WALTER STREB

Some commutativity results for rings

Rendiconti del Seminario Matematico della Università di Padova,

<http://www.numdam.org/item?id=RSMUP_1988__79__109_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.
L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Some Commutativity Results for Rings.

WALTER STREB (*)

SUMMARY - It is proved that certain rings satisfying variable identities of the form \([x^m, y^n, \ldots, y^n] = 0\) (in particular \([x^m, y^n, y^n] = 0\) with \(n\) bounded) must have nil commutator ideals.

In this paper we prove results based on questions of Herstein [2, p. 357] and generalizing results of Klein, Nada and Bell [3] and Klein and Nada [4].

Let \(R\) be an associative ring and \(Z\) respectively \(Z^+\) be the set of integers respectively positive integers. For \(a, b \in R\) define generalized commutators \([a, b]_k, \ k \in Z^+,\) as follows: \([a, b]_1 = [a, b] = ab - ba\) and for \(i \in Z^+, [a, b]_{i+1} = [[a, b]_i, b]. \) \(R\) is called a \(k\)-ring if for all \(a, b \in R\) there exists \(m = m(a, b), n = n(a, b) \in Z^+\) such that \([a^m, b^n]_k = 0\). \(R\) is called a \(n\)-bounded \(k\)-ring if the above \(n\) is fixed. Let \(Z\{X\}\) be the free \(Z\)-algebra generated by the noncommuting indeterminates \(x_1, x_2, x_3, \ldots\) [5; pp. 2-4]. Substitute \(r_i \in R\) for \(x_i\) in \(f \in Z\{X\}\) to get an element of \(R\). The additive subgroup of \(R\) generated by all these elements is denoted by \(f(R)\). Let \(f \in Z\{X\}\), and \(N \in Z^+. \) \(R\) is called a \(N\)-\(j\)-\(k\)-ring if for all \(a \in f(R)\) and \(b \in R\) there exists \(m = m(a, b), n = n(a, b) \in Z^+\) such that \(m < N\) and \([a^m, b^n]_k = 0.\) \(R\) is called left (right)-\(s\)-unital if \(a \in Ra (a \in aR)\) for all \(a \in R.\)

Let \(R_{\text{reg}}\) be the set of (left and right) regular elements of \(R, R_{\text{nil}}\) the set of nilpotent elements of \(R, R'\) the commutator ideal of \(R, C(R)\) the center of \(R\) and \(i \wedge j\) the greatest common divisor of \(i, j \in Z^+\).

(*) Indirizzo dell'A.: Fachbereich 6, Mathematik, Universitàt Essen GHS, Universitätsstr. 2, 4300 Essen 1, BRD.
For $a \in R$ and $A, B \subseteq R$ let $C_R(a) = \{ b \in R : ba = ab \}$ and $[A, B]$ be the additive subgroup of R generated by $\{ [a, b] : a \in A, b \in B \}$. We shall prove:

Theorem. Each of the following conditions implies $R' \subseteq R_{\text{nil}}$:

1. R is a 2-ring and a n-bounded k-ring (in particular, R is a n-bounded 2-ring).
2. R is a N-f-2-ring and a k-ring.
3. R is a 2-ring and a N-f-4-ring.
4. R is a left-or right-s-unital k-ring.

This results generalize the following sufficient conditions: For all $a, b \in R$ there exists $m = m(a, b) \in \mathbb{Z}^+$ such that $[a^m, b]_a = 0$ [4; Theorem, p. 361]. Let $N \in \mathbb{Z}^+$. For all $a, b \in R$ there exists $m = m(a, b)$, $n = n(a, b) \in \mathbb{Z}^+$ such that $m < N$ and $[a^m, b^n]_a = 0$ [3; Theorem 1, p. 286]. R is a k-ring with 1 [3; Theorem 3, p. 288]. We first prove:

Lemma. Let R be prime, torsionfree, $R = R_{\text{reg}} \cup R_{\text{nil}}$ and $C(R) = 0$.

(a) Let $0 \neq f \in \mathbb{Z}[X]$. Then there exists an ideal $I \neq 0$ of R such that $[I, R] \subseteq f(R)$.

(b) Let $L \neq 0$ be a Lie ideal of R and $N \in \mathbb{Z}^+$. For all $a \in R$ and $b \in R_{\text{reg}}$ suppose there exists $m = m(a, b)$, $n = n(a, b) \in \mathbb{Z}^+$ such that $m < N$ and $[a^m, b^n]_a = 0$. Then $c^2 = 0$ for all $c \in C_R(b) \cap R_{\text{nil}}$ and $b \in R_{\text{reg}}$ if $k = 4$ and $C_R(b) \cap R_{\text{nil}} = 0$ for all $b \in R_{\text{reg}}$ if $k = 2$.

(c) Let R be a n-bounded k-ring. Then $C_R(b^i) \subseteq C_R(b^n)$ for all $b \in R_{\text{reg}}$ and $i \in \mathbb{Z}^+$.

Proof. (a) Using [5; pp. 6, 7] we get a multilinear polynomial $0 \neq g \in \mathbb{Z}[X]$ such that $g(R) \subseteq f(R)$. Since $g(R) \neq 0$ [5; Theorem 1.6.27, p. 47] and $[g(R), R] \subseteq g(R)$ the conclusion follows by [1; Theorem 6, p. 570].

(b) Let $k = 4$. Assume that there exists $b \in R_{\text{reg}}$, $c \in C_R(b)$ and $2 < i \in \mathbb{Z}^+$ such that $c^{i+1} = 0 \neq c$. We shall get a contradiction. For each $a \in L$ and $M \in \mathbb{Z}^+$ there exists a subset \mathcal{M} of \mathbb{Z}^+ with M elements and $m, n \in \mathbb{Z}^+$ with $m < N$ such that $[a^m, (b + ic)^n]_a = 0$ for all $i \in \mathcal{M}$. Using $c^{i+1} = 0$ and a Vandermonde argument analogous to [3; p. 287] we get homogeneous equations $g_i(a, b, c) = 0$, where a, b and c appear in each formal monomial exactly m, $4n - j$ and j-times. We use tacitly $b \in R_{\text{reg}}$ and $c^{i+1} = 0$.
Since
\[0 = g_4(a, b, c) c^i = 4 \left(\binom{n}{1} \right) \left[[a^m, b^n]_3, b^{n-1}c \right] c^i = 4nb^{n-1}c[a^m, b^n]_3c^i \]
we have \(c^i[a^m, b^n]_3c^i = 0 \) and \(c^{i-1}g_4(a, b, c)c^{i-1} = 0 \), hence
\[
0 = 4 \binom{n}{2} c^{i-1} \left[[a^m, b^n]_3, b^{n-2}c^2 \right] c^{i-1} + \\
+ 6 \binom{n}{1} \binom{n}{1} c^{i-1} \left[[a^m, b^n]_2, b^{n-1}c \right] c^{i-1} = -12n^2b^{n-1}c^i[a^m, b^n]_2c^ib^{n-1},
\]
therefore
\[
c^i[a^m, b^n]_c c^i = 0 \quad \text{and} \quad c^{i-2}g_4(a, b, c)c^{i-1} = 0.
\]
Analogously we get
\[
c^i[a^m, b^n]c^i = 0 \quad \text{and} \quad c^{i-2}g_4(a, b, c)c^{i-2} = 0
\]
and finally \(c^i[a^m, b^n]c^i = 0 \).

Choose \(m(a) \) in \(\mathbb{Z}^+ \) maximal with respect to \(c^ia^{m(a)}c^i = 0 \). Put \(M = \max \{ m(a) : a \in L \} \). Choose \(d \in L \) such that \(m(d) = M \). For each \(a \in L \) there exists \(M > m \in \mathbb{Z}^+ \) such that \(c^i(ia + d)^m c^i = 0 \) for infinitely many \(i \in \mathbb{Z}^+ \). Using a Vandermonde argument we get \(c^i[a^m, b^n]c^i = 0 = c^i[d^m]c^i \), hence \(m = M \). We have proved that \(c^i[a^m, b^n]c^i = 0 \) for all \(a \in L \). There exists an ideal \(I \neq 0 \) of \(R \) such that \([I, I] \subseteq L \) [1; Theorem 6, p. 570]. Using (a) for \(R = I \) and \(f = [x_1, x_2]^M \) we get an ideal \(J \neq 0 \) of \(I \) such that \([J, J] \subseteq f(I) \). Then \(K = IJJ \neq 0 \) is an ideal of \(R \) and \(0 = c[K, cK]c^i = c^iKcKc^i \), hence \(c^i = 0 \), a contradiction.

Let \(k = 2 \). The condition for \(k = 4 \) is still satisfied, hence \(c^2 = 0 \) for all \(b \in R_{reg} \) and \(c \in C_R(b) \cap R_{nil} \). As above we get \(c = 0 \) using \(0 = g_4(a, b, c) = 2n^2b^{n-1}c^m c^{ob^{n-1}} \).

(c) Let \(b \in R_{reg}, i, j \in \mathbb{Z}^+ \) and \(l = i \cap n \). We show (i)-(iv) step by step.

(i) \(C_R(b^i) \cap C_R(b^j) \subseteq C_R(b^{ij}) \).

We can assume that \(i < j \). For \(a \in C_R(b^i) \cap C_R(b^j) \) we have
\[
0 = [a, b^j] = [a, b^i]b^{i-j} + b^i[a, b^{i-j}] = b^i[a, b^{i-j}],
\]
hence \([a, b^i] = 0 = [a, b^{i-1}]\). By induction over \(i + j\) we get the conclusion.

(ii) Let \(a \in C_R(b^i)\) and \(a^2 = 0\). Then \(a \in C_R(b^i)\).

Let \(m \in \mathbb{Z}^+\) be such that \(0 = [(a + b^i)^m, b^n] = mb^{i(m-1)}[a, b^n]_k\).
Then \([a, b^n]_k = 0\). For \(c = [a, b^n]_{k-1}\) we have \([c, b^n] = 0 = [c, b^n]\), hence \([c, b^n] = 0\) by (i). For \(c = [a, b^i]\) we have \([c, b^n]_{k-1} = 0 = [c, b^n]\), hence \([a, b^i]_{k-1} = 0\) by induction over \(k\). For \(c = [a, b^i]_{k-2}\) and \(j = i/l\) we have \(0 = [c, b^i] = j(b^{i-1})[a, b^i]_k\) hence \([a, b^i]_{k-1} = 0\), therefore \(a \in C_R(b^i)\) by induction over \(k\).

By induction over the index of nilpotence of \(a\) we get

(iii) Let \(a \in C_R(b^i) \cap R_{nil}\). Then \(a \in C_R(b^i)\).

(iv) \(C_R(b^i) \subseteq C_R(b^i) \subseteq C_R(b^n)\).

If \(C_R(b^i) \subseteq R_{reg}\), then \(C_R(b^i)\) is commutative by [3; Lemma, p. 286], hence (iv). Otherwise let \(a \in C_R(b^i), a^2 = 0\) and \(c \in C_R(b^i) \cap R_{reg}\). Then \(ac \in C_R(b^i) \cap R_{nil}\), hence \(0 = [ac, b^i] = a[c, b^i]\) by (iii), therefore \([c, b^i] \in C_R(b^i) \cap R_{nil}\), hence \([c, b^i]_2 = 0\) by (iii), finally \(c \in C_R(b^i)\) as above.

PROOF OF THEOREM. (1)-(3) Let us assume that \(R' \not\subseteq R_{nil}\). We shall get a contradiction. By [2] we can assume, that \(R\) is prime, torsionfree, \(R = R_{reg} \cup R_{nil}, C(R) = 0\), \(R\) is a \(k\)-ring but not a \(k-1\)-ring and \(k > 1\).

(1) We show (i)-(iii) step by step.

(i) Let \(a \in R, b \in R_{reg}\) and \(m, i \in \mathbb{Z}^+\). Then \([a^m, b^i]_2 = 0\) implies \([a^m, b^n]_2 = 0\).

By (c) we have \(0 = [[a^m, b^i], b^n] = [[a^m, b^n], b^i]\), hence \([a^m, b^n]_2 = 0\).

(ii) For \(a, b \in R_{reg}\) there exists \(m = m(a, b) \in \mathbb{Z}^+\) such that \(n|m\) and \([a^i, b^j]_2 = [b^i, a^j]_2 = [a^i, b^j]_2 = 0\) for all \(i, j \in m\mathbb{Z}^+\).

By (i) there exists \(r, s \in \mathbb{Z}^+\) such that \([a^{nr}, b^n]_2 = 0 = [b^{ns}, a^n]_2\). For \(u = a^{nr}\) and \(v = b^{ns}\) we have \([u, v]_2 = 0 = [v, u]_2\). By (i) there exists \(1 < t \in \mathbb{Z}^+\) such that \(0 = [u^t, b^n]_2\). Hence \(0 = [u^t, v]_2 = i(t - 1)u^{t-2}[u, v]^2\), therefore \([u, v]^2 = 0\). We have \([u^t, v]_2 = [v^t, u]_2 = [u^t, v]_2 = 0\) for all \(i, j \in \mathbb{Z}^+\). Using \(m = nrs\) we get (ii).

(iii) Let \(a, b \in R_{reg}, c \in C_R(a)\) and \(c^2 = 0\). Then \([c, b^n]_2 = 0\).
Let $m = m(a, b)$ as in (ii). By (i) there exists $1 < l \in \mathbb{Z}^+$ such that $[(a^m + c^i), b^m]_2 = 0$. Analogous to [2; p. 355] we get (iii).

By an argument as in [2; pp. 355, 356] we get a Lie ideal $L \neq 0$ of R such that $[a, b^n]_1 = 0$ for all $a \in L$ and $b \in R_{reg}$. By (b) we have $c^2 = 0$ for all $b \in R_{reg}$ and $c \in C_R(b) \cap R_{nil}$. We conclude the proof as in [4; p. 361].

(2) Since R is not a k-ring there exists $a, b \in R$ such that $[a^i, b^j]_{k-1} \neq 0$ for all $i, j \in \mathbb{Z}^+$. There exists $m, n, 1 < l \in \mathbb{Z}^+$ such that $[a^m, b^n]_k = 0 = [a^{m^i}, b^n]_k$. Using the formula $[uv, w] = [u, w]v + u[v, w]$ we get $0 = [a^{m^i}, b^n]_{(k-1)} = [a^m, b^n]_{k-1}$. Hence there exists $b \in R_{reg}$ and $c \in C_R(b)$ such that $c \neq 0 = c^2$ in contradiction to (a) and (b).

(3) We have $c^2 = 0$ for all $b \in R_{reg}$ and $c \in C_R(b) \cap R_{nil}$ by (a) and (b) and can conclude the proof as in [4; p. 361].

(4) Let R be left-s-unital. Assume that $R' \notin R_{nil}$. Choose a finite subset A of R and $e \in R$ such that $S' \notin S_{nil}$ for the subring S of R generated by A and $ea = a$ for all $a \in A$ [6]. Let T be the subring of R generated by $A \cup \{e\}$ and I the ideal of T generated by $\{ae - a : a \in A \cup \{e\}\}$. Since $IA = 0$ T/I has no nil commutator ideal. But T/I is a k-ring with 1 in contradiction to [2; Theorem 3, p. 288].

Remark. For $a, b \in R$ define $a \circ b = ab + ba$. Let $a, b \in R$, $m, n_i \in \mathbb{Z}^+$ and $\ast_i \in \{[,], \circ\}$ such that $\left(((a^m \ast_1 b^{n_1}) \ast_2 b^{n_2}) \ldots \right) \ast_k b^{n_k} = 0$. Then using the formula $[u, v^2] = [u, v]v = [u \circ v, v]$ we get $[a^m, b^n]_k = 0$ for $n = 2I_n$. Thus the use of \circ as well as $[,]$ provides no real generalisation.

REFERENCES

Manoscritto pervenuto in redazione il 13 marzo 1987.