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Nonlinear Stability of a Spatially Symmetric Solution
of the Relativistic Poisson-Vlasov Equation.

CARLO MARCHIORO - ENRICO PAGANI (*)

SUMMARY - We prove that the distribution functions f (x, p), spatially homo-
geneous, possibly nonregular, nonincreasing in lip II, stationary solutions
of the relativistic Poisson-Vlasov equation, are nonlinear (Liapunov)
stable.

1. Introduction and description of the problem.

A relativistic plasma, when the collisions are neglected and the
particles interact only via a medium field, is described by the relativ-
istic Vlasov equation [8], that, when there is one only type of par-
ticles, for simplicity, assumes the form:

in which x = x~ _ (ct, x) and p == (p°, p) are the position 4-vector
and the momentum 4-vector of a particle respectively; m is the rest
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mass of the particles, that enters into the mass shell condition

and c is the speed of light.
The external 4-force Fit = (.F*, F,~) satisfies the condition

i.e. it is purely mechanical (it does not modify the rest mass of the
particles). This requirement is fulfilled by the Lorentz 4-force,
defined by

where is the electromagnetic tensor, related to the electric and
magnetic fields E, B by the equations:

when i = 1, 2, 3

pi’ = Bk when i, j, k is an even permutation of 1, 2, 3 .

The function f = p) is called the distribution function, and is
defined on the relativistic phase space (x, p considered as 8 independent
scalar variables).

The absence of « collision terms)) into the right hand side of eq. (1.1)
is related to the assumption that the particles interact only via a
medium field; this is admissible when the gas is sufficiently rarefied.

Rewriting (1.1) in term of spatial quantities (with respect to an
inertial reference system), we have:

(*) Greek indices run from 0 to 3, and have space-time meaning; latin
indices run from 1 to 3, and have space meaning; g,, = diag (1, - 1, - 1, - 1).
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that, substituting (1.2), introducing the relation between the (spatial)
velocity v and the (spatial) momentum p

and replacing f with f through the definition

becomes

or

in which F = is the ordinary (spatial) force, equal to the
time derivative of the (spatial) momentum, evaluated in the inertial
reference system defined above.

In the electromagnetic case, that interests us,

or

In plasma physics are relevant the Maxwell-Vlasov model, based
on the equations



128

and the Poisson-Vlasov model

In either models, v = in the relativistic case, and v = p~m
in the classical one.

As is clear from the equations, in the Poisson-Vlasov model, the
magnetic field is assumed to be null, and this approximation, that
originates from an obvious requirement of simplicity, is acceptable
in many quasi-stationary phoenomena.

The charge density e is the sum of a constant (in time and space)
term ~O+, and of another one, depending on the distribution function f,
so that the global charge is null. In a plasma model with one only
type of particles (electrons), ~+ may be identified with the constant
and uniform charge density of the fixed positive ions.

Concerning the mathematical problem of the existence of the
solutions of the above problem, we say that, for the non relativistic
Maxwell-Vlasov model, the local-in-time existence and uniqueness of
the solution is proved in [26, 28]. In [28] is also proved that the clas-
sical solutions of the non-relativistic Maxwell-Vlasov equation con-
verge to the solutions of the Poisson-Vlasov equation, when the speed
of light goes to infinity. In one space dimension, the problem of the
existence is treated in [7]. The Hamiltonian structure of the equation
of motion is discussed in [18, 12] and in many other papers refer-
red in [12].

Concerning the non-relativistic Poisson-Vlasov model, the as-

sociated Cauchy problem has been completely solved in 1 and 2 spatial
dimensions [6, 22, 27]. In 3 space dimensions, the existence of global
weak solutions is proved in [1, 14, 15], and, when the initial data are
small enough, the existence of global classical solutions [3] is also

proved. In 3 spatial dimensions, there exist classical global solutions
for symmetric initial data [4, 13, 25]. The existence of classical solu-
tions corresponding to any initial data is an open problem, as well
as the uniqueness problem of weak solutions. For reader’s utility,
we refer also the papers [2, 5, 11] and the review papers [19, 20].

As discussed in [23, 24], when the speeds of the particles approach
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the speed of light, the classical MaXwell and Poisson-Vlasov models
become inadequate, and must be substituted by the relativistic ones.

Concerning the Cauchy problem we refer [10, 29]. In [10] the

3-dimensional relativistic Poisson-Vlasov equation is treated, and
the existence of global-in-time classical solutions is proved, assuming
spherical symmetry of the initial data. The relativistic Maxwell-
Vlasov equation in 3-space dimensions is treated in [29], and the local-
in-time existence of classical solutions is proved, starting from regular
initial data. Moreover, it is proved that the solutions of the Relativ-
istic Maxwell-Vlasov equation converge in a pointwise sense to the
solutions of the non-relativistic Poisson-Vlasov equation, when the
speed of light goes to infinity.

In this paper we treat the relativistic Poisson- Vlasov model, with
a plasma made of electrons, whose density in phase space is determined
by the distribution function f (x, t, p) and a background of positive
fixed ions, uniformly distributed on the domain, so that the global
charge is null.

We assume that the domain is a flat v-dimensional torus Tr,
(v = 1, 2, 3), having dimensions .Lx, .Ly, .Lz respectively, or, equi-
valently, we assume that the distribution function and all the other
physical quantities of the system are spatially periodic.

In order to simplify the notations, we assume the charge, the mass
of the particles, the speed of light and the charge density of the
positive background equal to 1, and so we obtain the following system
of equations:

This system of equations admits a first integral, which is the total
energy of the system:
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In this work we prove that the class of spatially homogeneous
distribution functions f (x, p), possibly non regular, y non increasing
in stationary solutions of the relativistic Poisson-Vlasov equa-
tion (1.3) is non-linearly (Liapunov) stable. We stress that the proof
does not use the regularity property of the solution, y and this fact
may be physically interesting in some special case. By non regular
solution, we mean a solution of the weak formulation of eq. (1.3)

where

g being any test function.
The proof of our result is organized into 3 Lemmata (whose proofs,

rather technical, will be given later), and into a Theorem. The for-
mulation of the Lemmata and of the Theorem, and their proofs,
when it is possible, will not depend on the number of space di-
mensions.

The proof relies on the application to the relativistic Poisson-Vlasov
equation of a technique, suggested by Marchioro and Pulvirenti [16, 17]
that is based on the observation that the kinetic energy corresponding
to a stable stationary solution is an extremum, constrained to the
orbits of the coadjoint representation [12] of the measure preserving
diffeomorphysms group acting on a domain D (when the system is
an incompressible ideal fluid occupying a domain D, and so the con-
figuration space of the system is the group of diffeomorphysms of D),
and the measure preserving diffeomorphysms group acting on the phase
space, (when the system is an ideal plasma). By a classical viewpoint,
these orbits are linked with the conservation of the vorticity integral,
in two space dimensions, and with the Liouville theorem. See also,
for this subject [12, 9, 21].

In this work we assume that when the initial data is « near » the

stationary solution, the Cauchy problem admits a global in time weak
solution.

We finally remark that similar methods could be used for the
relativistic Maxwell-Vlasov equation.
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1. Proof of the main result.

DEFINITION. Let 8 be the set of the stationary solutions of the
eq. (1.3) satisfying the following conditions:

DEFINITION. VM &#x3E; 0, given a stationary solution f we defines
the class

of distribution functions whose kinetic energy density is « near » the
kinetic energy density of 1, Vx E T~.

DEFINITION. Given a distribution function we

define the class

The functions of I(F) assume the same values assumed by F, but in
different points of the domain, with the property that this rearrange-
ment preserves the measure.

LEMMA 1. Let and fo : be the initial datum of
the problem (1.3). There exists
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such that:

when 6 is sufficiently small.

LEMMA 2. Let f E S, f E I( f ) rl Loo(Tp and defining

we have the results:

1) when v = 1, there exist constants C,, C, such that

2) when v = 2, 3, and f , f have compact supports, there exists
a constant C,, such that

LEMMA 3. Let 1 be a function satisfying all the properties stated
in Lemma 1, and let f o E 1(1) n 3(j, M), (and, by Liouville theorem,

1(1)). We have the result:

where ~ 0 when 0153 ~ 0.

THEOREM. Let lES and J(Î,M) be the initial
datum of the problem (1.3). Then

PROOF. Let the initial datum f o such that 1110 -1111  6. By trian-
gular inequality
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Using Lemma 1, there exists f such that

1 ) f o (and by Liouville theorem) E 1(1);

Now we estimate the first term in the right hand side of (2.1) in the
following way:

Now, and using Lemma 1.
In concluding 0

PROOF OF LEMMA 1. VA c R+, we define the family of sets

(see [16, 17]) :

and the functions:

Obviously, the function f (-) is nonincreasing, and satisfies f o E 1(1).
To prove the second step of the Theorem 1, we define the sets:
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and the quantities

in which and I are the stationary solution, the initial datum, and
the function built above, respectively. Denoting by X the set func-
tion, we have :

and, by definition of f

In concluding :

and this completes the proof of Lemma 1. D

PROOF or LEMMA 2. Let and N be an integer.
We defi ie the sets

and the step functions

X being the set function.



135

Now we consider the difference between the kinetic energies as-
sociated with the functions f N and 

Now the details of the proof depend on the number of space dimensions:
we examine, in the first time, the 1 dimensional case. Using the
definitions

the following estimates hold:

and the equation (2.2) becomes

Using the monotonicity in [0, oo), the following



136

estimate holds

and the analogous one

so that (2.4), taking (2.3b) into account, becomes

Now, using the Cauchy-Schwartz inequality in the following way:

that implies

equation (2.5) becomes

The term (VI + p¡ -1) lpk in (2.6) goes to 0 when 0, and this
gives some problems in underestimating the right hand side of (2.6)
in terms of 
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We choose y E (0, 1) and we determine an integer h such that

so that the equation (2.6) becomes

Using (2.7a), and taking into account that

we obtain

Solving (2.7b) with respect to Pk and substituting the result into (2.9),
we obtain

and (2.8) becomes

and, ending N to infinity, using the dominated convergence theorem,
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we have:

and this proves Lemma 2 in one space dimension.
In two space dimensions, the proof must be modified as follows.

We define through the conditions:

and, by monotonicity of ( (1~1-f- p 2 -1 ) /p ~ in [0 , oo), we have

and, performing an obvious change of variable

We bound the denominator in (2.12) by observing that, by defini-
tion of f3 k

so that
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and using the Cauchy-Schwartz inequality

We observe that 0, the coefficient of X(Ak) 111
approaches a non null value, so here we have not the difficulty of the
previous case. Despite of this, this coefficient goes to zero when

pk -~ oo, so that, in order to underestimate T(fN) - T(iN) in terms of
IlfN - iN111’ we must assume the compactness of the supports of f
and f . In this hypothesis, when N - oo,

In 3 space dimensions, we define pk, ~k, ~k in the following way:

so that the equations (2.11) and (2.12) become

By definition of we obtain
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so that

and using the Cauchy-Schwartz inequality

As well as in 2 space dimensions, the coefficient of X(II) ~~1
approaches a non null value 0. Moreover, this coefficient

goes to zero oo, and so, as in 2 space dimensions, we must
require the compactness of the supports of f and f . In this hypothesis, y
when N --~ co

and this completes the proof of Lemma 2.
We note that in the analogous problem of stability for the non

relativistic Poisson-Vlasov model [17], in 2 space dimensions, the

hypothesis of compactness of the support of the perturbation was
not necessary. D

PROOF OF LEMMA 3. Let f t be the time evolution of fo by (1.3).
Using (1.4) we have

and, by positivity of the potential energy

Subtracting T(i) we have:
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Now

By hypothesis so that f o E ~( f , .l~’ ), i.e., the integral in
the last equation is convergent, and we have the decomposition:

and Q(P) - 0 when P - 00. (A possible choiche for P is ( ~~ fo 
Using the periodicity of the boundary conditions,

where G is the Green function for L1 with periodic boundary conditions.
By the boundedness of (~ ~Oo( ~ ) 00’ (following by 10 E J(ï, M) f1

f1 that implies we have

In concluding, taking (2.15) and (2.16) into account, (2.14) becomes

where g(x) - 0 when x --~ 0. D
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