Periodicity in K-groups of Certain Fields.

Paul Arne Østvær(*)

Abstract - Let \(k \) be a field of characteristic different from \(p \). We study the \(p \)-torsion and the \(p \)-cotorsion in the higher algebraic K-groups of \(k \). Under a certain hypothesis we find that these groups are periodic. Some (co)-descent properties are also pointed out.

1. Introduction.

Let \(k \) be a field of characteristic different from \(p \). In the main part of this paper we will assume that the \(p \)-cohomological dimension \(cd_p(k) \) of \(k \) is less than three. Additionally, we will assume that the group \(H^{2i}_{\text{et}}(k; \mathbb{Q}_p/\mathbb{Z}_p(i)) \) is trivial for \(i \geq 2 \). For such a \(k \) we first prove some periodicity results for its algebraic K-groups. Second we discuss some (co)-descent properties for the same groups. These results are easily deduced from the Bloch-Lichtenbaum spectral sequence, denoted by BLSS from now on, with finite coefficients. We claim no originality whatsoever for this part. The BLSS for a field such as above resembles the BLSS for a complex surface. That example was first considered by Suslin [Su2].

There are several versions of the BLSS, cf. [BL], [FS], [Le2], [RW] and [We]. Assume \(k \) has characteristic zero. The mod \(p^\infty \) BLSS for \(k \) is a third quadrant cohomological spectral sequence with input the higher Chow groups of \(k \) with mod \(p^\infty \) coefficients, and abutment the mod \(p^\infty \) algebraic K-groups of \(k \). Suslin [Su3] has proved that the higher Chow groups of \(k \) are isomorphic to the motivic cohomology groups of \(k \). We let

(*) Indirizzo dell’A.: Department of Mathematical Sciences, The Norwegian University of Science and Technology, Trondheim, Norway. E-mail: ostvar@math.ntnu.no
subscript \mathfrak{M} indicate motivic cohomology. From the mentioned results, the mod p^r BLSS for k takes the form:

$$E_2^{m,n} = H_{\mathfrak{M}}^{m-n}(k; \mathbb{Z}/p^r(-n)) \Rightarrow K_{-m-n}(k; \mathbb{Z}/p^r).$$

The outcome of Weibel’s valuation trick from [We] is a mod p^n BLSS for fields of positive characteristic. The idea is to replace k by a field $F(k)$ of characteristic zero, and whose motivic cohomology and algebraic K-theory groups are naturally isomorphic to the same groups for k. Assume k has positive characteristic l, where $l \neq p$. Define $R_0(k)$ to be the Cohen l-ring of k, and define inductively $R_n(k)$ to be $R_{n-1}(k)[t]/(t^l - \pi)$ where π is a uniformizing parameter for $R_{n-1}(k)$ and $n \geq 1$. The quotient field of the union

$$\text{colim}(R_0(k) \subset R_1(k) \subset R_2(k) \subset \ldots)$$

has the desired properties of $F(k)$.

Next we explain the relation between the motivic cohomology groups and the étale cohomology groups of k. The Bloch-Kato conjecture [BK] at the prime p predicts that the Galois symbol

$$K_n^M(F)/p^n \rightarrow H_{\text{et}}^n(F; \mathbb{Z}/p^n(n))$$

is an isomorphism for every field F of characteristic different from p. Voevodsky proved this conjecture in [Vo] for the prime $p = 2$. For $p = 2$ the Bloch-Kato conjecture was originally formulated by Milnor [Mi]. Suslin and Voevodsky proved in [SV] that if the Bloch-Kato conjecture is true at the prime p, then there exists natural isomorphisms

$$H_{\mathfrak{M}}^n(k; \mathbb{Z}/p^n(i)) \equiv \begin{cases} H_{\text{et}}^n(k; \mathbb{Z}/p^n(i)) & \text{for } 0 \leq n \leq i, \\ 0 & \text{otherwise}. \end{cases}$$

By specialization we get the following result (for two groups A and B we let $A \triangleleft B$ denote an Abelian extension of B by A).

Theorem 1.1. Assume $cd_p(k) \leq 2$. If p is an odd prime, we also assume that the Bloch-Kato conjecture holds at p.

(a) The mod p^r algebraic K-groups of k are given up to extensions by

$$K_n(k; \mathbb{Z}/p^r) \equiv \begin{cases} H_{\text{et}}^n(k; \mathbb{Z}/p^n(i)) & \text{for } n = 2i - 1, \\ H_{\text{et}}^n(k; \mathbb{Z}/p^n(i+1)) \times H_{\mathfrak{M}}^n(k; \mathbb{Z}/p^n(i)) & \text{for } n = 2i > 0. \end{cases}$$
(b) The extension above is split by the anti-Chern classes of Kahn if \(p \) is odd, or \(p = 2 \) and \(k \) contains a primitive fourth root of unity.

Remark 1.2. Part (b) of Theorem 1.1 is due to Kahn, see Theorem 3.1 in [Ka2]. The results from [FS] and [Le2] make it plain that Theorem 1.1, and hence some of the results in this paper may be generalized to certain schemes with mod \(p \) étale cohomological dimension less than three.

In Section 2 we prove results which appear to be new. For this we will only consider fields with the properties stated in the beginning of the introduction. The assumptions on \(k \) can often be checked in practice. Our results reveal a periodicity phenomena for the \(p \)-torsion and the \(p \)-cotorsion in the algebraic K-groups of such a field. The proofs are very elementary and straightforward. However, the results might be useful in specific examples. The same remarks apply to the results in Section 3. Let \(k'/k \) be a Galois extension of fields as above. In Proposition 3.3 we point out the connection between the Galois (co)-invariants of the algebraic K-groups of \(k' \) and the algebraic K-groups of \(k \).

2. Periodicity in K-groups.

Assume \(\text{cd}_p(k) \leq 2 \). Then the long exact sequence in étale cohomology induced by the coefficient extension \(0 \rightarrow \mathbb{Z}/p(n) \rightarrow \mathbb{Q}_p/\mathbb{Z}_p(n) \rightarrow \mathbb{Q}_p/\mathbb{Z}_p(n) \rightarrow 0 \) shows that the group \(H_2(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) \) is divisible. We impose the additional assumption that the latter group is trivial for \(n \geq 2 \). For an Abelian group \(A \) we let \(A(p) = \bigcup_{n} A \) be its maximal \(p \)-torsion subgroup. Let \(\overline{k} \) be an algebraic closure of \(k \).

First we translate the additional assumption into a statement about the K-groups of \(k \). Consider the diagram

\[
\begin{array}{ccc}
K_{2n}(k; \mathbb{Q}_p/\mathbb{Z}_p) & \longrightarrow & K_{2n}(\overline{k}; \mathbb{Q}_p/\mathbb{Z}_p) \\
\beta & & \beta \\
K_{2n-1}(k)(p) & \longrightarrow & K_{2n-1}(\overline{k})(p)
\end{array}
\]

where the vertical maps are the Bockstein maps. From Theorem 1.1; the upper horizontal map is injective, since it can be identified with the natural injective map \(H^n_{\text{ét}}(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) \rightarrow H^n_{\text{ét}}(\overline{k}; \mathbb{Q}_p/\mathbb{Z}_p(n)) \). We know the
Bockstein map for \(k \) is an isomorphism from [Su]. Hence the Bockstein map for \(k \) is an isomorphism, and it follows that \(K_{2n}(k) \otimes \mathbb{Q}_p/\mathbb{Z}_p \) is the trivial group for all \(n \geq 1 \). Note also that \(K_{2n-1}(k)\{p\} \) injects into \(K_{2n-1}(k)\).

The previous remarks combined with Theorem 1.1 give an isomorphism:

\[
H^0_\text{ét}(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) \xrightarrow{\cong} K_{2n-1}(k)\{p\}.
\]

Let \(e_n \) denote the exponent of the multiplicative group \((\mathbb{Z}/p^n)\), and let \(\mu_n(k) \) denote the group of \(n \)th roots of unity in \(k \).

Lemma 2.2. Let \(m, n \geq 1 \). Then \(p^r K_{2n-1}(k) \) is isomorphic to \(p^r K_{2n+m e_n-1}(k) \) and there is an exact sequence

\[
0 \rightarrow H^0_\text{ét}(k; \mathbb{Z}/p^n(n)) \rightarrow K_{2n-1}(k) \rightarrow K_{2n-1}(k) \rightarrow 0.
\]

In particular, the group \(K_{2m e_n-1}(k) \) contains an element of order \(p^r \).

Proof. From (2.1) we find an isomorphism \(H^0_\text{ét}(k; \mathbb{Z}/p^n(n)) \xrightarrow{\cong} K_{2n-1}(k) \). Now employ the \(\text{Gal}(k^s/k) \)-module isomorphism \(\mathbb{Z}/p^n(n) \equiv \mathbb{Z}/p^n(n + e_n) \) where \(k^s \) is a separable closure of \(k \). The last claim follows from \(p^r K_{2m e_n-1}(k) \equiv p^r K_{2e_n-1}(k) \equiv H^0_\text{ét}(k; \mathbb{Z}/p^n(0)) \) and the fact that the absolute Galois group of \(k \) acts trivially on \(\mathbb{Z}/p^n(0) \) by definition of the Tate twist.

Remark 2.4. If \(k \) contains a primitive \(p^r \)th root of unity, then:

\[
\mu_{p^r}(k) \equiv p^r K_3(k) \equiv p^r K_5(k) \equiv \ldots
\]

This follows since \(\mathbb{Z}/p^n(i) \) is independent of the twist \(i \) under the given assumption.

We claim the Bockstein exact sequence in K-theory and Theorem 1.1 combine to make a commutative diagram:

\[
\begin{array}{cccccc}
0 & \rightarrow & K_{2n}(k)/p^n & \rightarrow & K_{2n}(k; \mathbb{Z}/p^n) & \rightarrow & p^r K_{2n-1}(k) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & H^0_\text{ét}(k; \mathbb{Z}/p^n(n+1)) & \rightarrow & K_{2n}(k; \mathbb{Z}/p^n) & \rightarrow & H^0_\text{ét}(k; \mathbb{Z}/p^n(n)) & \rightarrow & 0
\end{array}
\]

For \(k \) there is a unique choice of isomorphism on the right hand side that
makes the diagram commutative. For \(k \) we choose the isomorphism that is compatible with the inclusion into \(\mathbb{K} \). This gives a natural isomorphism:

\[
K_2(\mathbb{K})/p^r \cong H^2_{\text{et}}(k; \mathbb{Z}/p^r(n+1))
\]

Lemma 2.6. Let \(m, n \geq 1 \). Then \(K_2(\mathbb{K})/p^r \) is isomorphic to \(K_2(\mathbb{K})/p^r \) and there is an exact sequence

\[
K_{2n-2}(k) \rightarrow K_{2n-2}(k) \rightarrow H^2_{\text{et}}(k; \mathbb{Z}/p^r(n)) \rightarrow 0.
\]

Proof. Given (2.5), the proof is a verbatim copy of the argument for Lemma 2.2. The periodicity can be decreased according to Remark 2.4.

The mod \(p^r \) Bockstein exact sequence in K-theory and Theorem 1.1 give the short exact sequence

\[
0 \rightarrow K_{2n-1}(k)/p^r \rightarrow H^1_{\text{et}}(k; \mathbb{Z}/p^r(n)) \rightarrow p^r K_{2n-2}(k) \rightarrow 0.
\]

The sequence (2.8) splits if \(n \) is a multiple of \(e \), and \(k \) is a number field which satisfies the assumptions in Theorem 1.1. These assumptions are satisfied unless \(k \) is real and \(p = 2 \), cf. Theorem 4.5 [RW]. Indeed, Lemma 2.2 shows that the mod \(p^r \) reduction of \(K_2(\mathbb{K}) \) is a full subgroup of \(H^1_{\text{et}}(k; \mathbb{Z}/p^r(m_{e_2})) \), hence a direct summand. These remarks motivate the following observation.

Lemma 2.9. If (2.8) splits for \(n \) and \(n + m_{e_2} \), then:

\[
K_{2n-1}(k)/p^r \oplus p^r K_{2n-2}(k) \cong K_{2(n + m_{e_2})-1}(k)/p^r \oplus p^r K_{2(n + m_{e_2})-2}(k).
\]

In particular, if \(K_{2n-1}(k)/p^r \) is finite and isomorphic to \(K_{2(n + m_{e_2})-1}(k)/p^r \), then \(p^r K_{2n-2}(k) \cong p^r K_{2(n + m_{e_2})-2}(k) \). Likewise, if \(p^r K_{2n-2}(k) \) is finite and isomorphic to \(p^r K_{2(n + m_{e_2})-2}(k) \), then \(K_{2n-1}(k)/p^r \cong K_{2(n + m_{e_2})-1}(k)/p^r \).

Proof. The first claim is clear from periodicity of \(H^1_{\text{et}}(k; \mathbb{Z}/p^r(n)) \). The remaining claims follow from the cancellation property of finite groups, see [Hi].

The exact sequences (2.3), (2.7) and (2.8) imply the next result.
THEOREM 2.10. Let \(n \geq 2 \). Then we have the exact sequence

\[
0 \to H^n_0(k; \mathbb{Z}/p^n(n)) \to K_{2n-1}(k) \to K_{2n-1}(k) \to H^n_1(k; \mathbb{Z}/p^n(n)) \to \]

\[
K_{2n-2}(k) \to K_{2n-2}(k) \to H^n_2(k; \mathbb{Z}/p^n(n)) \to 0.
\]

REMARK 2.11. Sequence (2.11) inserted \(n = 2 \) and with \(K_2(k) \) replaced with its indecomposable part is known from \([Le1]\) and \([MS]\).

3. (Co)-descent.

Let \(k'/k \) be a Galois extension of fields with group \(\Gamma \). We keep the assumptions that \(cd_p(k) \leq 2 \) and \(H^n_2(k; \mathbb{Q}_p/\mathbb{Z}_p(n)) = 0 \) for all \(n \geq 2 \), and likewise for \(k' \). Consider the Hochschild-Serre spectral sequence

\[
E^{s,t}_2 = H^s(\Gamma, H^t_0(k'; \mathbb{Q}_p/\mathbb{Z}_p(n))) \Rightarrow H^{s+t}_0(k; \mathbb{Q}_p/\mathbb{Z}_p(n))
\]

and the Tate spectral sequence:

\[
E^{s,t}_2 = H_s(\Gamma, H^t_0(k'; \mathbb{Q}_p/\mathbb{Z}_p(n))) \Rightarrow H^{s+t}_0(k; \mathbb{Q}_p/\mathbb{Z}_p(n)).
\]

Here (3.1) is a first quadrant cohomological spectral sequence. Moreover, (3.2) is discussed in Chapter I Appendix 1 \([Se]\) and in Proposition 3.1.1 \([Ka1]\). This is a second quadrant cohomological spectral sequence. The following result is now trivial to prove.

PROPOSITION 3.3. Let \(M^q \) denote \(H^q_3(k'; \mathbb{Q}_p/\mathbb{Z}_p(n)) \), and let \(n \geq 2 \). We have the exact sequences

\[
0 \to H^1(\Gamma, M^0) \to K_{2n-1}(k; \mathbb{Q}_p/\mathbb{Z}_p) \to K_{2n-1}(k; \mathbb{Q}_p/\mathbb{Z}_p) \to H^2(\Gamma, M^0) \to 0
\]

and:

\[
0 \to H_2(\Gamma, M^1) \to K_{2n-2}(k; \mathbb{Q}_p/\mathbb{Z}_p) \to K_{2n-2}(k; \mathbb{Q}_p/\mathbb{Z}_p) \to H_1(\Gamma, M^1) \to 0.
\]

In addition we have the naturally induced isomorphisms

\[
K_{2n-2}(k; \mathbb{Q}_p/\mathbb{Z}_p) \cong K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p)
\]

and:

\[
K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p) \cong K_{2n-1}(k; \mathbb{Q}_p/\mathbb{Z}_p).
\]
The d^2-differentials in (3.1) and (3.2) give isomorphisms

$$H^q(\Gamma, K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)) \xrightarrow{\sim} H^{q+2}(\Gamma, K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p))$$

and

$$H_{q+2}(\Gamma, K_{2n-1}(k'; \mathbb{Q}_p/\mathbb{Z}_p)) \xrightarrow{\sim} H_q(\Gamma, K_{2n-2}(k'; \mathbb{Q}_p/\mathbb{Z}_p))$$

for all $q \geq 1$.

Remark 3.4. It follows that $K_{2n-1}(k') \xrightarrow{\sim} K_{2n-1}(k') \Gamma$, and the transfer map induces a surjection $K_{2n-2}(k') \Gamma \rightarrow K_{2n-2}(k')$. That surjection is an isomorphism if $K_{2n-2}(k')$ is reduced. The first claim follows from the diagram displayed in the beginning of Section 2, and the second claim follows from an obvious Bockstein sequence argument.

References

