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Tensor fields of type (0,2) on linear frame bundles
and cotangent bundles (*).

GUILLERMO G. R. KEILHAUER(**)

ABSTRACT - To any (0,2)-tensor field on the linear frame bundle, respectively on
the cotangent bundle, we associate a global matrix function when a linear con-
nection or a Riemannian metric on the base manifold is given. Based on this
fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined
and characterized by means of well known algebraic results. In the symmetric
case, our classification agrees with the one given by Sekizawa and Kowalski-
Sekizawa. However, we do not make use of the theory of differential
invariants.

1. Introduction.

In [4], [6] and [7] the authors defined natural symmetric tensor fields
of type (0,2) on the linear frame bundle, respectively on the cotangent
bundle, when the base manifold is endowed with a linear connection or a
Riemannian metric. They also gave a complete classification of them, by
means of the theory of differential invariants ([3], [5]). Using the well
known fact that the frame bundle is naturally parallelizable, when the
base manifold is endowed with a linear connection, and following the
methods described in [1], we associate to any (0,2)-tensor field on the
frame bundle (section 2), respectively on the cotangent bundle (section
4) a global matrix function. This matrix representation allows us to de-
fine and classify (sections 3 and 5) -from a simple point of view- what
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we also call natural (0,2)-tensor fields with respect to linear connections
and Riemannian metrics. Actually, one of the advantages of this ap-
proach is that it lets us to obtain elementary proofs of the classification
problems (Proposition 3.2 and Theorem 5.1).
Even though our way of defining naturality is quite different from that
in [4], [6] and [7], we arrive at the same results as the one obtained by
Kowalski-Sekizawa and Sekizawa (Remarks 3.1, 3.2, 5.1).

Throughout, all geometric objects are assumed to be differentiable,
i.e. C .

2. (0,2)-tensor fields on frame bundles.

Let M be a manifold of dimension % * 2 and for any point p E M, let
Mp be the tangent space of M at p . Let jr : TM -~ M and P : LM -~ M be
respectively the tangent bundle and the linear frame bundle over M.

For a fixed linear connection V on M, let X : T(TM) -~ TM be the
connection map induced by V.

In order to explicit our global matrix point of view and compare the
main results in [4] and [6] with the one obtained by us (remarks 3.1 and
3.2), we shall describe in this section well known objects defined on LM
in terms of K.

Let us recall that for any p E M and any vector v r= Mp, the restriction
K, = (TM)v -~ Mp is a surjective linear map characterized by the
fact that for any vector field Y on M such that Y(p) = v , it satisfies

where denotes the differential

map of Y at p. For details, see [2].
The linear map x x Mp defined x =

_ (,~ ,,~ ( b ), I~( b ) ) is an isomorphism that maps isomorphically the hori-
zontal subspace Hv (= kernel of Kv) onto Mp and the vertical

subspace Vv (= kernel of onto {Op} x Mp , where Op stands for the
zero vector.

For j = 1, ... , n , let 7rj: LM - TM be the projection map .7rj (p, e ) =
where e = ... , Let 0 = ( 8 i ) be the canonical form on LM and

cv = (cv~ ) be the connection form of V. Hence, the 1-forms e 1, on on
LM are defined by

and the 1-forms m ) on LM are defined -for i , j = 1, ... , r~- in terms of
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K by

for any and b E Since the n + n 2 1-forms are
linearly independent everywhere, we denote with Hl, ... , Hn, 9

the vector fields on LM, dual to 9B ... , 0’~,

Hence, any vector field X on LM may be written as

where x j: are the differentiable mappings defined by x’ =

Let us denote with the map

Now, let G be a (0,2)-tensor field on LM. We construct (n + 1 )2 matrix
functions

by setting, for 1, m = 1, ..., n ,

The differentiable function defined in the
block form as

will be called the matrix of G with respect to V .
Clearly, for any pair of vector fields X, Y on LM, one gets the global
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matrix representation

where (° Y)t denotes the transpose of v Y.
In fact, if G(p, e~ : X - R denotes the bilinear form

induced by G on (LM)~p, e~, the matrix °G(p, e) is just the matrix of G(p, ~)
with respect to the basis

Since the main results to compare are expressed by using horizontal and
vertical lifts of vectors, we conclude this section showing how the vector
fields Hi, V~ (using our terminology) are described by means of these
two liftings. 

-

For 1 ~ j ~. n, let be the subspace spanned by
and the horizontal subspace spanned by
Then it follows that

is an isomorphism which maps isomorphically

If z E Mp the j-th vertical lift of z to LM at (~ , e ) is the unique
) which satisfies

and the horizontal lift of z to LM at ( p , e ) is the unique
-which for any 1 ~ j ~ ~ satisfies

From (2.1 ) and (2.2) it follows

EXAMPLES. For a given V on M, let G d and G h be the diagonal and
horizontal lifts of V. Using the way in which these tensor fields are de-
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scribed in [6], from (2.3) and (2.5) one gets:

3. Natural (0,2)-tensor fields on LM.

If GL(n, R) denotes the general linear group, for any (p, e) E LM
with e = ... , let R(p, e~ : GL(n, R) - LM be the map defined by

Let , J be the projection map defined
by ;) = R(p, u) (~).

For any let be the map defined by
u, ~) = (p, u. a, a -1. ~); then 1jJ oRa=tp.

Now, let V be a linear connection on M and let G be a (0,2)-tensor
field on LM. If then T is a differentiable map, satisfying for
any a E GL ( n , R )

On the other hand, if T : N ~ R(n + n 2 ) x (n + n 2 ) is a differentiable map
that satisfies (3.1 ), we define G via (2.7) by setting ~G(p, e ) = T(p, e , I)
for any (p, e ) E LM .

Hence, we get a one to one be-

tween (0,2)-tensor fields on LM and differentiable mappings T : N

~R(n + n2) x (n + n2&#x3E; Satlsfylng (3.1).
We say that T is the associated matrix to v G .

DEFINITION 3.1. A (0,2)-tensor field G on LM will be called natural
with respect to V if T depends only on the variable -~-.
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For example, the tensor fields G d and G h mentioned in section 2, are
natural.

REMARK 3.1. Clearly, G is natural with respect to V if and only if ~G
is constant. Looking at the main result in [6], one sees -via (2.3) and
(2.5)- that the concept of natural symmetric tensor field introduced by
Sekizawa agrees with the one given by us.

Let ~ ,~ be a Riemannian metric on M, V the Levi-Civita connection of
(,) and the bundle of orthonormal frames over (M, (,)). Let N =
(9(M) x GL(n, R) and 1jJ: N - LM be the projection map defined by

For any a E (9(n) (orthogonal group), let Ra: N-~N be the map defined
by u, ~) = (p, u. a, a -1. ~); then, 1jJ oRa= tp.

Finally, let us consider the family of mappings T : N.
1) satisfying, for any a E C) (n)

Any (0,2)-tensor field G on LM defines a differentiable map T satisfy-
ing (3.2). Reciprocally, if T is a differentiable map that satisfies (3.2), we
define G -via (2.7)- as follows: applying the Gram-Schmidt process to
any ( p , e ) E LM, one gets an orthonormal basis ( p , e) E and a dif-

ferentiable map that associates each (p,c)eLM
with the only matrix verifying Set ° G( p , e ) _
= T(p, e, a(p, e) ), for any (p, e) E LM.

Hence, and we get a one to one correspondence « ° G H T » be-
tween (0,2)-tensor fields on LM and differentiable mappings satisfying
(3.2).
We say that T is the associated matrix to v G with respect to (,).

DEFINITION 3.2. We say that G is naturaL with respect to (,) if the
associated matrix T depends only on the variable -~-.

The following result is well known in the literature and will be
needed.

LEMMA 3.1. Let be the submanifold consisting of all posi-
tive definite symmetric matrices and cp : S--*S the map defined by
cp(x) = x 1~2 (the square root). Then cp is differentiabLe.
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We shall now characterize all natural (0,2)-tensor fields on LM with
respect to Riemannian metrics on M.

PROPOSITION 3.2. Let ( ,) be a Riemanniccn metric on M, V the
Levi-Civita connection of ( ,) and G a (0,2)-tensor field on LM. The fol-
lowing are equivalent:

(1) G is natural with respect to (,).
(2) Setting where 

= 1, ... , n + n 2, there exist differentiable functions S - R such that

PROOF. Let T be the associated matrix to ° G and ( p , u , ~) E N. Since
T satisfies (3.2), we have for any a E (9 (n)

Hence, if a E (9 (n) and b e S are the unique matrices that satisfy ~ = a . b ,
we obtain

(1) ~ (2). Let (p, e) E LM and (p, u, ~) E N such that e = u. ~ =
- ~ e 1, ... , ( ~ei , Now, (2) follows inmediately from
(3.4) since b = ~) = cp« (ei, e~~)), cp is differentiable and

u. a, b) = T(b).
(2) ~ (1). Clearly, (2) implies Consequently

T depends only on -~-.

EXAMPLES. Let G d and G h be the diagonal and horizontal lifts

of (,). Using the way in which these tensor fields are described
in [4], from (2.3) and (2.5) one gets:
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where A : is the positive definite symmetric matrix function
defined by A(p, e) = ((ei, ei)) if e = ... , 

REMARK 3.2. Comparing the main result of [4] with proposition
above -having in mind (2.3) and (2.5)- it follows that the concept of
natural symmetric tensor field introduced by Kowalski-Sekizawa

agrees (in the symmetric case) with the one given by us.

REMARK 3.3. Proposition shows how to construct (0,2)-tensor fields
on LM when M is endowed with a Riemannian metric (,). In fact, if

f : S ~ 1~ (n + n 2 ) x (n + n 2 ) is any differentiable function, define G via (2.4) by
setting

for any (~ , e ) E LM . If, in addition -for any x E is a positive def-
inite symmetric matrix, then G is a Riemannian metric on LM and the
curvatures of (LM, G) may be computed in terms of f.

REMARK 3.4. Proposition above is also true replacing the Levi-Civi-
ta connection by any Riemannian connection since no torsion-free as-
sumption is needed.

4. (0,2)-tensor fields on cotangent bundles.

For any p E M, let Mp be the dual space of Mp . Let n : T * M - M be
the cotangent bundle of M and V a linear connection on M . The connec-
tion V defines a differentiable map K* : T(T * M) - T * M called the dual
connection map. For any p E M and any co-vector w E M~ the restriction
Kw* = K * is a surjective linear map, characterized
by the fact that for any 1-form a) on M such that (9(p) = w and any vector

it satisfies where cv ,,~ : Mp --~ ( T * M)w de-
notes the differential map of to at p.

The linear map defined 
= K* ( b ) ) is an isomorphism that maps the horizontal

subspace Hw (= kernel onto Mp and the vertical subspace
Vw (= kernel onto {Op} x Mp , where Op denotes indistinctly the
zero vector and the zero co-vector.

Since (T * M)w = Hw Q9 Vw, any vector field X on T * M may be written
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in the form X = X h + X,, where

and

Let L * M be the co-frame bundle over M and y :
-~ T * M the map defined by

where ~ is a basis for MP and
The family of maps Ra : N-N, a E GL( n , R), given by

where defines the

action of GL(n, R) on N. Clearly,
If u = ~ ul , ... , un ~ is a basis for Mp , we denote with u * =

= 

the mappings defined by

and

where w = u * , ~).
Making use of local coordinates, it is easy to check that these

functions are differentiable. By construction, ~e1(p, u *, ~), ..., en(~, u *, ~)~
u * , 9 ~), ... e2n (p, u * , ~)} are, respectively, basis for Hw

and Vw .
Therefore, if X is a vector field on T * M, one gets, from (4.1) and

(4.2), that
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where x 1: N-R are defined, for w = y(p, u * , ~), by

and

Let ... , x2n) : be the map induced by X and
... , e2n ~. Now, let G be a (0,2)-tensor field on T * M. If X, Y are vec-

tor fields on T * M and w E T * M, then G(X, Y)(w) = Gw (X(w), Y(w) ) ,
where Gw : ( T * M)w x ( T * M)w -~ R is the bilinear form induced by G on
( T * M)w . Hence, we can define a differentiable matrix function " G: No

follows: if and w = y~(~, u * , ~), let

°G(~, u * , ~) be the matrix of Gw with respect to the basis

We shall call v G the matrix of G with respect to V. From (4.7) one

gets the global matrix representation

where denotes the transpose of Vy. Writing ~G in the block form

where Ai : one sees from (4.5) and (4.6) that

they satisfy the following GL(n, R)-invariance properties

Hence, for a fixed linear connection on M, we get a one to one corre-
spondence between (0,2)-tensor fields on T * M and diffe-

rentiable matrix functions where each Ai

( 1 ~ i ~ 4 ) satisfies respectively (4.11), (4.12), (4.13) and (4.14).
The differentiability of G for T given- follows from (4.10) and the

fact that y is a submersion.
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EXAMPLES. Let 0 be the canonical 1-form on T * M and dO the exterior
derivative of 0, also called the 2-form on T * M . They are defined by

and

for any vector fields X, Y on T * M and any co-vector 
If 0 denotes the tensor product, set Gi=~0~=~. Let G2 and G3

be the (0,2)-tensor fields on T * M defined by

for any vector fields X, Y on T * M .
The corresponding v G matrices are given by

where A1(p, u *, ~) = (~t) . ~, B1 (p, u*~ ~) = u *, ~)(T(ui, uj)))
and T denotes the torsion tensor of V. The first matrix follows immedi-

ately from the definition of Gi , whereas the value of can be checked,
for example, by using local coordinates. As one observes, the matrices
vGi do not depend on (p, u * ) E L * M .

5. Natural (0,2)-tensor fields on T * M.

Definition 5.1. A (0,2)-tensor field G on T * M will be called natural
with respect to V if its matrix v G depends only on ~ .

As we pointed out in [1], the only natural (0,2)-tensor field on the tan-
gent bundle with respect to a linear connection is the null tensor. In con-
trast, on the cotangent bundle the set of natural (0,2)-tensor fields de-
fines a three dimensional real vector space.
The following result characterizes all natural (0,2)-tensor fields with re-
spect to linear connections.

THEOREM 5.1. be a Linear connection on M and G a (o,2)-ten-
sor field on T * M. The foLLouring are equivalent

(1) G is naturaL with respect to V
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(2) There exist constants ~,1, ~ 2 , À 3 such that

PROOF. (2) ~ (1). This is clear, since Gi , G2 and G3 are natural with
respect to V.

, Since depends only on ~, each matrix func-

tion Ai can be viewed as a function From (4.4) and (4.11 )-
(4.14) it follows that

for any R ) In particular, for any a E (~ ( n ) and E
these functions Ai ( i = 1, ... , 4) satisfy

Lemma 3.1 of [1], implies that there exist differentiable functions a j,

( 1 ~ i ~ 4 ) such that

for Here, ~ ~ I denotes the norm induced by the usual scalar
product (,) on Equality (5.6) applied to any a E GL(n , R ) implies,
from (5.1) to (5.4), that a1 = B2 = B3 = B4 = 0 and B1, a2, a4 are con-
stants 

REMARK 5.1. The Riemannian extension of V to T * M is defined in
the literature as the (0,2)-tensor field G on T * M given by G = G2 + G3 .
From the theorem one sees that a symmetric (0,2)-tensor field is natural
with respect to V if and only if there exist constants a , b such that G =
= a . G + b . 82. Hence, from the main result in [7], it follows that the con-
cept of natural symmetric (0,2)-tensor field with respect to linear con-
nections introduced by Sekizawa , agrees with the one given by us.
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Let (,) be a Riemannian metric on M, V the Levi-Civita connection of
(,) and 0*(M) the bundle of orthonormal co-frames over (M, (,)). Let
now be the projection map

The family of maps Ra : N --~ N , a E (9 (n) , given by u * , ~ ) =
= ( p , u * . a , ~ . a t ) defines the action of C9 (n) on N and 
Just as in section 4 with (9(n) replacing GL(n, R) and considering
each of the basis u = I ul, ... , to be orthonormal- we get, for any
(0,2)-tensor field G on T * M, the global matrix representation

where VG = 1 A2 and the functions Ai: satisfy, for any a e

E O(n) and 

Hence, for a fixed Riemannian metric on M , we get a one to one corre-
spondence between (0,2)-tensor fields on T * M and the differen-

tiable matrix functions , where each Ai satis-
fies (5.7).

DEFINITION 5.2. A (0,2)-tensor field G on T * M will be called natu-
ral urith respect to (,) if its matrix ’G depends only on ~.

According to (5.7), Lemma 3.1 in [1] implies

THEOREM 5.2. Let ( ,) be a Riemannian metric on M and G a (0,2)-
tensor field on T * M. The following are equivalent

(1) G is natural with respect to (,)

there exist differen-

tiable functions ai, [ 0 , + 00 ) - R such that

REMARK 5.2. From remark 3.1 in [1], it follows that natural (0,2)-
tensor fields on tangent and cotangent bundles with rspect to Riemanni-
an metrics have the same matrices VG.
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