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Groups in which Certain Equations
have Many Solutions.

GERARD ENDIMIONI (*)

1. Introduction.

Let w ( xl , ... , xn ) be a word in the free group of rank n and let G be a
group. There are several ways to mean that the equation ... , xn) =
= 1 has «many» solutions in G. Here we adopt a combinatorial point of view
and we define the class of groups ~ 00 (w) like this:

A group G belongs to ’~~ (w) if and only if every infinite subset of G
contains n (distinct) elements xl, - - - , Xn such that W(Xl, ..., xn ) = 1.

Following a question of P. Erd6s, this class appeared in a paper of B.
H. Neumann [6], where he proved that if x2 ) _ X2], then

coincide with the class of central-by-finite groups. Since this first
paper, several authors have studied ~oo (w). For example, characteriza-
tions of finitely generated soluble groups are known when

w(xl, x2) = Cxl, x2, x2] [5] or when w(xl, x2) = Cxl, x2, x2, x2] [1].
In this paper, we consider the word w(xl, ... , 

where a 1, a 2 , ... , a n are nonzero integers. Related to this question, but
with a stronger condition, A. Abdollahi and B. Taeri proved that if for
every n infinite subsets Xl , ... , Xn of an infinite group G, there exist ele-
ments Xl E X1... , Xn E Xn such that Xal 1 1... xn n = 1, then Xal 1 ... Xnan = 1 is a
law in G [2]. On the other hand, by using a construction of Ol’shanskii,
these authors showed that for any sufficiently large prime n, there exists

(*) Indirizzo dell’A.: C.M.I., Université de Provence, 39, rue Joliot-Curie, F-
13453 Marseille Cedex 13, France.



an infinite group in ~oo ( xi ... xn ) in which = 1 is not a law (we
shall see other examples in the next section). The aim of this paper is to
characterize the groups 

2. - Results.

We denote by lfthe class of finite groups and by $e the variety of
groups satisfying the law x e =1 (for a given integer e).

Let m be a positive integer. By analogy v4th W, (w), we define the
class in the following way: a group G belongs to if and only
if every m-element subset of G contains n distinct elements xl , ... , xn
such that w (xl , ... , xn ) = 1. Clearly, the classes and [fare inclu-
ded in B?oo (w).

From now on, we ... , xn ) = xi i ...r) n , where a i , ... , a n are

nonzero given integers; we write a for the greatest common divisor of
these integers. Observe that the variety defined by the law

... , rn) = 1 is equal to the variety Here we prove ·that as one
might expect, the classes ’V. (w) and do not coincide but are relative-

ly close:

THEOREM. Let G be an infinite groups. The following assertions are
equivalent:

(iii) G E Vm (w) for some positive integer m.

It follows immediately:

COROLLARY 1. We have the equaclities

For example, for any fixed integer e -&#x3E; 2, denote by H a cyclic group
of order e 2 and by K the direct product of infinitely many cyclic groups of
order e. Let G be the direct product of H and K. It is easy to see directly
that G belongs to and so to (also it is a conse-
quence of our theorem above). However, 1 is not a law in G. No-
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tice that contrary to the example given in [2] and quoted above, G is not
finitely generated. In fact, when a is «small», finitely generated groups
in (w) are finite. More precisely, since the Burnside problem has a
positive answer when the exponent belongs to {I, 2, 3, 4, 6} (that is,
every group of is locally finite when a e {1, 2, 3, 4, 6}), we may
state:

COROLLARY 2. jyaE{l,2,3,4,6}, every finitely generated group
(w) is finite.

Also, notice that = 1; this improves Corollary 2 of
[3].

3. - Proofs.

We start with a key result for the proof of the theorem:

LEMMA 1. Let n be a positive integer and let aI, ... , an be elements

of an infinite group G. Let a 1, ... , a n be nonzero integers. Suppose that
G contains acn infinite subset E satisfying the following property: each
infinite subset E ’ c E contains n (distinct) elements xl, ... , xn such

that al =1. Then:

(i) there exist an infinite subset F c E and elements cl, ... , Cn of
G such that, for ... , n 1, we have x a = ci for all x E F;

(ii) there exists an element c of G such that for all x E F,
where a = gcd ( a i , ... , a n ).

PROOF. (i) We argue by induction on n. First suppose that n = 1. It
follows from hypothesis of the lemma that the 1 ~ is
finite. Thus we can conclude by taking and

c1= Now suppose that the result is true for n - 1 (n &#x3E; 1). For any
set X, we denote by the set of subsets of X containing n elements
and by Sn the set of all permutations of {1, ..., Let E1 be the set of

... , xn ~ E Pn (E ) such that for some

permutation Put E2 = By Ramsey’s Theorem, there
exists an infinite subset X c E such that Pn (X ) g El or Pn (X ) c E2 . How-
ever, the second inclusion is in contradiction with the hypothesis of the



lemma, c E1. ... , be a fixed element of Pn ~ 1 Then,
for in ... , choose a permutation f ( y ) =a of
{1, ... , n } such that al yQ ( i &#x3E; ... an y~n) = 1 and consider the mapping
f : X ) ( yi , ... , yn -1 } -~ Sn . By the pigeonhole principle, there exists a
permutation a of Sn such that f-l(a) is infinite; put k = Then,
for all y we have ... = 1. Therefore, the
elements ... , yn - i being fixed in X, y a k is constant Put

c~ = for y Clearly, it follows from the hypothesis of the lem-
ma that each infinite subset E’ contains n - 1 distinct elements

xl , ... , xk -1, xk + 1, ... , xn such that

if k  n, and such th

if k = n. By induction, there exist an infinite subset and ele-
ments c1, ... , c~ _ 1, ck + 1, ... , cn of G such that, for each i E ~ 1, ... ,k -1,
1~ + 1, 9 ... , I n 1, we have for all x E F. Since = Ck for all x E F,
the property is proved.

(ii) Let ... , be integers such that a + ... For

allxEF,weh . as required.

Recall that in the following, we havl

Furthermore, we

LEMMA 2. For each group G E B? 00 (w), the finite.

PROOF. Since the result is trivial if G is finite, we can assume that G
is infinite. Suppose that the is infinite. Clearly, in this case,
there exists an infinite subset E c G such that for each pair

y ~ of elements of E. By applying Lemma l(ii) to G (with al = ... _
= an = 1), we obtain a contradiction.

LEMMA 3. Let G be a (w). Suppose that the set C =
= c I is inf inite for some c E G. 7



81croups in which certain equations etc.

PROOF. There exist n elements such that 
Since

we ou~aln c

PROOF OF THE THEOREM. (i)~(ii). Let G be an infinite group in

(w). By Lemma 2, the is finite. Clearly, this implies that
G is periodic. Thus, by Dicman’s Lemma, the subgroup generated by

finite and so G belongs to 
Now consider an element ci in the ... , Ctl and put

For all x E Ci, we have

It follows from Lemma 3 that x a 1 + ... + an = 1 whenever Ci is infinite. Sin-
ce Cl , ... , Ct is a partition of G, the + a n ~ 1 ~ is finite.
This implies that G belongs to the class +an). In fact, as it is
observed in [4], , and so G E
E ~(a1+...+an)·

(ii) ~ (iii). Let H be a normal subgroup of G such that H e ff and
Put m = 1 + (n - 1 ) ~ H : ~ 1 ~ ~ [ and show that G belongs to

’C~m (w). Let E be a subset of G containing m elements. The function 
- x a maps each element of E into an element of H; thus there exists an ele-
ment c E H such that the contains at least n elements.

Consider n distinct elements We have:

for G E $(al+...+an). Thus we have proved that G belongs to 
Since clearly (iii) implies (i), the proof is complete.

We finish with a question of combinatorial nature:

Suppose that G is an infinite group in ~oo (w), where w is now acn ar-
bitrary word. Does G belong to for some integer m?
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