RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

M. J. FERREIRA

R. TRIBUZY

On the nullity index of isometric immersions of Kähler manifolds

Rendiconti del Seminario Matematico della Università di Padova, tome 105 (2001), p. 185-191

http://www.numdam.org/item?id=RSMUP_2001__105__185_0

© Rendiconti del Seminario Matematico della Università di Padova, 2001, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Nullity Index of Isometric Immersions of Kähler Manifolds.

M. J. Ferreira - R. Tribuzy (**)

1. Introduction and statement of results.

Let M be a Kähler manifold with complex dimension m and complex structure J. In the present work we analyse some obstructions to the existence of isometric immersions $\varphi: M \to N$ into certain Riemannian manifolds.

Let $\varphi^{-1}TN$ be the pull-back of the tangent bundle of N. We will use the symbol ∇ to represent either the induced connection on $\varphi^{-1}TN$ or the induced connection on $T^*M\otimes \varphi^{-1}TN$.

The covariant differential $\alpha = \nabla d\varphi$, called the second fundamental form, may be understood as a smooth section of $\odot^2 T^*M \otimes T^\perp N$, where $T^\perp N$ represents the normal bundle.

The conjunction of the second fundamental form with the complex

(*) Indirizzo dell'A.: Faculty of Sciences and CMAF of the University of Lisbon, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.

E-mail: mjferr@lmc.fc.ul.pt

(**) Indirizzo dell'A.: University of Amazonas, Department of Mathematics, ICE, Campus Universitario, 69000 Manaus, AM, Brasil.

E-mail: tribuzy@buriti.com.br

Work supported by FCT, PRAXIS XXI, FEDER, project PRAXIS/2/2.1/MAT/125/94 and ICTP, Trieste.

structure J gives rise to two operators

$$C(X, Y) = \frac{1}{2}(\alpha(X, Y) + \alpha(JX; JY))$$

$$A(X, Y) = \frac{1}{2} (\alpha(X, Y) - \alpha(JX; JY)),$$

where $X, Y \in C(T(M))$.

We can get a different prospect of the operators working in a complex framing. The complexification of the tangent bundle of M, denoted by $T^{C}M$, decomposes as

$$T^CM = T^{1,0}M \oplus T^{0,1}M$$

where $T^{1,0}M$ and $T^{0,1}M$ are, respectively, the $\sqrt{-1}$ and $-\sqrt{-1}$ eigenbundles of the complex extension of J.

The decomposition

$$\alpha = \alpha^{(1,1)} + \alpha^{(2,0)} + \alpha^{(0,2)}$$

of α according to type is such that

$$\alpha^{(1,\,1)} = C$$

$$\alpha^{(2,0)} + \alpha^{(0,2)} = A$$
.

It is a well-known fact that the geometry of the second fundamental form reflects the geometry of φ . From this view point one can ask up to which extent the operators A and C influence the behaviour of the map.

The map φ is said to be pluriminimal (or (1, 1)-geodesic) if $\alpha^{(1,1)} \equiv 0$. Equivalently, φ is pluriminimal if, for any holomorphic immersed curve $c: \mathcal{C} \to M$, $c \circ \varphi: \mathcal{C} \to N$ is always minimal.

Trivial examples of pluriminimal immersions are the minimal immersions of a Riemannian surface. When N is flat, Dajczer and Rodriguez [D-R] showed that the pluriminimal immersions are exactly the minimal ones, i.e., the vanishing of $\alpha^{(1,1)}$ is the equivalent of the vanishing of the mean curvature H = trace of α .

We define the index of relative nullity of α (resp. of $\alpha^{(1,\,1)}$) at x as $\nu(x)=\dim \varDelta_x$ (resp. $\nu^{(1,\,1)}(x)=\dim \varDelta_x^{(1,\,1)}$), where $\varDelta_x=\{\varphi\in T_xM\,|\,\alpha_x(v,\,w)=0\,\,\forall\,\,w\in T_xM\}$ and $\varDelta_x^{(1,\,1)}=\{v\in T_xM\,|\,C_x(v,\,w)=0\,\,\forall\,\,w\in T_xM\}$.

In the case $N = R^{2n+p}$, $n \ge 2$, Dajczer and Rodriguez classified the minimal immersions with $\nu \ge 2n-4$ everywhere.

In this article, when N is a conformally flat manifold we obtain

THEOREM 1. Let N be a conformally flat Riemannian manifold with non-zero sectional curvatures. If $v(x_0) > 0$ at some point $x_0 \in M$, M is a Riemann surface.

Concerning the relative nullity index of $\alpha^{(1,\,1)}$, we assume that N is a conformally flat Riemannian manifold with dimension n, whose scalar curvature $\Im(N)$ never vanishes. Considering the real numbers $r=\inf\{\mathrm{Ric}^N(v,\,v)\,|\,\|v\|_x=1,\ x\in M\},\ R=\sup\{\mathrm{Ric}^N(v,\,v)\,|\,\|v\|_x=1,\ x\in M\},\ s=\inf_{x\in M}\Im(N)_x \text{ and } S=\sup_{x\in M}\Im(N)_x,\ \text{we can state:}$

Theorem 2. Let N be a conformally flat Riemannian manifold with positive scalar curvature, such that $\frac{r}{S} > \frac{n}{2(n-1)}$. If $v^{(1,1)}(x_0) > 0$ at some point x_0 , M is a Riemann surface.

THEOREM 3. Let N be a conformally flat Riemannian manifold with negative scalar curvature, such that $\frac{R}{s} > \frac{n}{2(n-1)}$. If $v^{(1,1)}(x_0) > 0$ at some point x_0 , M is a Riemann surface.

COROLLARY 1. Let N be a conformally flat Riemannian manifold whose Ricci curvature tensor satisfies one of the following inequalities:

(i)
$$\frac{nd}{2(n-1)} < \operatorname{Ric}^{N} < d$$

(ii)
$$-d < \text{Ric}^N < -\frac{nd}{2(n-1)}$$
,

for some positive real number d. Then if, at some point x_0 , $\nu(x_0) > 0$, m = 1.

Theorem 4. Let N be a Riemannian manifold whose sectional curvatures satisfy one of the following conditions:

(i)
$$\frac{1}{4} < K(\sigma) \le 1$$

(ii)
$$-1 \le K(\sigma) < -\frac{1}{4}$$
.

If $v(x_0) > 0$, for some x_0 , m = 1.

2. Preliminaries.

A Riemannian manifold (N, h) is said conformally flat if there exists a smooth function $f: N \to R$ such that $(N, e^{2f}h)$ is flat. Riemannian manifolds with constant sectional curvature are particular examples of conformally flat Riemannian manifolds.

For each $y \in N$ we denote by $C_y(N)$ the subspace of $S(\bigwedge^2 T_y^* N)$ (the 2-symmetric forms on $\bigwedge^2 T_y^* N$) consisting of «curvature like tensors»; that means, curvature tensors satisfying the first Bianchi identity. The action of the orthogonal group O(n) $(n = \dim M)$ on $C_y(N)$ gives rise to the following decomposition into irreducible subspaces:

$$C_{y}(N) = \mathcal{U}_{y}(N) \oplus \mathcal{R}_{y}(N) \oplus \mathcal{W}_{y}(N),$$

where $\mathcal{U}_y(N) = RId_{\wedge T_y^*N}^2$ and $\mathcal{R}_y(N)$ is formed by the "traceless Ricci" tensors, that is to say, those tensors θ whose Ricci contraction $c(\theta)$ $(c(\theta)(a,b)=\operatorname{trace}\theta(a,.,b,.))$ vanishes. The orthogonal complement $\mathcal{W}_y(N)$ of $\mathcal{U}_y(N)\oplus\mathcal{R}_y(N)$ in $C_y(N)$ is called the space of Weyl tensors. The Weyl tensor of a Riemannian manifold is the Weyl part of its curvature tensor.

The Weyl curvature tensor W is the main invariant under conformal changes of the metric. The vanishing of W characterises completely the conformally flat Riemannian manifolds.

It is then easily seen that the Riemannian curvature tensor R^N of a conformally flat Riemannian manifold (N, h) with Ricci curvature Ric^N and normalised scalar curvature s(N) is given by

(1)
$$R^{N} = \frac{1}{n-2} h \bigotimes \operatorname{Ric}^{N} - \frac{ns(N)}{(n-1)(n-2)} h \bigotimes h$$

where \otimes represents the Kulkarni-Nomizu product of the symmetric 2-tensors, defined in the following way:

Let d be a positive real number. The Riemannian manifold (N, h) is said to be positively (resp. negatively) d-pinched at a point $y \in N$ if there

exists a positive real number τ such that

$$\tau d < K_y(\sigma) \le \tau \text{ (resp. } -\tau \le K_y(\sigma) < \tau d)$$

for any 2-dimensional subspace σ of T_yN . N is said to be positively (resp. negatively) d-pinched if it is positively (resp. negatively) d-pinched at each point $y \in N$.

LEMMA 1. [B] Let N be a Riemannian manifold whose sectional curvatures satisfy one of the following inequalities:

$$(i) -1 \le K(\sigma) < -\frac{1}{4},$$

(ii)
$$\frac{1}{4} < K(\sigma) \le 1$$
.

Then if X, Y, Z, W is a local orthonormal frame field, the following inequality holds:

$$(2.11) |\langle R(X, Y)Z, W \rangle| \leq \frac{1}{2}.$$

Let M be a Kähler manifold with complex structure J. Denoting respectively by π' and π'' the projections of the complexified tangent bundle T^CM into its holomorphic and anti-holomorphic parts, $T^{1,0}M$ and $T^{0,1}M$, we use the following notation:

$$\alpha^{(1,1)}(X, Y) = \alpha(X', Y'') + \alpha(X'', Y')$$

where $X' = \pi'(X)$ and $X'' = \pi''(X)$.

3. Proof of the statements.

PROOF OF THEOREM. 1. Choose a point $x_0 \in M$ such that $\Delta_{x_0} \neq \emptyset$ and consider $X, Y \in C(TM)$ such that $X(x_0) \in \Delta_{x_0}$, $\langle X, Y \rangle = \langle X, JY \rangle = 0$ and |X| = |Y| = 0.

It is clear from Gauss equation that for all $W \in C(TM)$

$$\begin{split} \langle R^N(X,\,Y)\,X,\,W\rangle &= \langle R^M(X,\,Y)\,X,\,W\rangle = \\ &= \langle R^M(JX,\,JY)\,X,\,W\rangle = \\ &= \langle R^N(JX,\,JY)\,X,\,W\rangle \,. \end{split}$$

From (1) we obtain

- (2) $\langle R^N(X, Y) JX, JY \rangle = 0$, so that
- (3) $\langle R^N(X, Y) X, Y \rangle = 0$, which cannot happen. Thus, dim M = 1.

PROOF OF THEOREMS 2, 3 AND 4 As above we consider $x_0 \in M$ with $\Delta_{x_0}^{(1,1)} \neq \emptyset$ and $X, Y \in C(TM)$ such that $X(x_0) \in \Delta_{x_0}^{(1,1)}$, $\langle X, Y \rangle = \langle X, JY \rangle = 0$ and |X| = |Y| = 1.

Using the complex multilinear extension of Gauss equation, we can write

$$\langle R^{N}(X', Y') X'', Y'' \rangle = \frac{1}{4} \langle \alpha^{(1,1)}(X, X), \alpha^{(1,1)}(Y, Y) \rangle - \frac{1}{4} \langle \alpha^{(1,1)}(X, Y), \alpha^{(1,1)}(X, Y) \rangle.$$

In the case of theorems 2 and 3 we now follow section 3 of [F-R-T] and use equation (1) to get

$$\begin{split} \langle R^N(X',\,Y')\,X'',\,Y''\rangle &= \frac{1}{4(n-2)} \bigg\{ \mathrm{Ric}^N(X,\,X) + \mathrm{Ric}^N(Y,\,Y) + \\ &+ \mathrm{Ric}^N(JX,\,JX) + \mathrm{Ric}^N(JY,\,JY) - \frac{2\,ns(N)}{n-1} \, \bigg\}. \end{split}$$

Under the assumptions of theorem 2 we have

$$\langle R^N(X', Y') X'', Y'' \rangle \ge \frac{1}{2(n-2)} \left(2r - \frac{Sn}{n-1} \right) > 0,$$

a contradiction.

The conditions of theorem 3 imply that

$$\left\langle R^{N}(X',\,Y')\,X'',\,Y''\right\rangle \leqslant \frac{1}{2(n-2)}\bigg(2\,r-\frac{sn}{n-1}\bigg),$$

which cannot happen, hence dim M = 1.

In the case of theorem 4, following section 2 of [F-R-T],

$$\begin{split} \langle R^N(X',\,Y')\,X'',\,Y''\rangle &= \langle R^N(X,\,Y)\,X,\,Y\rangle + \langle R^N(JX,\,JY)\,JX,\,JY\rangle + \\ &+ \langle R^N(X,\,JY)\,X,\,JY\rangle + \langle R^N(JX,\,Y)\,JX,\,Y\rangle + \\ &+ 2 \langle R^N(JX,\,X)\,JY,\,Y\rangle \neq 0 \;, \end{split}$$

according to Lemma 1.

REFERENCES

- [B] M. Berger, Les Variétés Riemanniennes $\frac{1}{4}$ -pincées, Ann. Scuola Normal Sup. Pisa, 14 (1960), pp. 161-170.
- [D-R] M. DAJCZER L. RODRIGUES, Rigidity of Real K\u00e4hler Submanifolds, Duke Math. J., 53 (1986), pp. 211-220.
- [E-L] J. EELLS L. LEMAIRE, Another Report on Harmonic Maps, Bull. London Math. Soc. No. 86, 20 (1988), pp. 324-385.
- [F-T] M. FERREIRA R. TRIBUZY, On the Type Decomposition of the Second Fundamental Form, Rend. Sem. Univ. Padova, Vol. 94 (1995).
- [F-R-T]M. J. FERREIRA M. RIGOLI R. TRIBUZY, Isometric Immersions of K\u00e4hler Manifolds, Rend. Sem. Univ. Padova, Vol. 90 (1993), pp. 25-37.
- [O] Y. OHNITA, On the Pluriharmonicity of Stable Harmonic Maps, J. London Math. Soc., 35 (1987), pp. 563-568.
- [O-U] Y. OHNITA S. UDAGAWA, Complex Analicity of Pluriharmonic Maps and Their Constructions, Springer Lecture Notes in Mathematics, 1468 (1991), pp. 371-407.

Manoscritto pervenuto in redazione il 24 marzo 2000.