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Groups with Boundedly Finite Automorphism Classes.

DEREK J. S. ROBINSON - JAMES WIEGOLD (*)

1. Introduction.

Let G be a group and let .1~ be a subgroup of Aut G, the auto-
morphism group of G. Then 1~’ acts in a natural way on the group
and on its set of subgroups. Thus we may speak of F-orbits of elements
and of subgroups of G. In particular the Aut G-orbits are called auto-
morphism classes. Our object here is to analyze the structure of groups.
whose automorphism classes of elements or subgroups are finite with
bounded order.

Similar problems for Inn G-orbits were studied by B. H. Neumann
almost thirty years ago. In [4] Neumann proved that the groups
with boundedly finite conjugacy classes (or Inn G-orbits) of elements,
the so-called BFO-groups, are precisely the groups with finite derived
subgroup (see also [12]). In a subsequent paper [5] Neumann was
able to show that the groups which have finite conjugacy classes of
subgroups are exactly the centre by finite groups, that is, the groups
with finite inner automorphism group. It was later shown by Eremin [2J
that this remains true if one restricts only the conjugacy classes of
abelian subgroups.

RESULTS. Our first main result is a criterion for a group to have

boundedly finite automorphism classes of elements.

(*) Indirizzo degli AA.: D. J. S. ROBINSON: Department of Mathematics,
University of Illinois, Urbana, Illinois 61801, U.S.A.; J. WIEGOLD : Depart-
ment of Pure Mathematics, University College, Cardiff, Wales, U.K.
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THEOREM 1. Let G be a group and let T denote the torsion- subgroup
of the centre of G. Then the automorphism classes of elements of G are
boundedly finite if and only if T is finite and Aut G induc es a finite
group of automorphisms in GIT.

This result may be reformulated in such a way as to refer only
to T, GIT and the cohomology class d of the central extension
T ~ G -~ 0 = GIT. Recall that there is a natural left action of Aut G
and a natural right action of Aut T on .Hr2(G, T). Using these actions
we may restate Theorem 1 in the following form.

COROLLARY 1. The group G has boundedly finite automorphisms
classes of elements if and only if T and StAut õ(JAut T) ~ the 
stabilizer in Aut G of the Aut T-orbit containing L1, are both finite.

In general the automorphism group can be infinite when the auto-
morphism classes of elements are boundedly finite. In § 4 we give
some examples of this phenomenon: we also give necessary and suf-
ficient conditions for the automorphism group to be finite.

Turning to automorphism classes of subgroups we may state our
conclusions in the following form.

THEOREM 2. The following properties of a group G are equivalent.

(i) The automorphism classes o f subgroups of G are boundedly
finite.

(ii) The automorphism classes o f abelian subgroups of G are

boundedly finite.

(iii) Either Aut G is finite or there is a direct decomposition
G = where G1 is a locally cyclic torsion group, G2
is a finite central extension of a direct product of finitely
many groups of type poo f or different primes p, and 01 and
O2 do not contain elements of the same prime order.

Thus the condition on automorphism classes of subgroups comes
quite close to forcing the automorphism group to be finite, the only
obstacle, so to speak, being locally cyclic torsion groups.

Ultimately Theorems 1 and 2 depend upon information about a
group of automorphisms F of an FC-group G such that all r-orbits
of G are boundedly finite. This information is to be found in a paper
of Baer [1], (p. 111). We shall give a short and elementary proof of
the necessary facts. These can be summed up as follows.
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PROPOSITION 1. Let r be a group of automorphisms of an FC-group
G. Then the r-orbits of G are boundedly finite if and only if there is
a finite F-invariant normal subgroup E of G such that .1~ induces a finite
group of automorp hisms in GIE.

We mention that a topological proof of this result has recently
been given by Schlichting [10].

RiF,mARiics:

(i) It will be seen that the proof of Theorem 1 provides bounds
---albeit complicated ones-for the order of T and the index
of OAuto(GjT) in terms of the least upper bound of the numbers
of elements in an automorphism class.

(ii) leave open the problem of determining the groups in
which the automorphism classes of elements (or subgroups)
are finite but possibly unbounded.

2. Automorphism groups with boundedly finite orbits.

We begin with some elementary facts.

LEMMA 1. Let G be a group in which all automorphism classes of
elements’have at most n elements.

T hen

(i) Aut G is residually a subgroup of the symmetric group Sn;
thus Aut G is residually finite and has finite exponent 

(ii) the group G’ is finite and GjZ(G) is centre by finite.

PROOF. The first statement is true because Aut G permutes the
elements of an Aut G-orbit gAut G and The remaining state-
ments follows from B. H. Neumann’s theorem on BI’C-groups and a
result of P. Hall (see [7 ], 4.25).

Our immediate aim is to prove Proposition 1. For this we shall

require a lemma which already occurs in Baer’s paper.

LEMMA 2. Let T be a group of automorphisms of a group G and
assume that all r-orbits of G have at most n elements where n &#x3E; 1. Let

g be an element of G such that the r-orbit of g has exactly n elements and
define N to be the subgroup generated by all (gx)Y where x E G and y E 1~.
I f K = Cr(N), then each K-orbit of GIN has at most n -1 elements.
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PROOF. Suppose that on the contrary some x in (~ has

= n,. Then clearly

so that Cr(x) = Cr(xN). Now consider Cr(gx). If o~ E Cr(gx), then
gx = gaxa and xa -= x mod N. Thus d E Cr(xN) = Cr(x) and g = ga.
Therefore

Consequently

and thus GYr(g) = Cr(gx). It follows that K = Cr(x)
and This gives the contradiction l = = n

PROOF OF PROPOSITION 1. The sufficiency of the condition is clear.
Assume that all r-orbits of G have at most n elements. If n 

then 7~=1. Thus we can assume that n &#x3E; 1 and use induction on
n. Let g be an element of G with Igrl = n.

Denote by N the subgroup of G generated by all (g~)y where x E G
and ye 7~. Set K equal to Cr(N). Since .1~ permutes a finite set of
generators of the F(J-group N, we conclude that is finite. By
Lemma 2 and induction on n there is a finite K-invariant normal

subgroup of such that K induces a finite group of auto-

morphisms in Define

Since E’o is a finitely generated FC-group, IX :FoI is finite and so IF:FoJ ]
is finite.

Clearly .I’o - 1 where 0  m ~ n ! ; since [G, and [Eo, =

= 1, we deduce that [G, =1..As a torsion subgroup of the finitely
generated .F’C-group the group [G, To] is finite. Now define B
to be then E is a finite I’-invariant normal subgroup of G,
while Cr(GfE) ) I is finite since To ~ Or(GfE).

From Proposition 1 we can derive a first criterion for a group to
have boundedly finite automorphism classes of elements.
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LEMMA 3. Let G be a group. Then the automorphism classes of
elements of G are boundedly finite i f and only i f there is a finite char-
acteristic subgroup E such that Aut G induces a finite group o f auto-
morphisms in G/E.

This follows at once on taking .1~ to be Aut G in Proposition 1.
(Notice that if we take l~’ to be Inn G and apply Schur’s Theorem on
central by finite groups we recover Neumann’s result that a BFC-group
has finite derived subgroup.)

COROLLARY 2. If G is a group with boundedly finite automorphism
classes of elements and T is the torsion-subgroup of the centre, then Aut G
induces a finite group of auromorphism in 

PROOF. By Lemma 3 there is a finite characteristic subgroup E
which is minimal subject to Aut G inducing a finite group of auto-
morphisms in G/E. It will suffice to show that Fix g in G;
then L = G») is characteristic with finite index in G. Hence

Aut G induces a finite group of automorphisms in OIL n E. Thus

EL by minimality of E and EZ(G).

COROLLARY 3. The automorphism group of a group with boundedly
finite automorphism clas3es of elements is abelian by finite.

The point here is that the subgroup 1-’o which appeared in the proof
of Proposition 1 is abelian since it satisfies To] = 1.

3. The torsion-subgroup of the centre.

In this section we shall prove Theorem 1. The sufficiency of the
condition in the theorem is clear. Thus in view of Corollary 2 all that
remains to be done is to show that if G is a group with boundedly
finite automorphism classes of elements, the torsion-subgroup of the
centre, T, is finite. We shall establish this in a series of five steps.
Let C denote the centre of G and set Q equal to Write d for the

cohomology class of the extension C ~ G -~ Q.

(i) There is a positive integer e such that eH2(Q, C) = 0. By the
Universal Coefficients Theorem
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Here Qab = Q/Q’ and M(Q) is the multiplicator of Q. Now Q ~ Inn G,
so we may deduce from Lemma 1 that Q has finite exponent. Hence
Egt (Qab, C) is certainly bounded.

Next QIZ(Q) is finite by Lemma 1 (ii). It is now clear from the
.six term homology sequence for the extension Z(Q) ~ that

M(Q) is bounded ([11], p. 105). Therefore Hom (M(Q), C) is bounded,
and we deduce that H2(Q, C) is bounded, as required.

(ii) The subgroup T is reduced. Otherwise we can write
.0 = C1 X C2 where 01 is a p°°-group for some prime p. Then the

mappings 0, F-+ 9 C21-+ c2, 1 (ei E C,), determine an automorphism y
of C. Now 4y = L1 because e4 = 0. Hence y extends to an auto-

morphism of G; however this automorphism has infinite order, in
contradiction to Lemma 1.

(iii) If p is any prime, the p-component T~ of T has finite exponent.
Suppose that 0 = 01 X C, where 01 is a cyclic group of order p I. The
assignments 01 H 7 C2 H 0,, (ei E Oi), determine an automorphism
of C whose order is pl-m-2 or 1 if I  m + 2; here prn is the p-share
of e. This automorphism extends to an automorphism of G, so its
order is c n ! by Lemma 1. Hence p ~-2 c e(n !), and there is an upper
bound for 1. It follows from (ii) and well-known facts about basic
.subgroups of abelian p-groups ([3], VI) that T~ has finite exponent.

(iv) If p is any prime, the p-component T~ is finite. The group Q
is centre by finite with finite exponent by Lemma 1. From this it is
-easy to show that

where Qo is finite and Q1 is abelian. Write Qo = Go/C and Q, = G1/O.
Suppose first that Q,, and hence Qab , has an element of order p.

Since Hom (Qab, T~) is isomorphic with a subgroup of Aut G, the group
T1J cannot have rank greater than n; this is because an automorphism
class cannot contain n + 1 elements. By (iii) the group T1J is finite.

Now assume that Q1 is a p’-group. We can write Go = XC with
.X a finitely generated subgroup. Now /X:X n 0/ is finite, so C
is finitely generated. Since T1J has finite exponents, there are decomposi-
tions where and To is

finite. Combining these equations we obtain
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The next step is to prove that PI is also a direct factor of G. To
accomplish this we consider the Lyndon-Hochschild-Serre spectral
sequence for the extension

Now our extension restricts to a split extension

Ti w Go - and so comes from the kernel of the restriction.
Thus we need only consider the terms E2~ and E2° in the spectral
sequence. In fact both of these vanish.

In the first place

because Ti is a p-group and Q, is an abelian p’-group-here it is relevant
that Tl is a trivial Q1-module. Next consider

of course

which is a bounded abelian p-group. The action of G1 on .J3 is the

following; if 0 E H and g E G1, then 09 sends 0153TI in Go fT to (x[x, g-11] T,,) 0.
Now [Go , and since is a p’-group, so is [Go , Therefore

[Go, is mapped by 0 to the identity. It follows that 8D = 8
aDd G1 acts trivially on H, so that H is a trivial Q,-module. Hence

H1(Q1, H) = Hom (Q1, H) = 0. Consequently E21 - 0 and thus G

splits over Ti. This means that T1 is a direct factor of G. Since T1
has finite exponent, we conclude that T1, and hence Tp, must be
finite.

(v) The subgroup T is finite. Let p be a prime greater than
1 + n ! and assume that Now Q has exponent at most n ! ,
so it must be a p’-group. In addition T, is a direct factor of C by
(iii). we may argue as before that Tp is a direct factor of G by ap-
pealing to the spectral sequence for the extension Q.
Thus G has a cyclic direct factor of some order pk &#x3E; 1. However this
implies that p -1 c r~ ! . By this contradiction if p &#x3E; 1 + n!.
It now follows from (iv) that T is finite.
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PROOF OF COROLLARY 1. Recall that T is the torsion-subgroup of
the centre of G and G = GIT. We know that G has boundedly finite
automorphism classes of elements if and only if both T and

are finite. Let x E Aut G; then x E I if and only if there is a r in Aut T
such that xJ == J T ([11], p. 22) . This is precisely the condition for x
to leave the orbit JAutT fixed as a set. Hence I = 

4. Some groups with infinite automorphism group.

We begin with a result which tells us exactly when a group with
boundedly finite automorphism classes of elements has finite auto-
morphism group.

PROPOSITION 2. Let G be a group with boundedly finite automor-
phism classes of elements. Let C = Z(G), Q = GIC, and let T be the
torsion-subgroup of C; write 0 = C/T . Then Aut G is finite i f and
only it and are finite where t = 

PROOF. By Theorem 1 the image of the canonical homomorphism

is finite, while its kernel is clearly isomorphic with .H = Hom((G/T)ab, T) .
The given conditions imply that .g, and hence Aut G, is finite. The
converse is easy.

REMARK. It is not difficult to show that if Aut G is infinite, it will
be uncountable : in this connection see [6] and [9]. The relation between
finiteness of automorphism classes and compactness of the automor-
phism group is discussed in [6], a work in which our investigations had
their origin.

LEMMA 4. Let p be any prime and let F be a torsion- f ree abelian
group such that Aut F is finite but h’/.F’9 is infinite. Then G = 

is a group with boundedly finite automorphism classes of elements but
has infinite automorphism group.
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This follows at once from Proposition 2. Such an abelian group
~’ can be constructed in the following way. Let psy ... and ql, q27 ...

be two sequences of distinct primes. Let v2, ...I be a basis for
a rational vector space Tr of countably infinite dimension. Define
F to be the subgroup of V generated by all elements of the form

where m eZ and i = 1, 2, .... It is straightforward to prove that

laut Fl = 2, while it is clear that is infinite.

REMARK. The form of this example is typical of an abelian group
with boundedly finite automorphism classes. Indeed by Theorem 1
such a group is always a direct product F X T where I TI is finite, F
is torsion-free and Aut .F is finite.

A more challenging problem is to find a torsion group with boundedly
finite automorphism classes of elements which has infinite automorphism
group.

CONSTRUCTION. If p is any odd prime, let G be the group with
generators

and the following relations:

It is clear that G is an infinite nilpotent p-group of class 2 and
exponent p2. Furthermore C = Z(G) = a&#x3E; X b~ and Q = GIC are

elementary abelian: the latter has a basis = 1, 2, ...}. Concern-

ing this group we shall prove the following.

PROPOSITION 3. The least upper bound of the orders of the auto-
morphism classes of elements of G equals (p ( p Aut G

is infinite.
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PROOF. We shall merely sketch the proof, omitting most of the
computations. For any g in G we have and of course

IG: = p. The latter property characterizes Xl in the following
sense.

(i) If IG: Go(g)1 = p, then g E xl, 0). Hence Xl’ 0) is charac-
teristic in C. Write g = xil ... X:k mod C where Ui E Z_~ and let

k &#x3E; 1. If h E 0,,(g), we can write h = XII ... r[$§’ with vi c- 4 at the
expense of deleting elements which are known to commute with g.
Then 1 = [g, h] yields

Now use the defining relations to obtain two linear equations for
vi , ... , the final terms are

Since u~~ 0 and occurs only in the second equation, this a linearly
independent system. But this implies that a con-

tradiction.

(ii) The subgroups a&#x3E; and b&#x3E; are characteristic in G. Since

(in) The subgrotip X3, ..., X2i-1, C~ is characteristic in G for
all i &#x3E; 0. Clearly 01 = C~ ) _ ~3 , ~4 , ... , C~ is character-

istic ; also Z(Ol) === a). By the argument of (i) we have 
characteristic in 01 and hence in G. Thus x3, 0) is characteristic
in G. The same method can be applied to C3 = Oa«Xl’ X3, 0») etc.

In what follows a is an arbitrary automorphism of G. Then we

can write

with Considerations of order show that ail = 0 if i &#x3E; 1.
Also ‘~2=_1 = ~32$’1,8 /~b9i-l,a ~~. vV2i i ~,9’~-1 mod 0 lf 2 &#x3E; o by (iii).
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(iv) For each i &#x3E; 0 the subgroup C) is characteristic and
= u‘/a=j~s ... ... mod C for j ---1 2, ...~20131. This is

proved by induction on i : the cases i = 1 or 2 are clear, y so 2..

By applying (X to [X2i, and using the defining relations one obtains
(X2i,2i = 0 for j =1, 2, ’"?~2013~’ One can then apply a to [X2i, x2i+1]
to show that for j  i. It follows that C~ is char-
acteristic in G. Finally from [x2i, X2i+l] one obtains that 
for j = 1, 2, ... , 2 -1. This completes the induction.

So far we know that

By applying a to the commutators [x2, x,], [X2’ X6], [X2’ X8]2 ..., 7 we
obtain a2, = a25 = _ ... = 0 = a43 = = aS3 = .... We can treat

x~, xa etc. in a similar fashion. Thus we conclude that

(v) 0) is characteristic in G. From this it is straight--
forward to identify Aut G.

(vi) There is a split exact sequence.

It is now easy to deduce Proposition 3.

REMARK. Proposition 3 is still valid if p = 2, as slight change
in the argument show.

5. Automorphism classes of subgroups.

In this section we shall prove Theorem 2. Of course it is clear
that condition (i) implies condition (ii). The main difficulty in the
proof is to show that (ii) implies (iii). This will be accomplished in
several steps.

(a) We assume that no automorphism class of abelian subgroups
of G has more than k elements where k is some positive integer. Write
C = Z’(G) and Q = G/C, and let T be the torsion-subgroup of C. By
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the theorem of Eremin quoted in the introduction Q is finite, with
order q let us say. If L1 is the cohomology class of the central extension
.0» G -~9~ then q4 = 0.

(b) The group T is the direct product of a locally cyclic group L
.and a group of finite exponent E. We consider a direct decomposition
C = PI xP2 X 00 where the p-groups Pi and P2 are cyclic or of type
poo and  ~P2~. Let 0 E Hom (Pi , P2); then the assignments x H 

x H x, (x E P2 X Co), determine an automorphism y of C.
Since q4 = 0, we have 4 y = L1, so that y extends to an automorphism
of G, and in consequence there are at most k subgroups of the form

Now implies that q0 = q0’. Hence q Hom (PI, P2)
has order at most 1~. This tells us at once that there is at most one

subgroups of type poo for each prime p.
Now suppose that P1 is cyclic of order pl and write pm for the

p-share of q. Then and so ptqk for all primes p. Hence
t = 0 for almost all p. It follows from well-known facts about basic

subgroups ([3], VI) that the p-component 0 is locally cyelic
for almost all p. Moreover Of) is at worst the direct product of a group
of finite exponent and a locally cyclic group. This establishes (b).

(c) I f G is a torsion group, then 0 = 01 X G2 where G, and G2
.are as described in the statement of the theorem. Since Q is finite, we
-can write G = XC where X is finitely generated and therefore finite.
’There are direct decompositions E = E0 X E1 and L = L0 X L1 where
Eo is finite, La satisfies the minimal condition and X n X Lo .
Then G = XG = (XEoLo) Obviously E1 inherits the prop-
~erties of G, so El is finite, being an abelian group of finite exponent.
It is now clear that G has a direct decomposition of the type claimed.

From this point on we shall suppose that G is not a torsion group.

_ 

(d) The subgroup T is finite. We observe first that the group
~’ = C/T cannot be p-divisible for any prime p. For suppose that
this is the case. By (b) we can write C = for some subgroup
D which is evidently p-divisible. Moreover the mapping x H x~ is
an automorphism of D. There is a positive integer I such that

Let y be the automorphism of C determined by the
assignments x H (x E D), x 1-+ x, (x E C~). Then 4y = .1, and so y
extends to an automorphism of G. Let x be an element of infinite
.order in D. Then there are only finitely many subgroups of the form

= 1, 2, ... , which is plainly absurd.
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We conclude that CpHl for all Now suppose that Cp
contains an element of order p t. Let 8 E Hom (OfCptT, C~) ; then the
mapping x T),10 is an automorphism of C which extends to
an automorphism y of G. Writing C = as before, we conclude
that there are at most k subgroups of the form DY. Now if Dy - DY’,
then, in the obvious notation, q8 and q6’ take the same values on

OfOptT, that is, qO = q8’. It follows that q Hom (CICPT, Cp)
has order at most k. Hence p t-m  k and where pm is the p-share
of q. Hence T has finite exponent, and we may write C = F X T with
F torsion-free. Also G = XC where X is a finitely generated subgroup.
Hence we have T = To X Tl where To is finite and X r1 C c To X F.
Then G = (XTo.l4’) X T,. It follows that T,, and hence T, is finite.

(e) Horn (GfT, T) is finite. Let 0 E Hom (GfT, T) ; then the map-
ping x H x(xT)0 is an automorphism y of G. Writing C = F X T as
in (d), we can be sure that there are only finitely many subgroups FY.
From this it follows that Hom (OfT, T) is finite.

( f ) Aut G is finite. Let 1-’ denote the group of automorphisms
of C induced by Aut G, and let x E C. There are at most k subgroups

with y in 1~. If x has infinite order, there are therefore not more
than 2k possibilities for xY; it follows that the T-orbits of C = CIT
are boundedly finite. This allows us to deduce from Proposition 1
that T, and hence Aut G, induces a finite group of automorphisms in C.

Define I~ to be the group of automorphisms of G which operate
trivially on T, C and Q. Then ~Aut is finite by (d) and the previous
paragraph. It is easy to see that .~ must operate trivially on 
Hence K -- Hom (GfT, T), which is finite by (e). Therefore Aut G is

finite, and we have shown that (ii) implies (iii).

Final step. To complete the proof of Theorem 2 we must show
that (iii) implies (i). Consider a group G = with G, and G2
as described in the theorem. It is clear that we can find a characteristic

locally cyclic subgroup N such that NZ(G) and GIN is finite, of
order n say. Let H be an arbitrary subgroup of G. Then H r1 N is
characteristic in G, so we can assume that N= 1. Hence H is
finite of order dividing n. Let r = then 

If y E the mapping [x, y] is a homomorphism from .H onto
[H, y] since [H, Hence [H, y] has order dividing n and
so it is contained in N[n] _ {x But N[n] has finite order r,
say, and it is clear that there are at most rn possibilities for HY. Hence
the Aut G-orbit containing H has at most rn(n !) elements.


