F. Loonstra

Pseudo-closure-operators

Rendiconti del Seminario Matematico della Università di Padova,
tome 83 (1990), p. 133-137

<http://www.numdam.org/item?id=RSMUP_1990__83__133_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Pseudo-Closure-Operators.

F. LOONSTRA † (*)

In the algebra of R-modules closure operators are used frequently; their common foundation is based as follows: let M be an R-module, $\mathcal{L}(M)$ the complete lattice of the sub-modules of M, $\varphi: \mathcal{L}(M) \rightarrow \mathcal{L}(M)$ a mapping, written as

$$\varphi(N) = N^c \quad (N \in \mathcal{L}(M)),$$

such that

(i) $N_1 \subseteq N_2 \Rightarrow N_1^c \subseteq N_2^c$;
(ii) $N \subseteq N^c$;
(iii) $(N^c)^c = N^c$,

then φ is called a closure operator on the lattice $\mathcal{L}(M)$. The submodule $N \in \mathcal{L}(M)$ is φ-closed if $N = N^c$.

A majority of the closure operators on $\mathcal{L}(M)$ can be defined by means of a Gabriel filter \mathcal{F} on the ring R; the filter \mathcal{F} defines a hereditary torsion functor $\tau = \tau_\mathcal{F}$, such that

$$\tau_\mathcal{F}(M) = \{ m \in M: \text{Ann}_R(m) \in \mathcal{F}\}$$

is the $\tau_\mathcal{F}$-torsion submodule of M. Any Gabriel filter \mathcal{F} on the ring R induces on the lattice $\mathcal{L}(M)$ a closure operator, defined by

$$N \mapsto N^c = \{ m \in M: (N; m) \in \mathcal{F}\}, \quad N \in \mathcal{L}(M).$$

(*) † Professor F. Loonstra died Dec. 5, 1989.
Address for reprints: c.o. Prof. K. Roos, Faculty of Technical Mathematics and Informatics, P.O. Box 356, 2628 BL Delft, The Netherlands.
Then N^e is a submodule of M, the τ_F-closure (or the τ_F-saturation) of $N \in \mathcal{L}(M)$. The submodule $N \in \mathcal{L}(M)$ is τ_F-closed, if $N = N^e$, i.e. if and only if $\tau_F(M/N) = 0$.

The family of the τ_F-closed submodules N of M is denoted by

$$\text{Sat}_F(M) = \{N \in \mathcal{L}(M) : N = N^e\} \ (1).$$

We find in the literature (see: Y. Miyashita [1]) a pseudo-closure operator, defined on the set $\Sigma(M)$ of all subsets of an R-module M, properly containing the element $\{0\} \in M$. For the subset $S \in \Sigma(M)$ we define the pseudo-closure S^e of the subset $S \in \Sigma(M)$ by

$$(1) \quad S \mapsto S^e = \{0\} \cup \{m \in M : Rm \cap S \neq 0\},$$

and we set $0^e = 0$. Then we have for subsets $S, T \in \Sigma(M)$:

(i) $S \subseteq T \Rightarrow S^e \subseteq T^e$;

(ii) $S \subseteq S^e$;

(iii) $(S^e)^e = S^e$.

If S is a subset of M, then S^e is called the pseudo-closure of S, and S will be called pseudo-closed, if $S = S^e$.

If N is a submodule of the R-module M, then the pseudo-closure N^e of the submodule N is—in general—not a submodule of M.

Example. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $N = \mathbb{Z}(2; 0)$; then $N_1 = \mathbb{Z}(1; 0)$ and $N_2 = \mathbb{Z}(1; \bar{1})$ are maximal essential extensions of N in M. We have $N_1 \subseteq N_2 \subseteq N^e$, but N^e is not a submodule of N; for $(1; 0) \in N_1 \subseteq N^e$, $(1; \bar{1}) \in N_2 \subseteq N^e$, but $(0; 1) = (1; \bar{1}) - (1; 0) \notin N^e$, since $Z(0; 1) \cap Z(2; 0) = (0; 0)$.

Theorem 1. If $N \in \mathcal{L}(M)$ then we have:

(i) the pseudo-closure N^e of N in M contains every essential extension of N in M;

(ii) if in particular N^e is a submodule of M, then N^e is the unique maximal essential extension of N in M;

(1) See e.g. B. Stenström [2], p. 207.
(iii) If N^e is the unique maximal essential extension of N in M for every submodule N of M, then M has the «intersection property» for essentially closed submodules of M (i.e. the intersection of any collection of essentially closed submodules of M is essentially closed in M).

Proof. (i) is a consequence of the definition (1).

(ii) If N^e is a submodule of M, then N^e cannot have a proper essential extension in M: i.e. then N^e is essentially closed in M. That implies that N^e is a complement of some submodule $N' \subseteq M$, and we may choose N' in such a way, that N' contains an element $0 \neq m_0 \in M \setminus N^e$. Then $Rm_0 \cap N^e = 0$ implies that $Rm_0 \cap N = 0$, i.e. $m_0 \notin N^e$, and thus N^e is the unique maximal essential extension of N in M.

(iii) If N^e is a submodule of M for all submodules $N \subseteq M$, then any submodule N of M has a unique maximal essential extension $\overline{N} = N^e$ in M, and that implies that M has the «intersection property» for essentially closed submodules of M.

Theorem 2. If the R-module M satisfies the «intersection property» for essentially closed submodules, then for every submodule $N \subseteq M$ the pseudo-closure N^e is the unique maximal essential extension of N in M.

Indeed, in this situation N^e is the (unique) intersection of all essentially closed submodules of M containing N.

Theorem 3. Let R be a left Ore domain, M a torsion-free R-module, and $N \neq 0$ a submodule of M; then:

(i) N^e is the unique maximal essential extension of N in M;

(ii) M has the «intersection property» for essentially closed submodules.

Proof. If $0 \neq m \in N^e$, then for some $0 \neq r \in R$ we have $0 \neq rm \in N$. If $0 \neq r' \in R$, $Rr \cap Rr' \neq 0$ implies that $0 \neq r''r = r''r'$ for some $0 \neq r'' \in R$, $0 \neq r'' \in R$. Then $0 \neq r''rm = r''r'm \in N$, and, using the torsion-freeness of M, we have $0 \neq rm \in N^e$.

If m_1, m_2 are in N^e, then $0 \neq r_1m_1 \in N$, $0 \neq r_2m_2 \in N$ for some
Then $0 \neq r_1, r_2 \in R$. Then $Rr_1 \cap Rr_2 \neq 0$ implies that

$$0 \neq \varrho_1 r_1 = \varrho_2 r_2$$

for some $\varrho_1, \varrho_2 \in R$. Therefore

$$0 \neq \varrho_1 r_1 (m_1 + m_2) = \varrho_1 r_1 m_1 + \varrho_2 r_2 m_2 \in \mathcal{N};$$

i.e. $m_1 + m_2 \in \mathcal{N}$. Thus \mathcal{N} contains with any $m \neq 0$ also rm, and with $m_1, m_2 \in \mathcal{N}$ also $m_1 + m_2 \in \mathcal{N}$. Thus \mathcal{N} is a submodule of \mathcal{M}, and (by theorem 1 (ii)), this implies (i) and (ii).

Corollary 4. If R is a commutative integral domain, $N \neq 0$ a submodule of the torsionfree R-module \mathcal{M}, then the pseudo-closure \mathcal{N} of \mathcal{N} is a submodule of \mathcal{M}, and \mathcal{M} has the «intersection property» for essentially closed submodules.

From the theorems 1 and 2 it follows that the «intersection property» for essentially closed submodules of \mathcal{M} is a necessary and sufficient condition therefore that the pseudo-closure \mathcal{N} of any submodule \mathcal{N} of \mathcal{M} is a submodule of \mathcal{M}.

We will give some other examples of sufficient conditions for R (resp. \mathcal{M}) in order that \mathcal{M} has the «intersection property» for essentially closed submodules of \mathcal{M}. Therefore we define:

Definition (β). Let \mathcal{N} be a submodule of \mathcal{M}; then the pair $(\mathcal{N}; \mathcal{M})$ satisfies the condition (β), if $1_{\mathcal{M}}$ is the only R-automorphism of \mathcal{M} inducing $1_{\mathcal{N}}$.

The condition (β) of the pair $(\mathcal{N}; \mathcal{M})$ is equivalent with each of the following conditions:

(β') every R-endomorphism f of \mathcal{N} has at most one extension f on \mathcal{M};

(β'') $\text{Hom}_R(\mathcal{M}/\mathcal{N}; \mathcal{M}) = 0$.

We give some examples:

1) If \mathcal{N} is an essential submodule of the non-singular R-module \mathcal{M}, then \mathcal{M}/\mathcal{N} is singular, i.e. $\text{Hom}(\mathcal{M}/\mathcal{N}; \mathcal{M}) = 0$, and the pair $(\mathcal{N}; \mathcal{M})$ satisfies (β).
2) If M is a rational extension of the submodule N, then $\text{Hom}_R(M/N; M) = 0$, i.e. the pair $(N; M)$ satisfies (β).

The following result proves that the property (β)—in a special sense—is a sufficient condition therefore that the pseudo-closure N^c of a submodule N of M is a submodule of M.

Theorem 5. Let $N \neq 0$ be a submodule of M, \bar{M} an injective hull of M; if we assume that the pair $(N; \bar{M})$ satisfies the condition (β), then:

(i) N has a unique maximal essential extension in \bar{M};

(ii) M has the «intersection property» for essentially closed submodules of M if the condition (β) holds for any pair $(N; \bar{M})$;

(iii) the pseudo-closure N^c of a submodule N is a submodule of M.

Proof. Let N_1, N_2 be two maximal essential extensions of N in M, and \bar{N}_1, \bar{N}_2 the corresponding injective hulls of N in M. Then $N_i = M \cap \bar{N}_i$ ($i = 1, 2$). Furthermore there exists an isomorphism $\varphi: \bar{N}_1 \cong \bar{N}_2$, $\varphi(n) = n$ ($\forall n \in N$). Let N^* be an injective hull of a complement of N in \bar{M}. Then $\bar{M} = \bar{N}_1 \oplus N^* \cong \bar{N}_2 \oplus N^*$. Define: $\alpha \in \text{End}_R(\bar{M})$ by $\alpha(\bar{N}_1) = \varphi(\bar{N}_1) = \bar{N}_2$, $\alpha(n^*) = n^*$ ($\forall n^* \in N^*$). Then α is an R-automorphism of \bar{M}, inducing $1_\bar{M}$. Since the pair $(N; \bar{M})$ satisfies the condition (β), we have $\alpha = 1_\bar{M}$, i.e. $\bar{N}_1 = \bar{N}_2$, and therefore $N_1 = \bar{N}_1 \cap M = \bar{N}_2 \cap M = N_2$. Hence any submodule N of M has a unique maximal essential extension in \bar{M}. Then the proof of (ii) and of (iii) follows from theorem 1.

Literature

Manoscritto pervenuto in redazione il 24 aprile 1989.