RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GÉRARD ENDIMIONI

Groups in which certain equations have many solutions

Rendiconti del Seminario Matematico della Università di Padova, tome 106 (2001), p. 77-82

http://www.numdam.org/item?id=RSMUP_2001__106__77_0

© Rendiconti del Seminario Matematico della Università di Padova, 2001, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Groups in which Certain Equations have Many Solutions.

GÉRARD ENDIMIONI (*)

1. Introduction.

Let $w(x_1, ..., x_n)$ be a word in the free group of rank n and let G be a group. There are several ways to mean that the equation $w(x_1, ..., x_n) = 1$ has «many» solutions in G. Here we adopt a combinatorial point of view and we define the class of groups $\mathfrak{D}_{\infty}(w)$ like this:

A group G belongs to $\mathfrak{D}_{\infty}(w)$ if and only if every infinite subset of G contains n (distinct) elements x_1, \ldots, x_n such that $w(x_1, \ldots, x_n) = 1$.

Following a question of P. Erdös, this class appeared in a paper of B. H. Neumann [6], where he proved that if $w(x_1, x_2) = [x_1, x_2]$, then $\nabla_{\infty}(w)$ coincide with the class of central-by-finite groups. Since this first paper, several authors have studied $\nabla_{\infty}(w)$. For example, characterizations of finitely generated soluble groups of $\nabla_{\infty}(w)$ are known when $w(x_1, x_2) = [x_1, x_2, x_2, x_2]$ [5] or when $w(x_1, x_2) = [x_1, x_2, x_2, x_2]$ [1].

In this paper, we consider the word $w(x_1,\ldots,x_n)=x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n}$, where $\alpha_1,\alpha_2,\ldots,\alpha_n$ are nonzero integers. Related to this question, but with a stronger condition, A. Abdollahi and B. Taeri proved that if for every n infinite subsets X_1,\ldots,X_n of an infinite group G, there exist elements $x_1\in X_1\ldots,x_n\in X_n$ such that $x_1^{\alpha_1}\ldots x_n^{\alpha_n}=1$, then $x_1^{\alpha_1}\ldots x_n^{\alpha_n}=1$ is a law in G [2]. On the other hand, by using a construction of Ol'shanskii, these authors showed that for any sufficiently large prime n, there exists

^(*) Indirizzo dell'A.: C.M.I., Université de Provence, 39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France.

an infinite group in $\nabla_{\infty}(x_1^n \dots x_n^n)$ in which $x_1^n \dots x_n^n = 1$ is not a law (we shall see other examples in the next section). The aim of this paper is to characterize the groups of $\nabla_{\infty}(x_1^{\alpha_1} \dots x_n^{\alpha_n})$.

2. - Results.

We denote by \mathcal{F} the class of finite groups and by \mathcal{B}_e the variety of groups satisfying the law $x^e = 1$ (for a given integer e).

Let m be a positive integer. By analogy with $\mathfrak{D}_{\infty}(w)$, we define the class $\mathfrak{D}_m(w)$ in the following way: a group G belongs to $\mathfrak{D}_m(w)$ if and only if every m-element subset of G contains n distinct elements x_1, \ldots, x_n such that $w(x_1, \ldots, x_n) = 1$. Clearly, the classes $\mathfrak{D}_m(w)$ and \mathfrak{F} are included in $\mathfrak{D}_{\infty}(w)$.

From now on, we put $w(x_1, \ldots, x_n) = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$, where $\alpha_1, \ldots, \alpha_n$ are nonzero given integers; we write α for the greatest common divisor of these integers. Observe that the variety defined by the law $w(x_1, \ldots, x_n) = 1$ is equal to the variety \mathcal{B}_{α} . Here we prove that as one might expect, the classes $\mathfrak{P}_{\infty}(w)$ and \mathcal{B}_{α} do not coincide but are relatively close:

Theorem. Let G be an infinite group. The following assertions are equivalent:

- (i) $G \in \mathcal{V}_{\infty}(w)$;
- (ii) $G \in \mathcal{B}_{(\alpha_1 + \dots + \alpha_n)} \cap (\mathcal{F}\mathcal{B}_{\alpha});$
- (iii) $G \in \mathcal{V}_m(w)$ for some positive integer m.

It follows immediately:

COROLLARY 1. We have the equalities

$$\mathfrak{P}_{\infty}(w) = \bigcup_{m>0} \mathfrak{P}_{m}(w) = \mathcal{F} \cup (\mathcal{B}_{(\alpha_{1}+\ldots+\alpha_{n})} \cap (\mathcal{F}\mathcal{B}_{\alpha})).$$

For example, for any fixed integer $e \ge 2$, denote by H a cyclic group of order e^2 and by K the direct product of infinitely many cyclic groups of order e. Let G be the direct product of H and K. It is easy to see directly that G belongs to $\nabla_{e+1}(x_1^e x_2^{-e})$ and so to $\nabla_{\infty}(x_1^e x_2^{-e})$ (also it is a consequence of our theorem above). However, $x_1^e x_2^{-e} = 1$ is not a law in G. No-

tice that contrary to the example given in [2] and quoted above, G is not finitely generated. In fact, when α is "small", finitely generated groups in $\nabla_{\infty}(w)$ are finite. More precisely, since the Burnside problem has a positive answer when the exponent belongs to $\{1,2,3,4,6\}$ (that is, every group of \mathcal{B}_{α} is locally finite when $\alpha \in \{1,2,3,4,6\}$), we may state:

COROLLARY 2. If $\alpha \in \{1, 2, 3, 4, 6\}$, every finitely generated group in $\mathfrak{P}_{\infty}(w)$ is finite.

Also, notice that $\mathfrak{V}_{\infty}(w) = \mathcal{F}$ if $\alpha = 1$; this improves Corollary 2 of [3].

3. - Proofs.

We start with a key result for the proof of the theorem:

- LEMMA 1. Let n be a positive integer and let a_1, \ldots, a_n be elements of an infinite group G. Let a_1, \ldots, a_n be nonzero integers. Suppose that G contains an infinite subset E satisfying the following property: each infinite subset $E' \subseteq E$ contains n (distinct) elements x_1, \ldots, x_n such that $a_1 x_1^{a_1} \ldots a_n x_n^{a_n} = 1$. Then:
- (i) there exist an infinite subset $F \subseteq E$ and elements c_1, \ldots, c_n of G such that, for each $i \in \{1, \ldots, n\}$, we have $x^{a_i} = c_i$ for all $x \in F$;
- (ii) there exists an element c of G such that $x^{\alpha} = c$ for all $x \in F$, where $\alpha = \gcd(\alpha_1, \ldots, \alpha_n)$.
- PROOF. (i) We argue by induction on n. First suppose that n=1. It follows from hypothesis of the lemma that the set $\{x \in E \mid a_1 x^{a_1} \neq 1\}$ is finite. Thus we can conclude by taking $F = \{x \in E \mid a_1 x^{a_1} \neq 1\}$ and $c_1 = a_1^{-1}$. Now suppose that the result is true for n-1 (n>1). For any set X, we denote by $P_n(X)$ the set of subsets of X containing n elements and by S_n the set of all permutations of $\{1, \ldots, n\}$. Let E_1 be the set of subsets $\{x_1, \ldots, x_n\} \in P_n(E)$ such that $a_1 x_{\sigma(1)}^{a_1} \ldots a_n x_{\sigma(n)}^{a_n} = 1$ for some permutation $\sigma \in S_n$. Put $E_2 = P_n(E) \setminus E_1$. By Ramsey's Theorem, there exists an infinite subset $X \subseteq E$ such that $P_n(X) \subseteq E_1$ or $P_n(X) \subseteq E_2$. However, the second inclusion is in contradiction with the hypothesis of the

lemma, so $P_n(X) \subseteq E_1$. Let $\{y_1, \ldots, y_{n-1}\}$ be a fixed element of $P_{n-1}(X)$. Then, for each $y = y_n$ in $X \setminus \{y_1, \ldots, y_{n-1}\}$, choose a permutation $f(y) = \sigma$ of $\{1, \ldots, n\}$ such that $a_1 y_{\sigma(1)}^{a_1} \ldots a_n y_{\sigma(n)}^{a_n} = 1$ and consider the mapping $f: X \setminus \{y_1, \ldots, y_{n-1}\} \to S_n$. By the pigeonhole principle, there exists a permutation σ of S_n such that $f^{-1}(\sigma)$ is infinite; put $k = \sigma^{-1}(n)$. Then, for all y in $f^{-1}(\sigma)$, we have $a_1 y_{\sigma(1)}^{a_1} \ldots a_k y^{a_k} \ldots a_n y_{\sigma(n)}^{a_n} = 1$. Therefore, the elements y_1, \ldots, y_{n-1} being fixed in X, y^{a_k} is constant on $f^{-1}(\sigma)$. Put $c_k = y^{a_k}$ for $y \in f^{-1}(\sigma)$. Clearly, it follows from the hypothesis of the lemma that each infinite subset $E' \subseteq f^{-1}(\sigma)$ contains n-1 distinct elements $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n$ such that

$$a_1 x_1^{a_1} \dots a_{k-1} x_{k-1}^{a_{k-1}} a_{k+1}' x_{k+1}^{a_{k+1}} \dots a_n x_n^{a_n} = 1$$
 (with $a_{k+1}' = a_k c_k a_{k+1}$)

if k < n, and such that

$$a_1' x_1^{a_1} a_2 x_2^{a_2} \dots a_{n-1} x_{n-1}^{a_{n-1}} = 1$$
 (with $a_1' = a_n c_n a_1$)

if k=n. By induction, there exist an infinite subset $F \subseteq f^{-1}(\sigma)$ and elements $c_1, \ldots, c_{k-1}, c_{k+1}, \ldots, c_n$ of G such that, for each $i \in \{1, \ldots, k-1, k+1, \ldots, n\}$, we have $x^{a_i} = c_i$ for all $x \in F$. Since $x^{a_k} = c_k$ for all $x \in F$, the property is proved.

(ii) Let β_1, \ldots, β_n be integers such that $\alpha = \beta_1 \alpha_1 + \ldots + \beta_n \alpha_n$. For all $x \in F$, we have $x^{\alpha} = x^{\beta_1 \alpha_1} \ldots x^{\beta_n \alpha_n} = c_1^{\beta_1} \ldots c_n^{\beta_n}$, as required.

Recall that in the following, we have

$$w(x_1, \ldots, x_n) = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$$
 and $\alpha = \gcd(\alpha_1, \ldots, \alpha_n)$.

Furthermore, we put $\alpha'_i = \alpha_i \alpha^{-1}$ for i = 1, ..., n.

LEMMA 2. For each group $G \in \mathcal{V}_{\infty}(w)$, the set $\{x^{\alpha}\}_{x \in G}$ is finite.

PROOF. Since the result is trivial if G is finite, we can assume that G is infinite. Suppose that the set $\{x^a\}_{x\in G}$ is infinite. Clearly, in this case, there exists an infinite subset $E\subseteq G$ such that $x^a\neq y^a$ for each pair $\{x,y\}$ of elements of E. By applying Lemma 1(ii) to G (with $a_1=\ldots=a_n=1$), we obtain a contradiction.

LEMMA 3. Let G be a group in $\mathfrak{P}_{\infty}(w)$. Suppose that the set $C = \{x \in G \mid x^a = c\}$ is infinite for some $c \in G$. Then $c^{a'_1 + \dots + a'_n} = 1$.

PROOF. There exist n elements $x_1,...,x_n \in C$ such that $w(x_1,...,x_n) = 1$. Since

$$w(x_1, \ldots, x_n) = x_1^{\alpha \alpha'_1} \ldots x_n^{\alpha \alpha'_n} = c^{\alpha'_1} \ldots c^{\alpha'_n} = c^{\alpha'_1 + \ldots + \alpha'_n},$$

we obtain $c^{\alpha'_1 + \dots + \alpha'_n} = 1$.

PROOF OF THE THEOREM. (i) \rightarrow (ii). Let G be an infinite group in $\nabla_{\infty}(w)$. By Lemma 2, the set $\{x^{\alpha}\}_{x\in G}$ is finite. Clearly, this implies that G is periodic. Thus, by Dicman's Lemma, the subgroup generated by $\{x^{\alpha}\}_{x\in G}$ is finite and so G belongs to $\mathscr{F}\mathscr{B}_{\alpha}$.

Now consider an element c_i in the set $\{x^{\alpha}\}_{x \in G} = \{c_1, \ldots, c_t\}$ and put $C_i = \{x \in G \mid x^{\alpha} = c_i\}$. For all $x \in C_i$, we have

$$x^{a_1 + \dots + a_n} = x^{a(a'_1 + \dots + a'_n)} = c_i^{a'_1 + \dots + a'_n}.$$

It follows from Lemma 3 that $x^{\alpha_1+\cdots+\alpha_n}=1$ whenever C_i is infinite. Since C_1,\ldots,C_t is a partition of G, the set $\{x\in G\,|\,x^{\alpha_1+\cdots+\alpha_n}\neq 1\}$ is finite. This implies that G belongs to the class $\mathfrak{V}_{\infty}(x^{\alpha_1+\cdots+\alpha_n})$. In fact, as it is observed in [4], $\mathfrak{V}_{\infty}(x^{\alpha_1+\cdots+\alpha_n})=\mathfrak{F}\cup\mathcal{B}_{(\alpha_1+\cdots+\alpha_n)}$ and so $G\in\mathcal{B}_{(\alpha_1+\cdots+\alpha_n)}$.

(ii) \rightarrow (iii). Let H be a normal subgroup of G such that $H \in \mathcal{F}$ and $G/H \in \mathcal{B}_{\alpha}$. Put $m=1+(n-1)|H:\{1\}|$ and show that G belongs to $\mathcal{V}_m(w)$. Let E be a subset of G containing m elements. The function $x \rightarrow x^{\alpha}$ maps each element of E into an element of H; thus there exists an element $c \in H$ such that the set $\{x \in E \mid x^{\alpha} = c\}$ contains at least n elements. Consider n distinct elements $x_1, \ldots, x_n \in \{x \in E \mid x^{\alpha} = c\}$. We have:

$$w(x_1, \ldots, x_n) = x_1^{a\alpha'_1} \ldots x_n^{a\alpha'_n} = c^{\alpha'_1} \ldots c^{\alpha'_n}$$

$$= c^{\alpha'_1 + \ldots + \alpha'_n} = x_1^{a(\alpha'_1 + \ldots + \alpha'_n)}$$

$$= x_1^{a_1 + \ldots + a_n} = 1,$$

for $G \in \mathcal{B}_{(\alpha_1 + \ldots + \alpha_n)}$. Thus we have proved that G belongs to $\mathfrak{V}_m(w)$. Since clearly (iii) implies (i), the proof is complete.

We finish with a question of combinatorial nature:

Suppose that G is an infinite group in $\nabla_{\infty}(w)$, where w is now an arbitrary word. Does G belong to $\nabla_{m}(w)$ for some integer m?

REFERENCES

- [1] A. Abdollahi, Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc., 62 (2000), pp. 141-148.
- [2] A. ABDOLLAHI B. TAERI, A condition on a certain variety of groups, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 129-134.
- [3] G. Endimioni, On a combinatorial problem in varieties of groups, Comm. Algebra, 23 (1995), pp. 5297-5307.
- [4] P. Longobardi M. Maj A. H. Rhemtulla, Infinite groups in a given variety and Ramsey's theorem, Comm. Algebra, 20 (1992), pp. 127-139.
- [5] P. Longobardi M. Maj, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, 89 (1993), pp. 97-102.
- [6] B. H. NEUMANN, A problem of Paul Erdös on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472.

Manoscritto pervenuto in redazione il 25 luglio 2000.