ALESSANDRO CATERINO

STEFANO GUAZZONE

Extensions of unbounded topological spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 123-135

<http://www.numdam.org/item?id=RSMUP_1998__100__123_0>
Extensions of Unbounded Topological Spaces.

ALESSANDRO CATERINO - STEFANO GUAZZONE (*)

Introduction.

A method of compactification of locally compact spaces has been proposed in [1]. This method is based on the concept of essential semilattice homomorphism (ESH for short). More precisely, let X be a locally compact (non-compact) Hausdorff space and K a compact Hausdorff space. Let \mathcal{B} be an (open) basis of K closed with respect to finite unions, and let \mathcal{N}_X be the family consisting of the empty set and the open subsets of X which are not relatively compact. A map $\pi: \mathcal{B} \to \mathcal{N}_X$, with $\pi(U) \neq \emptyset$ for every $U \neq \emptyset$, is an ESH if the following conditions hold:

ESH1) $X - \pi(K) \notin \mathcal{N}_X - \{\emptyset\}$;

ESH2) if $U, V \in \mathcal{B}$ then the symmetric difference

$$\pi(U \cup V) \Delta (\pi(U) \cup \pi(V)) \notin \mathcal{N}_X - \{\emptyset\};$$

ESH3) if $U, V \in \mathcal{B}$ and $\bar{U} \cap \bar{V} = \emptyset$ then $\pi(U) \cap \pi(V) \notin \mathcal{N}_X - \{\emptyset\}$.

If T_X is the topology of X and $S = \{U \cup (\pi(U) \setminus F): U \in \mathcal{B}, F \subseteq X, F \text{ compact}\}$, then $T_X \cup S$ is a basis for a topology on the disjoint union $X \sqcup K$. This new space is a Hausdorff compactification of X with remainder K. It is denoted by $X_{\pi K}$ and is called an ESH-compactification of X.

In this paper we present a natural generalization of the construction above. We say that a topological space X is locally bounded with respect to a family (of «bounded» sets) $\mathcal{F}_X \subseteq 2^X$ (which is closed under finite

(*) Indirizzo degli AA.: Dipartimento di Matematica dell’Università, Via Vanvitelli 1, 06100 Perugia, Italy.
E-mail address: catvip@ipguniv.unipg.it
unions and subsets) if every point of \(X \) has a bounded neighborhood. We note that, if \(\mathcal{F}_X \) is the family of the relatively compact subsets of \(X \) (resp. the relatively Lindelöf subsets of a \(T_3 \)-space \(X \)), we have that local boundedness with respect to \(\mathcal{F}_X \) is equivalent to local compactness (resp. local Lindelöfness) of \(X \).

We construct dense extensions of unbounded spaces, which we call \(B \)-extensions. By adding some requirements, mainly local boundedness of the space, we obtain Hausdorff \(B \)-extensions. This construction is obtained with a method similar to the one used to obtain \(ESH \)-compactifications. This method can be applied, for instance, to construct Lindelöf extensions of non-Lindelöf locally Lindelöf spaces. As a final remark, we mention that Theorem 2.3 of this paper appears to be a generalization of a Tkachuk’s result (see [8], Proposition 1).

1. – \(B \)-extensions with respect to a boundedness.

An extension of a topological space will mean a dense extension.

We recall that a non-empty family \(\mathcal{F}_X \) of subsets of a space \(X \) is said to be a boundedness in \(X \) if \(\mathcal{F}_X \) is closed with respect to finite unions and subsets (see [5]). Elements of \(\mathcal{F}_X \) are called bounded sets of \(X \). Every subset of \(X \) not in \(\mathcal{F}_X \) is called unbounded.

A space \(X \) with boundedness \(\mathcal{F}_X \) is said to be locally bounded if every point of \(X \) has a bounded neighborhood. If \(X \) is \(T_3 \), this is equivalent to say that the family of the closed bounded neighborhoods of each point of \(X \) is a neighborhood base.

We remark that, for a given space \(X \), the family \(\mathcal{C}_X = \{ A \subset X : \overline{A} \text{ is compact} \} \) is a boundedness in \(X \), as well as \(\mathcal{L}_X = \{ A \subset X : \overline{A} \text{ is Lindelöf} \} \). Clearly, a space \(X \) is locally compact iff \(X \) is locally bounded with respect to \(\mathcal{C}_X \).

A space \(X \) is said to be locally Lindelöf if every point of \(X \) has a Lindelöf neighborhood. If \(X \) is \(T_3 \), it is equivalent to say that every point of \(X \) has a Lindelöf closed neighborhood (or to say that the family of the closed Lindelöf neighborhoods of every point of \(X \) is a neighborhood base). Hence, a \(T_3 \)-space is locally Lindelöf iff \(X \) is locally bounded with respect to \(\mathcal{L}_X \).

In [8] Tkachuk defines a space \(X \) to be locally Lindelöf if every point of \(X \) has an open Lindelöf neighborhood. If \(X \) is \(T_{\beta_{\omega_1}} \), the two definitions are equivalent. In fact, if \(x \in X \) and \(U \) is a Lindelöf neighborhood of \(x \),
then there exists \(f \in C(X, [0, 1]) \) such that \(f(x) = 0 \) and \(f(X \setminus U) = 1 \). Hence

\[
x \in Z = f^{-1}(0) \subset W = f^{-1}([0, 1)) \subset U
\]

and \(f^{-1}([0, 1)) \) is Lindelöf since it is an \(F_\sigma \) contained in a Lindelöf subspace.

We remark that \(Z \) can be chosen to be a zero-set neighborhood of the point \(x \). In fact, it is sufficient to consider the map \(g = (2f - 1) \vee 0 \).

Therefore, a locally Lindelöf \(T_{3\frac{1}{2}} \)-space \(X \) is locally bounded with respect to the boundedness

\[
\mathcal{L}_X = \{ A \subset X : A \subset f^{-1}(0), \ f^{-1}([0, 1)) \text{ is Lindelöf} \ & f \in C(X, [0, 1]) \}.
\]

We note that, if \(X \) is locally bounded with respect to a boundedness \(\mathcal{F}_X \), then \(C_X \subset \mathcal{F}_X \). If \(\mathcal{F}_X \) is also closed with respect to countable unions, then \(\mathcal{L}_X \subset \mathcal{F}_X \) too.

If \(aX \) is an extension of \(X \), then there is a natural boundedness in \(X \) associated to \(aX \). In fact, if we define

\[
\mathcal{K}_X(aX) = \{ A \subset X : Cl_X A = Cl_{aX} A \},
\]

then \(\mathcal{K}_X(aX) \) is a boundedness in \(X \). We remark that if \(aX \) is \(T_3 \) and \(aX \setminus X \) is closed, or \(aX \) is \(T_2 \) and \(aX \setminus X \) is compact, then \(X \) is also locally bounded with respect to \(\mathcal{K}_X(aX) \).

Now, let \(X \) be an unbounded space with respect to \(\mathcal{F}_X \) and let \(\mathcal{N}_X \) be the collection consisting of the empty set and the unbounded open subsets of \(X \). Let \(\mathcal{B} \) be a basis for the open subsets of a topological space \(Y \), and assume that \(Y \in \mathcal{B} \) and \(\mathcal{B} \) is closed with respect to finite unions.

We say that \(\pi = \pi_{\mathcal{B}, \mathcal{F}_X} : \mathcal{B} \to \mathcal{N}_X \), with \(\pi(U) \neq \emptyset \) for every \(U \neq \emptyset \), is a \(B \)-map, if it satisfies the following conditions:

B1) if \(\{ U_i \}_{i \in A} \subset \mathcal{B} \) is a cover of \(Y \), then \(X \setminus \bigcup_{i \in A} \pi(U_i) \in \mathcal{F}_X \);

B2) if \(U, V \in \mathcal{B} \) then

\[
\overline{\pi(U \cup V) \setminus \Delta(\pi(U) \cup \pi(V))} \in \mathcal{F}_X;
\]

B3) if \(U, V \in \mathcal{B} \) and \(\overline{U} \cap \overline{V} = \emptyset \) then \(\overline{\pi(U) \cap \pi(V)} \in \mathcal{F}_X \).

In the following, a \(B \)-map \(\pi : \mathcal{B} \to \mathcal{N}_X \), with \(\mathcal{B} \) closed with respect to unions of cardinality \(< \alpha \), will be also called an \(\alpha \)-\(B \) map.
Now, a topological extension of X can be constructed by means of a B-map. If T_X is the topology of X and $s = \{U \cup (\pi(U)\setminus F) : U \in \mathcal{B}, F = f^{-1}(U) \in \mathcal{F}_X\}$, then $T_X \cup s$ is a basis for a topology on the disjoint union $X \cup Y$. To prove this, it is sufficient to imitate the proof given in [1] (see p. 852).

The set $X \cup Y$, endowed with the topology generated by $T_X \cup s$, will be denoted by $X \cup Y$ and will be called a B-extension of X.

We observe that X is open in $X \cup Y$, and the topologies of the subspaces X, Y coincide with the original topologies. If $\emptyset \neq U \in \mathcal{B}$, then $\pi(U) \notin \mathcal{F}_X$. Hence $\pi(U) \setminus F \neq \emptyset$ for every $F \in \mathcal{F}_X$. It follows that X is dense in $X \cup Y$.

If X is a space with boundedness \mathcal{F}_X, we say that a continuous map $f : X \to Y$ is B-singular (with respect to \mathcal{F}_X) if, for every non-empty $U \in T_Y$, $f^{-1}(U)$ is unbounded in X. We note that, if $f : X \to Y$ is B-singular, then $\pi = f^{-1} : T_Y \to \mathcal{N}_X$ is a B-map.

If \mathcal{F}_X is a boundedness in X, then $\tilde{\mathcal{F}}_X = \{F \in \tilde{\mathcal{F}}_X : F \in \mathcal{F}_X\}$ is also a boundedness and one has that $F \in \tilde{\mathcal{F}}_X$ iff $\tilde{\pi}(F) \in \mathcal{F}_X$.

A boundedness \mathcal{G}_X with the property that $F \in \mathcal{G}_X$ iff $\tilde{F} \in \mathcal{G}_X$ (that is $\mathcal{G}_X = \tilde{\mathcal{G}}_X$) will be called a closed boundedness. Clearly, $\mathcal{C}_X, \mathcal{L}_X, \mathcal{Z}_X$ and $\mathcal{K}_X(aX)$ are closed boundednesses.

Now, if $\pi = \pi_{\mathcal{B}, \mathcal{F}_X}$ is a B-map, then $\tilde{\pi} = \pi_{\mathcal{F}_X, \tilde{\mathcal{F}}_X}$, defined by $\tilde{\pi}(U) = \pi(U)$ for every $U \in \mathcal{B}$, is also a B-map and we have that $X \cup Y = X \cup Y$. In fact, $\pi(U) \notin \mathcal{F}_X$ implies $\tilde{\pi}(U) \notin \tilde{\mathcal{F}}_X$ and the closed unbounded subsets with respect to $\tilde{\mathcal{F}}_X$ are the closed unbounded subsets with respect to \mathcal{F}_X. Hence, every B-extension of X can be considered as a B-extension with respect to a closed boundedness. Therefore, we can assume, without restriction from the standpoint of B-extension, that every boundedness we consider is a closed boundedness.

Now, let aX be a B-extension of X. We show there is a maximal boundedness \mathcal{M}_X and a B-map $\pi' = \pi_{\mathcal{B}, \mathcal{M}_X}$ such that $aX = X \cup Y$.

Proposition 1.1. Let $aX = X \cup Y$ be a B-extension of X, with B-map $\pi = \pi_{\mathcal{B}, \mathcal{F}_X}$. Then $\mathcal{F}_X \subset \mathcal{K}_X(aX)$ and there is a B-map $\pi' = \pi_{\mathcal{B}, \mathcal{M}(aX)}$ such that $aX = X \cup Y$. If Y is compact, then $\mathcal{F}_X = \mathcal{K}_X(aX)$.

Proof. If $A \in \mathcal{F}_X$, then $\pi(Y) \setminus \overline{A}$ is an open neighborhood of Y that does not meet A. Hence $Cl_XA = Cl_{aX}A$ and so $A \in \mathcal{K}_X(aX)$.

Now, we observe that if $\emptyset \neq U \in \mathcal{B}$ then $\pi(U) \not\in \mathcal{C}_X(aX)$. Otherwise $U \cup \pi(U) \setminus \text{Cl}_X \pi(U) = U \cup \pi(U) \setminus \text{Cl}_X \pi(U) = U$ would be a non-empty open subset of aX contained in $aX \setminus X$. Therefore, we can consider the B-map $\pi' = \pi \in \mathcal{C}_X(aX)$ defined by $\pi'(U) = \pi(U)$ for every $U \in \mathcal{B}$. Since $\mathcal{F}_X \subseteq \mathcal{C}_X(aX)$, then we have $T_{X \cup Y} \subseteq T_{X \cup Y}$. On the other hand, every basic open of $X \cup Y$ of the form $U \cup \pi'(U) \setminus F = U \cup \pi(U) \setminus F$ is also open in $aX = X \cup Y$, because $F = \text{Cl}_X F = \text{Cl}_{aX} F$. Hence $T_{X \cup Y} = T_{X \cup Y}$.

Now, suppose that Y is compact and let $A \in \mathcal{C}_X(aX)$. For every $y \in Y$, there is a basic open $U_y \cup \pi(U_y) \setminus F_y$ containing y such that $(U_y \cup \pi(U_y) \setminus F_y) \cap A = \emptyset$. If $\{U_{y_1}, \ldots, U_{y_n}\}$ is a finite subfamily of $\{U_y\}_{y \in Y}$ that covers Y, then

$$A \subseteq \left(\bigcup_{i=1}^{n} \pi(U_{y_i}) \right) \cup F_{y_1} \cup \ldots \cup F_{y_n} \in \mathcal{F}_X. \quad \blacksquare$$

We note that, if $\pi = \pi \in \mathcal{F}_X$ is a B-map and $X \cup Y$ is T_2-compact, then $\mathcal{F}_X = \mathcal{C}_X(aX) = \mathcal{C}_X$. Moreover, if X is T_2-locally compact and Y is T_2-compact, then the B-maps (with respect to \mathcal{C}_X) are exactly the ESH’s as defined in [1]. In fact, let $\pi: \mathcal{B} \rightarrow \mathcal{N}_X$ be such that $X \setminus \pi(Y) \in \mathcal{C}_X$ and $\pi(U \cup V) \Delta(\pi(U) \cup \pi(V)) \in \mathcal{C}_X$ for every $U, V \in \mathcal{B}$. If $U = \{U_i\}_{i \in A} \subseteq \mathcal{B}$ is a cover of Y and $\{U_{i_1}, \ldots, U_{i_r}\}$ is a finite subcover of Y, then $X \setminus \pi(Y) = X \setminus (\bigcup_{k=1}^{r} \pi(U_{i_k})) \subseteq \mathcal{C}_X$ and $\pi(Y) \setminus (\bigcup_{k=1}^{r} \pi(U_{i_k})) \subseteq \mathcal{C}_X$ imply that $X \setminus (\bigcup_{k=1}^{r} \pi(U_{i_k})) = X \setminus \left(\bigcup_{k=1}^{r} \pi(U_{i_k}) \right) \subseteq \mathcal{C}_X$. Hence $X \setminus \bigcup_{i \in A} \pi(U_i) \subseteq \mathcal{C}_X$ too.

If X is a space with boundedness \mathcal{F}_X, then the relation defined by $A \sim B$ iff $A \Delta B \subseteq \mathcal{F}_X$ is an equivalence relation in 2^X. Finite unions and intersections are compatible with it. Moreover, if \mathcal{F}_X is closed under unions of cardinality γ, then one has that also unions of cardinality γ are compatible with \sim.

Proposition 1.2 (see Prop. 1.1 in [2]). Let X be a locally bounded space with respect to \mathcal{F}_X. If $\pi = \pi \in \mathcal{F}_X$ is a B-map, then every map $\pi': \mathcal{B} \rightarrow \mathcal{N}_X$ such that $\pi(U) \Delta \pi'(U) \subseteq \mathcal{F}_X$, for every $U \in \mathcal{B}$, is also a B-map such that $X \cup Y \equiv X \cup Y$.

Proof. It is easily seen that π' is a B-map such that $T_{X \cup Y} = T_{X \cup Y}$. \quad \blacksquare
Now, we will see that the Hausdorff property of $X \cup \pi Y$ is ensured under the assumption that X is locally bounded, namely that X is locally bounded with respect to a closed boundedness.

The proof of the following statement is straightforward (see the proof of Prop. 1 in [1]).

Proposition 1.3. Let X and Y be Hausdorff spaces. If X is locally bounded with respect to a (closed) boundedness \mathcal{F}_X and $\pi = \pi_{\mathcal{B}, \mathcal{F}_X}$ is a B-map, then $X \cup \pi Y$ is a Hausdorff space containing X as a dense subspace.

With an argument suggested by the last part of the proof of Prop. 1.1, one can also prove the following proposition.

Proposition 1.4. If $aX = X \cup \pi Y$ is Hausdorff, with $\pi = \pi_{\mathcal{B}, \mathcal{F}_X}$, and Y is compact, then X is locally bounded with respect to \mathcal{F}_X.

Theorem 1.5. Let aX be a T_4-extension of X such that $aX \setminus X$ is closed and 0-dimensional. Then aX is a B-extension of X.

Proof. We denote by \mathcal{B} the basis of $Y = aX \setminus X$ consisting of the clopen subsets of Y. If $U \in \mathcal{B}$, by the normality of aX, we have that there is an open subset A of aX such that $A \cap (aX \setminus X) = U$ and $aX \setminus A$ is a neighborhood of $Y \setminus A$. In fact, U and $Y \setminus U$ are closed (and disjoint) in aX. For every $U \in \mathcal{B}$, choose such a set A. Observe that, if B is another subset of aX that satisfies the same conditions, then $(A \cap X) \Delta (B \cap X) \in \mathcal{X}(aX)$. Moreover, $(\text{Cl}_{aX}(A \cap X)) \setminus X = U$ implies that if $U \neq \emptyset$ then $A \cap X \notin \mathcal{X}(aX)$. Hence, we can define $\pi = \pi_{\mathcal{B}, \mathcal{X}(aX)}$ by setting $\pi(U) = U \cap A \cap X$. We note that X is locally bounded with respect to $\mathcal{X}(aX)$.

Now, we check the B-properties of π. First, suppose that $\mathcal{U} = \{U_i\}_{i \in I}$ is a cover of Y of members of \mathcal{B}. Since every $U_i \cup \pi(U_i)$ is open in aX, then $X \setminus \bigcup_{i \in I} \pi(U_i) = aX \setminus \left(\bigcup_{i \in I} U_i \cup \pi(U_i) \right)$ is closed in aX and so it belongs to $\mathcal{X}(aX)$.

Let $U, V \in \mathcal{B}$. If $O = (U \cup \pi(U)) \cup (V \cup \pi(V))$, then $O \cap (aX \setminus X) = U \cup V$ and $aX \setminus O$ is a neighborhood of $Y \setminus (U \cup V)$. Therefore,

$$\left(O \cap X \right) \Delta \pi(U \cup V) = (\pi(U) \cup \pi(V)) \Delta \pi(U \cup V) \in \mathcal{X}(aX) \cdot$$
Now, suppose $U, V \in \mathcal{B}$ and $\overline{U} \cap \overline{V} = \emptyset$, that is $U \cap V = \emptyset$. Then
\[
Cl_{aX}(\pi(U) \cap \pi(V)) \times \mathcal{X} \supset (Cl_{aX} \pi(U)) \cap (Cl_{aX} \pi(V)) \times \mathcal{X} = \\
= (Cl_{aX} \pi(U)) \times \mathcal{X} \cap (Cl_{aX} \pi(V)) \times \mathcal{X} = U \cap V = \emptyset
\]
implies $Cl_{aX}(\pi(U) \cap \pi(V)) \subset X$ and so $\pi(U) \cap \pi(V) \in \mathcal{C}_{X}(aX)$.

Finally, we show that $aX = X \cup Y$. Obviously, $T_{X\cup Y} \leq T_{aX}$. Now, let T be an open subset of aX and suppose $y \in T \cap Y$. Choose $U \in \mathcal{B}$ such that $y \in U$ and $U \subset T$. Clearly, $\pi(U) \setminus T$ has no adherence points in T (that is open in aX). Also, $\pi(U) \setminus T$ has no adherence points in $Y \setminus T$. In fact,
\[
(Cl_{aX}(\pi(U)) \setminus T)) \times \mathcal{X} \subset (Cl_{aX} \pi(U)) \times \mathcal{X} = U \subset T.
\]
Therefore, $F = \pi(U) \setminus T \in \mathcal{K}_{X}(aX)$ and we have $y \in U \cup \pi(U) \setminus F \subset T$. Hence,
\[
T = \bigcup_{y \in T \cap Y} (U \cup \pi(U) \setminus F) \cup (T \cap X),
\]
and so $T \in T_{X\cup Y}$.

2. – Lindelöf and other special extensions.

The proof of the next theorem is routine (see Proposition 1 in [1]).

Theorem 2.1. Let X be a locally bounded T_{2}-space with respect to a (closed) boundedness $\mathcal{G}_{X} \subset \mathcal{L}_{X}$ (hence X is locally Lindelöf) and let Y be a Lindelöf T_{2}-space. If $\pi = \pi_{\mathcal{B}, \mathcal{G}_{X}}$ is a B-map, then $X \cup Y$ is a Lindelöf T_{2}-space.

If X is a Hausdorff space, locally bounded with respect to \mathcal{C}_{X}, and Y is compact and T_{2}, then $X \cup Y$ is a T_{4}-space.

Now, we investigate regularity and normality of $X \cup Y$ when X is locally Lindelöf and Y is Lindelöf. Of course, we suppose that X and Y are T_{3}-spaces.

Theorem 2.2. Let X be a locally bounded T_{3}-space with respect to a (closed) boundedness $\mathcal{G}_{X} \subset \mathcal{L}_{X}$. Assume that every $F \in \mathcal{G}_{X}$ is contained in an open subset $A \in \mathcal{G}_{X}$. If Y is a Lindelöf T_{3}-space and $\pi = \pi_{\mathcal{B}, \mathcal{G}_{X}}$ is an ω_{1}-B map, then $X \cup Y$ is a T_{4}-space.
PROOF. In view of Proposition 1.3 and Theorem 2.1 we have only to show that \(X \cup Y \) is regular.

Let \(I \) be a neighborhood of \(x \in X \) in \(X \cup Y \). If \(U_1 = \text{Cl}_X U_1 \subset I \cap X \) and \(U_2 = \text{Cl}_X U_2 \in \mathcal{S}_X \) are neighborhoods of \(x \) in \(X \), then \(V = U_1 \cap U_2 \subset I \) is a closed bounded neighborhood of \(x \) in \(X \). Hence \(V \) is also a closed neighborhood of \(x \) in \(X \cup Y \).

Now, let \(x \in Y \) with \(x \in U \cup \pi(U) \setminus F_1 \). By hypotheses, there is an open subset \(A_1 \) of \(X \) such that \(F_1 \subset A_1 \subset \overline{A}_1 \) and \(G_1 = \overline{A}_1 \in \mathcal{S}_X \). By the regularity of \(Y \), there exist \(W, W_1 \in \mathcal{B} \) such that \(x \in W \subset \overline{W} \subset W_1 \subset \overline{W}_1 \). If \(y \in Y \setminus U \), then \(V_y \in \mathcal{B} \) be such that \(x \in V_y \subset Y \setminus \overline{W}_1 \). Since \(Y \setminus U \) is closed and \(Y \) is Lindelöf, then the open cover \(\{V_y\}_{y \in Y} \) of \(Y \setminus U \) has a countable subcover \(\{V_n\}_{n=1}^{\infty} \), and one has

\[
Y \setminus U \subset V = \bigcup_{n=1}^{\infty} V_n \subset Y \setminus \overline{W}_1.
\]

Now \(U, V \in \mathcal{B} \) and \(U \cup V = Y \) imply \(F_2 = X \setminus (\pi(U) \cup \pi(V)) \in \mathcal{S}_X \). Denote by \(A_2 \) an open subset of \(X \) such that \(F_2 \subset A_2 \subset \overline{A}_2 \) and \(G_2 = \overline{A}_2 \in \mathcal{S}_X \).

Since \(V \cap \overline{W} = \emptyset \) we have that \(\pi(V) \cap \pi(W) \in \mathcal{S}_X \). If we set \(G_3 = \overline{W} \cap \pi(W) \) then one has \(\pi(V) \cap (\overline{W} \cap G_3) = \emptyset \). Now, we claim that

\[
\overline{W} \cap \pi(W) \setminus (G_1 \cup G_2 \cup G_3) \subset U \cup \pi(U) \setminus F_1.
\]

Suppose \(z \notin U \cup \pi(U) \setminus F_1 \) and \(z \in X \). Then

\[
z \in \pi(V) \cup F_1 \cup F_2 \subset \pi(V) \cup A_1 \cup A_2 \subset \pi(V) \cup G_1 \cup G_2,
\]

and \(\pi(V) \cup A_1 \cup A_2 \) is an open neighborhood of \(z \) that does not meet \(W \cup \pi(W) \setminus (G_1 \cup G_2 \cup G_3) \).

Finally, let \(z \notin U \cup \pi(U) \setminus F_1 \) and \(z \in Y \). Then \(z \in V \) and \(V \cup \pi(V) \) is an open neighborhood of \(z \) that does not meet \(W \cup \pi(W) \setminus G_3 \).

By the way, we note that, in the previous theorem, if \(\mathcal{S}_X \) is closed under countable unions, it is sufficient to assume that \(\pi \) is a \(B \)-map (in place of \(\omega_1 \)-map).

Let us see the theory at work in the following example. It also shows that Lindelöf extensions of locally Lindelöf spaces are not always compactifications.

Example 2.3. Let \(E \) be an uncountable set, viewed as a discrete space, and consider \(X = S \times E, f : S \times E \to S \) the canonical projection,
with S the Sorgenfrey line. Then X is a non-Lindelöf locally Lindelöf space, which has a Lindelöf non-compact B-extension $aX = X \cup S$, with respect to the B-map

$$ \pi = f^{-1} : T_S \to \mathcal{N}_X = \{ \emptyset \} \cup \{ M \subset X : M \text{ is not relatively Lindelöf} \}. $$

In fact, for every $U \in T_S \setminus \{ \emptyset \}$, $f^{-1}(U) = U \times E$ has a closure $\overline{U \times E} = \bigcup \{ U \times q : q \in E \}$, namely $U \times E$ has a partition in an uncountable family of non-empty open sets. Then $f^{-1}(U)$ is not relatively Lindelöf and f is B-singular. By definition S is closed as a subset of aX, therefore aX is not compact. On the other hand, X is obviously $T_{3\frac{1}{2}}$, therefore has T_σ-compactifications, and in each of them the remainder is not closed, since X is not locally compact. From Theorem 2.2, we know that $X \cup Y$ is a T_4-space.

If a space X is $T_{3\frac{1}{2}}$, we have already observed that X is locally bounded with respect to \mathcal{E}_X. Since for every $F \in \mathcal{E}_X$ there is an open $A \in \mathcal{E}_X$ containing F, we have the following result.

Theorem 2.3. Let X be a locally Lindelöf $T_{3\frac{1}{2}}$-space and let Y be a Lindelöf T_3-space. If $\pi = \pi_{\infty, \mathcal{E}_X}$ is an ω_1-B map then $X \cup Y$ is a Lindelöf T_4-space.

In the previous theorem, if X is a locally Lindelöf T_4-space, \mathcal{E}_X can be replaced by \mathcal{L}_X. In fact, we have the following proposition.

Proposition 2.4. If X is a locally Lindelöf T_4-space then $\mathcal{E}_X = \mathcal{L}_X$.

Proof. Let $F \in \mathcal{L}_X$. For every $y \in F$, let U_y be an open neighborhood of y with Lindelöf closure. The open cover $\{ U_y \}_{y \in F}$ of F has a countable subcover $\{ U_n \}_{n=1}^\infty$. Then the open subset $U = \bigcup_{n=1}^\infty U_n$ of X contains F and is contained in $U' = \bigcup_{n=1}^\infty U_n$, that is Lindelöf. Now, by the normality of X, there is $f \in C(X, [0, 1])$ such that

$$ F \subset f^{-1}(0) \subset f^{-1}([0, 1]) \subset U \subset U'. $$

Then $f^{-1}([0, 1])$ is Lindelöf because it is a cozero-set contained in the Lindelöf set U'.

Now, let X be non-Lindelöf locally Lindelöf, and $Y = \{ \infty \}$. If X is $T_{3\frac{1}{2}}$, let $\pi = \pi_{T_Y, \mathcal{E}_X}$ be the map defined by $\pi(\infty) = X$. Then $X \cup \{ \infty \}$, that
is T_4, is just the «single-point Lindelöfication» considered by Tkachuk in [8].

If X is T_3, but not $T_{3\frac{1}{2}}$, and $\pi = \pi_{T_4, x}$ is defined by $\pi(\infty) = X$ then $X \cup \{\infty\}$ is a Lindelöf T_2-extension of X, that is not T_4.

We observe that, by Theorem 2.2, it follows that a T_3-space X is locally Lindelöf and $T_{3\frac{1}{2}}$ if and only if X is locally bounded with respect to \mathcal{L}_X.

If aX is a T_2-extension of a space X with $|aX\setminus X| = n$, then X is locally bounded with respect to $\mathcal{L}_X(aX)$. If aX is also Lindelöf, then $\mathcal{L}_X(aX) \subseteq \mathcal{L}_X$ and so X is locally Lindelöf. Now, we show that aX is a B-extension of X. This result could be proved in a way similar to that of Theorem 1.5. Here, a slightly different proof is presented, which will be useful to prove the next theorem.

Proposition 2.5. Let aX be a T_2-extension of a space X with $|aX\setminus X| = n$. Then X is locally bounded with respect to $\mathcal{L}_X(aX)$ and aX is a B-extension of X.

Proof. Let $Y = aX\setminus X = \{y_1, \ldots, y_n\}$ and let U_1, \ldots, U_n be mutually disjoint open neighborhoods of $\{y_1, \ldots, y_n\}$ in aX. Since $U_i \cap X \notin \mathcal{L}_X(aX)$ for every i, we can define $\pi = \pi_{T_4, \mathcal{L}_X(aX)}$ by setting

$$\pi(\{y_{i_1}, \ldots, y_{i_s}\}) = (U_{i_1} \cap X) \cup \ldots \cup (U_{i_s} \cap X).$$

It is easily seen that π is a B-map. Now, we show that $X \cup Y = aX$. Clearly $T_{X\cup Y} \subseteq T_{aX}$. Conversely, let A be an open subset of aX. If $A \subseteq X$, then A is obviously an open subset of $X \cup Y$. Suppose $y_k \in A$ for some k. Since $y_i \notin Cl_{ax}(U_i \setminus A)$ for every $i = 1, \ldots, n$, we get $F_k = Cl_X(U_k \setminus A) = Cl_{ax}(U_k \setminus A) \in \mathcal{L}_X(aX)$. Hence, if $A \cap (aX\setminus X) = \{y_{k_1}, \ldots, y_{k_s}\}$, then we have

$$A = \left(\bigcup_{j=1}^s \{y_{k_j}\} \cup \pi(\{y_{k_j}\}) \setminus F_{k_j}\right) \cup (X \cap A),$$

and A is open in $X \cup Y$. □

Now, we characterize the spaces that have a T_2-extension with finite remainder (compare [6]).
THEOREM 2.6. A Hausdorff space X has a T_2-extension aX with $|aX \setminus X| = n$ iff X is locally bounded with respect to a boundedness \mathcal{F}_X and there exist n mutually disjoint unbounded open sets $A_1, \ldots, A_n \subset X$ and a bounded set $F \subset X$ such that

$$X = A_1 \cup \ldots \cup A_n \cup F.$$

PROOF. The proof of the above proposition shows that the condition is necessary. Conversely, suppose that the condition holds. If y_1, \ldots, y_n are n points not in X and $Y = \{y_1, \ldots, y_n\}$, we define $\pi = \pi_{Y, \mathcal{F}_X}$ by $\pi(\{y_1, \ldots, y_n\}) = A_{i_1} \cup \ldots \cup A_{i_n}$. Then π is a B-map and $aX = X \cup \pi Y$ is a T_2-extension with $|aX \setminus X| = n$.

From Prop. 1.1, it follows that in a Hausdorff space X, the existence of a boundedness \mathcal{F}_X with the properties as in in Theorem 2.6, implies that $\mathcal{F}_X = \mathcal{K}_X(aX)$ for a suitable T_2-extension aX of X.

A consequence of Theorem 2.6 and Theorem 2.1 is the following.

COROLLARY 2.7. A Hausdorff space X has a Lindelöf T_2-extension aX with $|aX \setminus X| = n$ iff X is locally bounded with respect to a boundedness $\mathcal{G}_X \subset \mathcal{L}_X$ and there exist n mutually disjoint unbounded open sets $A_1, \ldots, A_n \subset X$ and a bounded set $F \subset X$ such that

$$X = A_1 \cup \ldots \cup A_n \cup F.$$

Now, we give an example of a Lindelöf T_2-extension of a locally Lindelöf space X that cannot be obtained as a B-extension with respect to \mathcal{L}_X.

EXAMPLE 2.8. Let E be a discrete non countable space, and let $E = S \cup T$ be a partition with S countably infinite. Consider further a two points set $Y = \{a, b\}$ disjoint from E, $\bar{S} = S \cup \{a\}$ the one-point compactification of S, $\bar{T} = T \cup \{b\}$ the Lindelöf one-point B-extension of T, with respect to $\pi = \pi_{(b), \mathcal{G}_T}$ defined by $\pi(\{b\}) = T$. Then, the topological sum $L = \bar{S} + \bar{T}$ is T_2 Lindelöf and E is dense in L. But L, that is a B-extension of E with respect to the boundedness $\mathcal{K}_E(L)$, cannot be obtained as a B-extension of E with respect to the «Lindelöf» boundedness \mathcal{L}_E. In fact, $\mathcal{K}_E(L) \neq \mathcal{L}_E$, and, from Prop. 1.1, we have that if $\pi' = \pi_{B, \mathcal{G}_E}$ is a B-map such that $L = E \cup Y$ then $\mathcal{F}_E = \mathcal{K}_E(L)$.

We recall that a space X is said to be $[\theta, \kappa]$-compact if every open cover of X of cardinality $\leq \kappa$ has a subcover of cardinality $< \theta$. If $\theta = \omega$, then X is said to be initially κ-compact, and if $|X| \leq \kappa$, then X is said to be finally θ-compact. Lindelöf spaces are exactly the finally ω_1-compact spaces.

For a space X, $c_X(\theta, \kappa) = \{A \subset X: \overline{A}$ is $[\theta, \kappa]$-compact$\}$ is a boundedness in X. We say that a space X is locally $[\theta, \kappa]$-compact if every point of X has a $[\theta, \kappa]$-compact neighborhood. As in the Lindelöf case, if X is T_3, then X is locally $[\theta, \kappa]$-compact if and only if X is locally bounded with respect to $c_X(\theta, \kappa)$.

Proposition 2.1 can be easily generalized to $[\theta, \kappa]$-compact case.

Proposition 2.9. Let X be a locally bounded T_2-space with respect to a (closed) boundedness $S_X \subset c_X(\theta, \kappa)$ (hence X is locally $[\theta, \kappa]$-compact) and let Y be a $[\theta, \kappa]$-compact T_2-space. If $\pi = \pi_{S_X}$, S_X is a B-map, then $X \cup Y$ is a $[\theta, \kappa]$-compact T_2-space.

Theorem 2.2 can be generalized to finally θ-compact case in the following way.

Theorem 2.10. Let X be a locally bounded T_3-space with respect to a (closed) boundedness $S_X \subset c_X(\theta, \kappa)$, with $|X| \leq \kappa$. Assume that every $F \in S_X$ is contained in an open subset $A \in S_X$. If Y is T_3 and $\pi = \pi_{S_X}$, S_X is a θ-B map, then $X \cup Y$ is a T_3-space.

Finally, Theorem 2.3 and Corollary 2.7 have similar generalizations to the finally θ-compact case.

REFERENCES

Manoscritto pervenuto in redazione il 26 settembre 1996 e, in forma revisionata, il 27 dicembre 1996.