U, and at most $\frac{2}{q-1} q^{n-1}$ choices for U.

Putting all together, the number of conjugacy classes of complements for G in H is at most $d \frac{n}{2} |\text{PGL}(n, p^{m/2})| \frac{2}{q-1} q^{\frac{n(n+1)}{2}} < |\text{PSL}(n, q)|$.

(Here we have used that $8 | n$, because m is even, so that $8 | q - 1$ and $\frac{q-1}{d}$ is odd).

b) $r = \frac{m}{n}$. We first bound the choices for the generator of the form $\phi'N$.

As $(\phi'^{m/2}N)\phi' = L$ has order 2, the canonical form of L is either a diagonal matrix whose entries on the diagonal are in the set $\{\pm \gamma\}$, for some $\gamma \in K^\times$ (first type), or it is a block-diagonal matrix, whose blocks on the diagonal are all equal to $\begin{pmatrix} 1 & \gamma \\ 0 & 1 \end{pmatrix}$, with $\gamma \in K^\times$ (second type). By [p. 50] [5], by conjugating by a suitable element of $\text{GL}(n, q)$ we may assume that N is block-diagonal matrix, whose blocks N_i on the diagonal are of the form

$$
N_i = \begin{pmatrix}
0 & \cdots & \cdots & 0 & a_{i, 1} \\
1 & \ddots & & \vdots & a_{i, 2} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & 1 & a_{i, m_i}
\end{pmatrix}.$$

So we may assume that also L is a block-diagonal matrix, whose blocks L_j on the diagonal have dimension m_j.

We now want to prove that the canonical form of L is diagonal.

If $m_j \geq 5$ for some j it is easy to see that L_j cannot have order 2. Also, if the canonical form of L is of the second type, then $2 \mid m_j$ for each j. Now assume that $m_j = 2$ for some j. As L_j^2 is a scalar matrix, L_j is of the form $L_j = \begin{pmatrix} x & y \\ z & -x \end{pmatrix}$. Moreover L_j is diagonalizable if and only if $x^2 + yz$ is a square. Let $N_j = \begin{pmatrix} 0 & b \\ 1 & a \end{pmatrix}$. Then $L_j = \begin{pmatrix} b^{p^{\frac{n}{2}}} & ab^{p^{\frac{n}{2}}} \\ a^{p^{\frac{n}{2}}} & b + a^{p^{\frac{n}{2} + 1}} \end{pmatrix}$, $-\det(L_j) = -b^{p^{\frac{n}{2} + 1}}$ is a square (note that -1 is a square) and it follows that L_j is diagonalizable.

To conclude, assume that $m_j = 4$ for each j. We have that L_j is of the form

\[
L_j = \begin{pmatrix} 1 & a^{p^{\frac{n}{2}}} \\ 1 & b^{p^{\frac{n}{2}}} \\ 1 & c^{p^{\frac{n}{2}}} \\ 1 & d^{p^{\frac{n}{2}}} \end{pmatrix} = \begin{pmatrix} a^{p^{\frac{n}{2}}} & \star \\ b^{p^{\frac{n}{2}}} & \star \\ c^{p^{\frac{n}{2}}} & \star \\ d^{p^{\frac{n}{2}}} & \star \end{pmatrix}.
\]

So the first column of L_j^2 is \begin{pmatrix} a^{p^{\frac{n}{2}}} \\ b^{p^{\frac{n}{2}}} \\ c^{p^{\frac{n}{2}}} \\ d^{p^{\frac{n}{2}}} \end{pmatrix}, which implies that $b = c = d = 0$. So $L_j = \begin{pmatrix} 1 & a^{p^{\frac{n}{2}}} \\ 1 & a^{p^{\frac{n}{2}}} \end{pmatrix}$ and $L_j^2 = \text{diag}(a^{p^{\frac{n}{2}}}, a^{p^{\frac{n}{2}}}, a^{p^{\frac{n}{2}}}, a^{p^{\frac{n}{2}}})$.

As L^2 is a scalar matrix it follows that $a^{p^{\frac{n}{2}}} = a$ and a is the same for all blocks L_j. We have $a = \lambda^{u(p^{\frac{n}{2} + 1})}$, for some integer number u, and $\det L = (a^{\frac{n}{2}})^4 = \lambda^{u(p^{\frac{n}{2} + 1})}$, which leads to a contradiction because $d \mid \frac{n}{2}(p^{\frac{n}{2} + 1})$.

It follows that L is diagonal.

So we have at most $\frac{n}{2}$ choices for L and thus at most $\frac{n}{2}$ choices for $\phi^{p^{\frac{n}{2}}N}$, up to $\text{PGL}(n, q)$-conjugation. As we are counting $\text{PSL}(n, q)$-conjugacy classes we have to multiply this number by d.

We may also assume that $L = (L_1, L_2)$ is a block diagonal matrix with 2 blocks on the diagonal of the form $L_1 = \gamma I_n$ and $L_2 = -\gamma I_n$, for some γ.
in K^\times, where $r_1 + r_2 = n$. We note that r_1 and r_2 are both odd, otherwise $\det(L) = \gamma^n$ contradicting the fact that $L \notin \text{PSL}(n, q)$. Moreover, as $8 \mid n$, we have that $r_1 \neq \frac{n}{2} \neq r_2$.

We have that M, N and U centralize L, so we may assume that they are all block-diagonal matrices, with $M = (M_1, M_2)$, $N = (N_1, N_2)$ and $U = (U_1, U_2)$. (Note that if $S \subseteq \text{PSL}(n, q)$, then $S \subseteq \text{PSL}(n, q)$.

Moreover, as $8 \mid n$, we have that $r_1 = c_2 c_3 c_4 n$. We have that M, N and U centralize L, so we may assume that they are all block-diagonal matrices, with $M = (M_1, M_2)$, $N = (N_1, N_2)$ and $U = (U_1, U_2)$. (Note that if $L \subseteq \text{PSL}(n, q)$, then $L \subseteq \text{PSL}(n, q)$.

By proposition 1.1, we have that $f_{\frac{n}{2}}^{-1}(N_i)$ is conjugate to f in $\text{PGL}(r, q)$, and so $f_{\frac{n}{2}}^{-1}(N_i)$ is conjugate to $\phi \overrightarrow{D}$ in $\text{PGL}(n, q)$, with $D = (I_1, \beta I_2)$ for some $\beta \in K^\times$.

We now work separately on the two blocks, using exactly the same strategy as in case I.

We may assume that $M_1 = \xi M'_1$, with $\xi \in K^\times$ and $M'_1 \in \text{GL}(r_1, p^{m_2})$. Moreover M'_1 is symmetric (note that r_1 is odd). By conjugating with elements of $\text{GL}(r_1, p^{m_2})$ we find that there are at most 2 choices for M'_1, and at most $2(q - 1)^2$ choices up to $\text{SL}(r_1, p^{m_2})$-conjugation. So there are at most $2(q - 1)^2$ choices for $M'_1 \xi$. Arguing in the same way for M_2 and taking images in $\text{PGL}(n, q)$ we obtain that there are at most $4(q - 1)^3$ choices for M.

The number of choices for U_i is now at most $q^{r_1(r_1 + 1)/2}$ (note that the element γ appearing in case I is now forced to be 1, as r_1 is odd). So there are at most $q^{r_1(r_1 + 1)/2} q^{r_2(r_2 + 1)/2} / (q - 1)$ possibilities for U.

So we have at most $\frac{n}{2} d A(q^{r_1(r_1 + 1)/2} q^{r_2(r_2 + 1)/2} / (q - 1)^2) < |\text{PSL}(n, q)|$ choices for C.

Case B: C is 2-generated

We may assume that $C = \langle \phi \overrightarrow{N_i}, \tau^\epsilon \phi \overrightarrow{M_i} \rangle$, where $M_i, N_i \in \text{GL}(n, q)$ and $\epsilon \in \{0, 1\}$. We may also assume that any other complement C' is generated by $\phi \overrightarrow{N_i}, \tau^\epsilon \phi \overrightarrow{M_i}$, satisfying the same relations as $\phi \overrightarrow{N_i}, \tau^\epsilon \phi \overrightarrow{M_i}$.

Case I: $C \notin \text{InnDiag}(G) \Gamma, (\phi \overrightarrow{N_i})^{m/n} = 1$

In this case we apply proposition 1.5.

Case II: $C \notin \text{InnDiag}(G) \Gamma, (\phi \overrightarrow{N_i})^{m/n} = L_i \neq 1, n \geq 3$
Let \(u = |L| \). We now want to count \(\text{PSL}(n, q) \)-conjugacy classes of elements of the form \(\phi \cdot L \). By [p. 52] [5] \(f \) for \(A \) and \(f \) for \(B \) are conjugate if and only if \((\phi \cdot A)^{m/r} \) and \((\phi \cdot B)^{m/r} \) are conjugate, so we need to bound the number of \(\text{PGL}(n, q) \)-conjugacy classes of elements \(L \) of order \(u \), and then to multiply this bound by \(|\text{PGL}(n, q) : \text{PSL}(n, q)| = d \). As \(L \) is a scalar matrix, \(L \) is conjugate to a block-diagonal matrix \(X \) whose blocks \(X_i \) have all the same dimension \(k \) and are of the form:

\[
X_i = \begin{pmatrix}
1 & c_i \\
1 & \\
. & . \\
1 &
\end{pmatrix},
\]

where \(c_i = ce_i \) and \(e_i \) is a unit vector. We may also assume \(c_1 = c \).

If \(k = 1 \) then there are at most \((q - 1) d^{n-1} \) choices for \(X \) and thus at most \(d^{n-1} \) choices for \(L \), up to \(\text{PGL}(n, q) \)-conjugacy.

If \(k > 1 \) there are at most \((q - 1) d^{n-1} \) choices for \(X \).

So, summing over all \(k \)'s, the choices for \(L \) are at most

\[
d^{n-1} + \sum_{1 \leq k | d} (q - 1) d^{n-1}.
\]

Note that \(d^{n-1} + \sum_{1 \leq k | d} (q - 1) d^{n-1} \leq (q - 1) \frac{d^{n-1} - 1}{d - 1} \).

We now have that \(L^{\phi \cdot M} = L \). Once we have fixed one element \(M \) with that property, all the others can be obtained by multiplying \(M \) by an element of the centralizer \(Z \) of \(L \) in \(\text{PSL}(n, q) \), and we may assume without loss of generality that \(L \) has prime order \(u \).

Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for \(u \) odd and Table 4.5.1 of [4] for \(u = 2 \) and some easy calculations it is possible to see that an upper bound for the order of \(Z \) is \(|\text{GL}(n - 1, q)| \). We now have to check that

\[
d(q - 1) \frac{d^{n-1} - 1}{d - 1} |\text{GL}(n - 1, q)| < |\text{PSL}(n, q)|,
\]

which is true for \(n \geq 4 \) because \(d(q - 1)^2 \frac{d^{n-1} - 1}{d - 1} < (q^n - 1) q^{n-1} \). For \(n = 3 \) we use the more accurate bound (2).
Case III: $C \leq \text{InnDiag}(G) \Gamma$, $n \geq 3$.

If C is cyclic we conclude by proposition 1.3. Otherwise we first choose a generator for $C' \cap \text{InnDiag}(G)$, so that the number of possibilities is bounded by (2.6), then we argue as in case II.

Case IV: $n = 2$

If C is cyclic we conclude by proposition 1.3, otherwise we first choose a generator for $C' \cap \text{InnDiag}(G)$, for which there is at most one possibility, by Table 4.5.1 of [4], and by lemma 1.2 there are less than $|G|$ choices for the second generator.

3. The unitary linear groups.

In this section, we will consider the group $G = {^2A}_{n-1}(q) = \text{PSU}(n, q)$, for n and q fixed.

Let $K = GF(q^2)$ be the finite field with q^2 elements, with $q = p^m$ for some prime number p. We fix a generator λ of the multiplicative group of the field K^\times. Then $\text{GU}(n, q)$ (resp. $\text{SU}(n, q)$) will denote the general (resp. special) unitary group of degree n, that is $\text{GU}(n, q) = \{ g \in \text{GL}(n, q^2) | g(g^{-1})^\sigma = 1 \}$ where $\sigma = \phi^m \in \text{Aut}(\text{GL}(n, q^2))$, and $\text{SU}(n, q) = \{ g \in \text{GU}(n, q) | \det(g) = 1 \}$. All other notations, unless otherwise specified, are as in the previous section.

We may assume that C is non-cyclic, otherwise we conclude by proposition 1.

Let $C = \langle \phi^* \overline{N}_1, \overline{U}_1 \rangle$, with $\overline{U}_1, \overline{N}_1 \in \text{PGU}(n, q)$. We argue as in case B II of the special linear group.

We have that U is $\text{GL}(n, q^2)$-conjugate to a block-diagonal matrix X whose blocks X_i have all the same dimension k and are of the form (1), where $c_i = \epsilon c_i$, $\epsilon_i^q = 1$ and we may also assume that $c_i = c$.

By [10, p. 34] the matrix X as above is conjugate to an element of $\text{GU}(n, q)$ if and only if it is similar to the matrix $(X^T \epsilon^q)^{-1}$.

So $c_i(\epsilon_i^q)^{-j}$ for some j, which implies that $c^{q+1} = (\epsilon_1 \epsilon_2^q)^{-1}$ and $c^{(q+1)^2} = 1$. Let $c = \lambda^u$. We have that $q^2 - 1 \mid u(q+1)^2$, so $q - 1 \mid u(q+1)$.

As $(q+1, q-1) \leq 2$, it follows that $\frac{q-1}{2} \mid u$ and there are at most $2(q+1)$ choices for c. Moreover, again by [10, p. 34] two matrices are conjugate in $\text{GU}(n, q)$ if and only if they are conjugate in $\text{GL}(n, q^2)$, so it
is enough to count the number of choices for the matrix X as above, and then to multiply by $d = |\operatorname{PGU}(n, q) : \operatorname{PSU}(n, q)|$.

As in case B II of the special linear group, the choices for X are at most

$$d^{n-1} + \sum_{1 < k | d} 2(q + 1) d^{n-1}.$$

Note that $d^{n-1} + \sum_{1 < k | d} 2(q + 1) d^{n-1} \leq 2(q + 1) \frac{d^{n-1} - 1}{d - 1}$.

To bound the number of choices for the second generator, we look for an upper bound for the order of the centralizer \mathcal{Z} of \mathcal{U} in $\operatorname{PGU}(n, q)$. We may assume that \mathcal{U} has prime order u.

We first assume that $(n, q) \notin \{(3, 2), (3, 5), (4, 3), (8, 3)\}$.

Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5.1 of [4] for $u = 2$ and some easy calculations it is possible to see that an upper bound for the order of \mathcal{Z} is $|\operatorname{GU}(n - 1, q)|$.

So we have to prove that $2d(q + 1) \frac{d^{n-1} - 1}{d - 1} |\operatorname{GU}(n - 1, q)| < |\operatorname{PSU}(n, q)|$.

As $\frac{d}{d - 1} \leq 2$, this is true because $4(q + 1)^2d^n < (q^n - 1)q^{n-1}$.

If $(n, q) = (8, 3)$ we use the more accurate bound (3) and the fact that $|\mathcal{Z}| \leq |\operatorname{GU}(n - 1, q)|$.

We now study the remaining cases.

I: Case $(n, q) = (3, 2), d = 3$ is divided into 2 subcases according as \mathcal{U} is diagonalizable or not. For each case, we have to consider the possible canonical forms for \mathcal{U} and the order of their centralizers, and the result follows just by counting the possible choices.

II: Case $(n, q) = (3, 5), d = 3$.

There are at most 15 possibilities for the choice of X and $15 \cdot 3 |\operatorname{GU}(2, 5)| < |\operatorname{PSU}(2, 5)|$.

III: Case $(n, q) = (4, 3), d = 4$ is divided into 2 subcases according as $|\mathcal{U}|$ is equal to 2 or 4. For each case, we have to consider the possible canonical forms for \mathcal{U} and the order of their centralizers, and the result follows just by counting the possible choices.

4. $B_3(q), C_3(q)$ and $E_7(q)$.

Let $G \in \{B_3(q), C_3(q), E_7(q)\}$. We have that C is isomorphic to a subgroup \mathcal{U} of $Z_2 \times Z_m$, with $Z_m = \langle \phi G \rangle$ and $\operatorname{Out} \operatorname{Diag}(G) \leq Z_2$.

Then either C is cyclic, and we may apply proposition 1.3, or it is 2-generated, and it is possible to choose one generator of the form $\phi^\gamma z$, with $z \in G$ and $(\phi^\gamma z)^\tau = 1$, so proposition 1.5 applies.

5. $D_l(q)$, $l \neq 4$.

Case $p = 2$

In this case we have that C is isomorphic to a subgroup \overline{C} of $Z_2 \times Z_m$, with $Z_m = \langle \phi G \rangle$ and $\text{Out Diag}(G) \Gamma = Z_2$, and we argue as for the case $G = B_l(q)$ or $C_l(q)$.

Case $p \neq 2$

We have that C and its image \overline{C} in $\text{Out}(G)$ are isomorphic to a subgroup of $D_8 \rtimes Z_m$, with the following notation: $Z_m = \langle \phi G \rangle$ and $\text{Out Diag}(G) \Gamma \leq D_8$. More precisely, if l is odd and $4 | q - 1$ or if l is even then $\text{Out Diag}(G) \Gamma = D_8 = \langle xG, rG \rangle$, where r is the graph automorphism of order 2, $\overline{w} = wG$ has order 4, $\overline{w}^r = \overline{w}^{-1}$, $[r, \phi] = 1$, and $\overline{w}^\phi = \overline{w}$ unless l is odd and $4 \nmid p - 1$, in which case $\overline{w}^\phi = \overline{w}^{-1}$.

If l is odd and $4 \nmid q - 1$ then $\text{Out Diag}(G) \Gamma = \langle xG, rG \rangle$ is elementary abelian, r is the graph automorphism of order 2, $x \in \text{InnDiag}(G)$. Also ϕ centralizes $\text{Out Diag}(G)$.

Let $T = C \cap \text{InnDiag}(G) \Gamma$, and let \overline{T} be its image in $\text{Out}G$. By proposition 1 we may assume that C is not cyclic, and it is easy to check that C splits over T.

Let $\overline{C} \neq \text{Out Diag}(G) \Gamma$.

1) Assume that it is possible to choose a generator of C modulo T of the form $\phi^\gamma a$, with $a \in \text{InnDiag}(G)$ and $(\phi^\gamma a)^\tau = 1$.

If T is cyclic proposition 1.5 applies, so we may assume that T is not cyclic.

If C' is another complement, by proposition 1.1 we may assume that, up to $\text{InnDiag}(G)$-conjugacy, a generator of C' modulo $C' \cap \text{InnDiag}(G) \Gamma$ is $\langle \phi^\gamma \rangle$, for some $x \in \text{InnDiag}(G)$, and we have at most $|\text{InnDiag}(G) : G| \leq 4$ choices for it, up to G-conjugacy.

T is generated by two involutions u^ε and v^ε, that are of graph type or of inner-diagonal type, depending on which case we are considering. Moreover we may assume that u is of the form $\tau^\varepsilon y$, with $y \in G$ and $\varepsilon \in \{0, 1\}$, and such that $[\tau^\varepsilon y, \phi^\gamma] = 1$, so $y \in D_l(p^\varepsilon)$. We note that we may conjugate $\tau^\varepsilon y$ by elements of $D_l(p^\varepsilon)$, which centralize ϕ^γ.
From Table 4.5.1 of [4] we deduce that both the number of $D_l(p')$-conjugacy classes of involutions of graph type and the number of $D_l(p')$-conjugacy classes of involutions of inner-diagonal type are bounded by $2(l+3)$. So there are at most $2(l+3)$ choices for u. Then we have to count the involutions v of a fixed type. There are at most $2(l+3)$ conjugacy classes, and each class contains at most $|\text{InnDiag}(G)\cap G| \leq 8 |G: C_G(g)|$ elements, where g is any involution in the class considered. We choose g such that the index of $H = C_G(g)$ in G is maximum. So there are at most $2(l+3)^2 |G: H|$ possibilities for the choice of v. So we just have to check that $4\cdot 32(l+3)^2 |G: H| < |G|$, which is true because $128(l+3)^2 < |H|$ (the structure of H is also described in Table 4.5.1 of [4]).

II) Assume that we are not in the previous case, so that C does not contain $\text{OutDiag}(G)$; in particular $|T| < 8$. Let $\phi'z$ be a generator of C modulo T of order $\frac{m}{r}$, with $z \in \text{InnDiag}(G) \cap \text{InnDiag}(G)$. We have that $\frac{m}{r}$ is even, otherwise we replace $\phi'z$ with $(\phi'z)^4$, which is a generator of C modulo T of order $\frac{m}{r}$ and of the form $\phi'x$ with $x \in G$.

If $T = \langle u \rangle$ has order 2 then we apply Proposition 1. By Table 4.5.1 of [4] we have at most $2(l+3)$ conjugacy classes of involutions of the same type as u; moreover, by Table 5.2 A of [p. 175] [7] the index of a maximal subgroup of G is less than $2(l+3)$, so in this case the conclusion follows.

If T is cyclic of order 4, from the fact that we are not in case I it follows that $T = \text{OutDiag}(G)$ and we can conclude by Proposition 1.6.

So we may assume that T is elementary abelian of order 4.

If l is even then $T = \text{OutDiag}(G)$ and as we are not in case I it follows that $\phi'z$ does not centralize T, so we conclude by Proposition 1.6.

Let l be odd. Note that we also have that $8 |q - 1$, because m is even.

As we are not in case I, one of the following occurs:

- $\xi = \tau$ and $T = \langle \sigma^2, \sigma \tau \rangle$, or
- $\xi = \sigma \tau$ and $T = \langle \sigma^2, \tau \rangle$.

To deal with these cases we always adopt the same strategy. We first count the number of choices for a generator of $T \cap \text{InnDiag}(G)$, then we count the number of choices for a generator of T modulo $T \cap \text{InnDiag}(G)$, and finally we count the number of choices for a generator of C modulo T.
We describe the calculations in detail only for the first case.

Let C' be another complement of of G in H; then we may assume that it is of the form $C' = \langle \phi' x u, w^2 v, w x v \rangle$, with $u, v, x \in G$.

By Table 4.5.1 of [4] we have at most $l - 1$ choices for $w^2 v$, up to G-conjugacy. Moreover let $C^* = C_{\text{InnDiag}(G)}(w^2 v)$ and $L^* = O^*(C^*)$. From table 4.5.1 of [4] it follows that

i) either $L^* = 2D_{i-1}(q)$ and $Z = C_{C^*}(L^*) = C_{\text{InnDiag}(G)}(r_1(L^*))$ has order $q + 1$ or

ii) $L^* = D_i(q) \times D_{i-1}(q)$ or $L^* = 2D_i(q) \times 2D_{i-1}(q)$, where $2 \leq i < \frac{l}{2}$ and $Z = C_{C^*}(L^*) = C_{\text{InnDiag}(G)}(r_1(L^*))$ has order 2.

We first deal with case ii). Note that $w x v$ centralizes $w^2 v$, so it normalizes L^*. Let $(y_1, y_2) \in \text{Aut}(D_i(q)) \times \text{Aut}(D_{i-1}(q))$ be the image of $w x v$ in $\text{Aut}(L^*)$. The number of choices for $w x v$, up to G-conjugacy, is bounded by $|Z| r_1 r_2$, where $r_1 - 1$ is the number of $D_i(q)$-conjugacy classes of involutions in $\text{InnDiag}(D_i(q)) G$ (we have to add one because y_1 might be the identity) and $r_2 - 1$ is the number of $D_{i-1}(q)$-conjugacy classes of involutions in $\text{InnDiag}(D_{i-1}(q)) G$. Again by table 4.5.1 of [4] we have that $r_1, r_2 \leq 6 l + 25$.

Note: For $i = 2, 3$ it is easy to check that $r_1, r_2 \leq 6 l + 25$ is still true (see [p. 11] [4] and [p. 43] [7] for the description of D_i in these cases).

So there are at most $2(6 l + 25)^2$ choices for $w x v$.

We now have to choose $\phi' x u$ with the required properties, any other element of the form $\phi' x u$ is such that $(\phi' x u)^{-1} \phi' x u' \in C_G(w^2 v)$, so we have at most $|C_G(w^2 v)|$ choices for the third generator.

A similar argument applies to case i).

To conclude, we have that the number of complements for G in H is at most $(l - 1) 2(6 l + 25)^2 |U|$, where U is a maximal subgroup of G, and this number is less than $|G|$, as by Table 5.2 A of [p.175] [7] the index of a maximal subgroup of G is at least $q^2 (q^2 - 1)(q^{l-1} + 1)$ and $2(l - 1)(6 l + 25)^2 < (q^l - 1)(q^{l-1} + 1)$ (here $l \geq 5$ and $q \geq 9$).

Let $C \subseteq \text{OutDiag}(G) G$.

Then C is generated by two involutions u and v, that are of graph type or of inner-diagonal type, depending on which case we are considering, and we argue as in Case I above.
6. $D_4(q)$

In this case we have that $\text{OutDiag}(G) = 1$ if $p = 2$, otherwise $\text{OutDiag}(G) = (\mathbb{Z} \times \mathbb{Z}) \times (\mathbb{Z} \times \mathbb{Z})$ is elementary abelian of order 4 and it is centralized by ϕ. Also, $\Gamma = \langle \tau, \gamma \rangle$ is isomorphic to S_3 with $|\tau| = 2$, $|\gamma| = 3$, $\overline{\omega} = \overline{\tau}$, $\overline{\tau} = \tau$, while $\langle \text{InnDiag}(G) \Gamma \rangle / G$ is isomorphic to S_4 and is centralized by ϕ.

Let $T = C \cap \text{InnDiag}(G) \Gamma$, and let \overline{T} be its image in $\text{Out} G$. By proposition 1.3 we may assume that C is not cyclic, and it is easy to check that C splits over T.

Case: $C \not\in \text{InnDiag}(G) \Gamma$

I) Assume that it is possible to choose a generator $\phi' u$ of C modulo T of order $\frac{m}{r}$ and with $u \in \text{InnDiag}(G)$.

If T is cyclic we conclude by proposition 1.5, so we may assume that T is not cyclic.

Assume that p is odd. By proposition 1.1 we have at most 4 possibilities for the choice of $\phi' u$, up to G-conjugacy, and we may assume that it is of the form $(\phi')^x$ for some $x \in \text{InnDiag}(G)$.

We may also assume that one generator of T is an involution y such that y centralizes ϕ'. As we may conjugate y by elements of the form $w \in G$, where w centralizes ϕ', the choices for y are bounded by the number of G-conjugacy classes of non-inner involutions of fixed type in $\text{InnDiag}(D_4(p^r)) \Gamma$, which by table 4.5.1 of [4] is at most 24. The second generator of T is an element of $\text{InnDiag}(D_4(p^r)) \Gamma$ and we have that $96 | \text{InnDiag}(D_4(p^r)) \Gamma | < |G|$, as we wanted.

If $p = 2$ then by proposition 1.1 we have at most one possibility for the choice of $\phi' u$, up to conjugacy; we therefore take $x = 1$. Moreover, T is generated by a graph automorphism y of order 3, and a graph type involution v, which both centralize ϕ'. Arguing as above and using table 4.7.3A of [4] we find that there are at most 16 $\text{InnDiag}(D_4(2^r)) \Gamma | < |G|$, as we wanted.

II) Assume that we are not in the previous case and let $\phi' a$ be a generator of C modulo T of order $\frac{m}{r}$ with $a \in \text{InnDiag}(G) \Gamma$, $a \not\in \text{InnDiag}(G)$.

If T is cyclic, as we are not in case I it is easy to see that T has order 2 or 3.

If $T = \langle y \rangle$ has order 3 then y is of graph type. We now apply proposi-
Complements of the socle etc. 159

tion 1.7. By table 4.7.3A of [4] if \(p \neq 3 \) and by proposition 4.9.2 (b5) and (g) of [4] if \(p = 3 \) we have at most 16 \(G \)-conjugacy classes of type graph elements of order 3. Moreover, by Table 5.2A of [p. 175] [7] the index of a maximal sbsgroup of \(G \) is at least \(\frac{(q^2 - 1)(q^2 - 1 + 1)}{q - 1} \) > 16, so we have what we wanted.

If \(T \) has order 2 we argue as follows. By proposition 1.1 we have at most 4 possibilities for the choice of the first generator, up to \(G \)-conjugacy. Once we have fixed the first generator, say \(\phi' au \), the second generator \(b \) has the property that \([\phi' au, b] = 1\). Thus the possible choices for the second generator are given by elements of the type \(bv \), with \(v \in G \), such that \([\phi' au, bv] = 1\), so that \(v \in C_G(\phi' au) \). It follows that we have at most \(4 |C_G(\phi' au)| < |G| \) choices, as we wanted (note that \(C_G(\phi' au) \) is a proper subgroup of \(G \), so that its index is greater than 4).

Now we may assume that \(T \) is not cyclic. As we are not in case I it follows that \(\text{OutDiag} (G) \leq T \) and that \(T = \langle y, y' \rangle \) for some \(y \) in \(T \), where \(y \) has order 2 or 3, so that \(C = \langle \phi' a, y \rangle \). Now proposition 1.6 allows us to conclude.

Case: \(C \leq \text{InnDiag} (G) \Gamma \)

We first assume that \(p = 2 \). Then \(C = \langle x, y \rangle \equiv \Gamma \), where \(x \) and \(y \) are both of graph type, \(|x| = 3\), \(|y| = 2\) and \(x^y = x^{-1} \). By table 4.7.3A of [4] there are at most 4 \(G \)-conjugacy classes of type graph elements of order 3. By proposition 1.7 there are at most \(4 |Z| \) conjugacy classes of complements for \(G \) in \(H \), where \(Z \) is a maximal subgroup of \(G \). To conclude, we note that by Table 5.2A of [p. 175] [7] we have that \(4 < |G: Z| \).

We now assume that \(p \) is odd.

1) If \(C \equiv \text{OutDiag} (G) \Gamma \) then \(C \) is isomorphic to either \(S_4 \) or \(S_3 \) and it is generated by 2 elements \(x \) and \(y \) of graph type, with \(|x| = 3\) and \(|y| = 2\).

By table 4.7.3A of [4] if \(p \neq 3 \) and by proposition 4.9.2 (b5) and (g) of [4] if \(p = 3 \) there are at most 16 \(G \)-conjugacy classes of type graph elements of order 3. Also, there are at most 6 \(\text{InnDiag} (G) \)-conjugacy classes of involutions of graph type, and if \(g \) is a graph type involution such that \(H = C_{\text{InnDiag} (G)} (g) \) has minimum order, there are at most 6 \(|\text{InnDiag} (G) : H| \leq 24 |G : G \cap H| \) choices for \(g \). As \(|H \cap G| > 16\cdot 24\), it follows that 16\cdot 24 \(|G : G \cap H| < |G| \). (The structure of \(G \cap H \) is given in table 4.5.1 of [4].)
II) In the remaining cases, we have that \(C = \langle x, y \rangle \) where \(|x| = 2 \), \(x \in \text{InnDiag}(G) \backslash G \) and \(|y| \in \{2, 3\} \) and the type of \(y \) is known (either \(y \in \text{InnDiag}(G) \backslash G \) or \(y \) is of graph type). Arguing as in case I, by tables 4.5.1 and 4.7.3A and proposition 4.9.2 of [4], there are at most 6 choices for \(x \), up to \(G \)-conjugacy, and at most 24 \(N_G \) choices for \(y \), where \(H = C_{\text{InnDiag}(G)}(g) \) for some \(g \) such that \(g \) has the same order and type of \(y \). As \(|H \cap G| > 6 \cdot 24 \), it follows that \(6 \cdot 24 |G : G \cap H| < |G| \). (The structure of \(G \cap H \) is given in table 4.5.1 of [4].)

7. \(2D_l(q) \).

If \(p = 2 \) we have that \(C \) is cyclic, so we may assume that \(p \) is odd.

Cases: \(l \) even or \(l \) odd and \(4 \mid q + 1 \)

We have that \(C \) is isomorphic to a subgroup \(\overline{C} \) of \(Z_2 \times Z_{2m} \), with \(Z_2 = \langle aG \rangle \) and \(Z_{2m} = \langle \phi \rangle \), where \(a \in \text{InnDiag}(G) \).

We have that \(C = \langle y, \phi^u \rangle \) where \(y \in \text{InnDiag}(G) \backslash \text{Inn}(G) \) has order 2 and is centralized by \(\phi^u \), so we may apply proposition 1.7. By Table 4.5.1 of [4] there are at most \(l - 1 \) conjugacy classes of non-inner inner-diagonal involutions, and by Table 5.2A of [7], the index of a maximal subgroup of \(G \) is bigger than \(l - 1 \). This allows us to conclude.

\(l \) odd, \(4 \mid q + 1 \)

In this case \(4 \mid p + 1 \) and \(m \) is odd. We have that \(C \) is isomorphic to a subgroup of \(Z_4 \times Z_{2m} \), with \(Z_4 = \langle aG \rangle \) and \(Z_{2m} = \langle \phi \rangle \), where \(a \in \text{InnDiag}(G) \). Moreover \((aG)^{\phi} = (aG)^{-1} \).

If \(C \cap \text{InnDiag}(G) \) has order 2 we argue exactly as in the previous case.

So we may assume that \(C \cap \text{InnDiag}(G) \) has order 4, and that any other complement \(C' \) is of the form \(C' = \langle x, \phi^y \rangle \), where \(x \in \text{InnDiag}(G) \) has order 4, \(x^2 \in \text{InnDiag}(G) \backslash \text{Inn}(G) \) and \(x \phi^y = x^{(-1)^y} \).

We argue in a similar way as for a subcase of \(D_l(q) \).

By Table 4.5.1 of [4] we have at most \(\frac{l + 1}{2} \) choices for \(x^2 \), up to \(G \)-conjugacy. Moreover let \(C^* = C_{\text{InnDiag}(G)}(x^2) \) and \(L^* = O^*(C^*) \). From table 4.5.1 of [4] it follows that \(L^* \) is one of the following:
i) \(L^* = D_{l-1}(q) \) and \(Z = C_{C^*}(L^*) = C_{\text{InnDiag}(G)}(L^*) \) has order \(q-1 \);

ii) \(L^* = D_i(q) \times D_{l-i}(q) \), where \(i \) is even, \(i \in \{2, \ldots, l-3\} \), and
\(Z = C_{C^*}(L^*) = C_{\text{InnDiag}(G)}(L^*) \) has order 2;

iii) \(L^* = SU(l, q), C^* = GU(l, q) \) and
\(Z = C_{C^*}(L^*) = C_{\text{InnDiag}(G)}(L^*) \) has order \(q+1 \).

We note that the case \(L^* = D_i(q) \times D_{l-i}(q) \), where \(i \) is odd occurs only if \(x^2 \) is inner, which is not our case. To see this, note that \(G = P\Omega^-(2l, q) \), and we may assume that the matrix associated to the symmetric bilinear form is the identity. We then have that in this case \(x^2 \) is the image in \(P\Omega^-(2l, q) \) of the matrix \(\text{diag}(\mathbf{2}^1, R, \mathbf{2}^1, 1, R, 1) \), where the number of entries equal to \(-1\) is \(2i \), and then by proposition 2.5.13 of \[7\] \(x^2 \) is inner.

We first deal with case ii). Note that \(x \) centralizes \(x^2 \), so it normalizes \(L^* \). Let \((y_1, y_2) \in \text{Aut}(D_i(q)) \times \text{Aut}(D_{l-i}(q)) \) be the image of \(x \) in \(\text{Aut}(L^*) \). We note that \((y_1, y_2) \) has order 2, so the number of choices for \(x \), up to \(G \)-conjugacy, is bounded by \(|Z| r_1 r_2 \), where \(r_1 - 1 \) is the number of \(D_i(q) \)-conjugacy classes of involutions in \(\text{InnDiag}(D_i(q)) \) \(\Gamma \) (we have to add one because \(y_1 \) might be the identity) and \(r_2 - 1 \) is the number of \(D_{l-i}(q) \)-conjugacy classes of involutions in \(\text{InnDiag}(D_{l-i}(q)) \) \(\Gamma \). Again by table 4.5.1 of \[4\] we have that \(r_1 \leq 3i + 1, r_2 \leq 3(l - i) + 9 \).

Note: it is easy to check that for \(i = l - 3 \) it is still true that \(r_2 \leq 3(l - i) + 9 \), and the same holds for \(i = 2 \) and \(r_1 \leq 3i + 1 \) (see \[p. 11\] \[4\] and \[p. 43\] \[7\] for the description of \(D_i \) in these cases).

As the maximum of the function \(f(z) = (3z + 1)(3l - 3z + 9) \) is \(l^2 + 15l + 25 \), once we have fixed \(x^2 \) in case ii) there are at most \(\frac{9}{2} l^2 + 30l + 50 \) choices for \(x \).

A similar argument applies to case i), and we get at most \(4(3l + 6) < \frac{9}{2} l^2 + 30l + 50 \) choices for \(x \).

We are left with case iii). In this case \(x \) is a unitary matrix of order 4. Arguing as in section 3, as \(l \) is odd we have that \(x \) is conjugate in \(GU(l, q) \) to a diagonal matrix whose entries on the diagonal are of the form \(e^i \), where \(e \) is a primitive 4-th root of 1. Moreover, if \(GF(q^2)^x = (\lambda) \), we have that \(\text{diag}(\lambda^{l-1}, 1, \ldots, 1) \) is a unitary matrix centralizing \(x \), so that the number of \(SU(l, q) \) conjugacy classes for \(x \) is at most \(4^l - 2^l \).
Now we apply proposition 1.7. By table 5.2 A of [p. 175] [7] the index of a maximal subgroup of G is at least \(\frac{(q^l + 1)(q^{l-1})}{q - 1} \), which is greater than \(\frac{l + 1}{2} \max \left\{ \frac{9}{2}l^2 + 30l + 50, 2^l(2^l - 1) \right\} \).

8. $E_6(q)$. We have that C is isomorphic to a subgroup \overline{C} of $\text{Out}(G) \leq S_3 \rtimes Z_m$, with $Z_m = \langle \phi G \rangle$, $S_3 = \langle aG, \tau G \rangle$, $|aG| = 3$, $|\tau| = 2$, $(aG)^{\phi} = (aG)^{-1}$, $\text{OutDiag}(G) \leq \langle aG \rangle$ and $I(G) = \langle \tau \rangle$. Also, ϕ centralizes τ and either inverts or centralizes aG.

By proposition 1.3 we may assume that C is not cyclic.

Let $\overline{C} \neq \text{Out Diag}(G) \Gamma$, $T = C \cap \text{InnDiag}(G) \Gamma$.

I) Assume that it is possible to choose a generator $\phi \cdot x$ of C modulo T of order $\frac{m}{r}$ and with $x \in \text{InnDiag}(G)$.

By proposition 1.1 we have at most 3 possibilities for the choice of $\phi \cdot x$, up to conjugacy. Moreover, by proposition 1.5 we may assume that $T = \text{OutDiag}(G) \Gamma$.

We have that T is generated by a graph-type involution u centralizing a suitable conjugate of $\phi \cdot x$ and an element $v \in \text{InnDiag}(G) \setminus \text{Inn}(G)$ of order 3. We now argue as in the analogue of this case for $D_l(q)$.

By Table 4.5.1 and proposition 4.9.2 (b)(4) and (f) of [4] there are at most 2 choices for u, up to G-conjugacy. By Table 4.7.3A of [4] there are at most 8 G-conjugacy classes of elements of order 3 in $\text{InnDiag}(G) \setminus \text{Inn}(G)$, and each of them has at most $|\text{InnDiag}(G)/\text{Inn}(G)|$ elements, where g is an element of one of those classes such that $C_G(g)$ has minimum order. To conclude, it is enough to note that $|C_G(g)| > 48$.

II) It is easy to see that if we are not in the previous case then it is possible to choose a generator $\phi \cdot z$ of C modulo T of order $\frac{m}{r}$ and with $z \in \text{InnDiag}(G) \Gamma$. Moreover, T is cyclic of order 3, so proposition 1.7 applies. By Table 4.7.3A of [4] the number of G-conjugacy classes of elements of order 3 in $\text{InnDiag}(G) \setminus \text{Inn}(G)$ is at most 8, which is less than the index of a maximal subgroup of G.

Let $C \leq \text{InnDiag}(G) \Gamma$.
We have that C is generated by a graph-type involution u and an element $v \in \text{InnDiag}(G) \setminus \text{Inn}(G)$ of order 3 and we argue as in case I.

9. $^2E_6(q)$.

We have that C is isomorphic to a subgroup \overline{C} of $\text{Out}(G) \leq Z_3 \times Z_m$, with $Z_m = \langle \phi(G) \rangle$ and $Z_3 = \langle uG, rG \rangle$ and $\alpha \in \text{InnDiag}(G)$.

By proposition 1.3 we may assume that C is not cyclic, so that $C = \langle y, \phi^\alpha z \rangle$, where $z \in \text{InnDiag}(G)$; also $y \in \text{InnDiag}(G) \setminus \text{Inn}(G)$ has order 3 and it is normalized by $\phi^\alpha z$.

By table 4.7.3A of [4] there are at most 8 G-conjugacy classes of type graph elements of order 3. By proposition 1.7 there are at most 8 $|Z|$ conjugacy classes of complements for G in H, where Z is a maximal subgroup of G. To conclude, we note that by Table 5.2A of [p. 175] [7] we have that $8 < |G : Z|$.

REFERENCES

Manoscritto pervenuto in redazione l'8 gennaio 2004.