A. MONTANARO
A. BRESSAN

Contributions to foundations of probability calculus on the basis of the modal logical calculus MC^ν or MC^ν_*

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 263-270

<http://www.numdam.org/item?id=RSMUP_1981__65__263_0>
Contributions to Foundations of Probability Calculus on the Basis of the Modal Logical Calculus MC^* or MC^*.

A. Montanaro - A. Bressan (*)

PART 2

On a Known Existence Rule for the Probability Calculus.

8. Introduction (**)

By means of the probability calculus, and precisely its formulation $PC^*_\star[PC]$ based on $MC^*_\star[MC^*]$—cf. Part I, N. 5—we can calculate the values of certain relative probabilities, such as $\exists_{x,\beta\vee\gamma}$, under certain conditions, e.g. $\alpha\beta \lor \gamma$; when we know the values of certain other probabilities, e.g. $\exists_{x,\beta}$ and $\exists_{x,\gamma}$. Thus we can also deduce the existence of some probabilities. However the need of asserting the existence of various other probabilities was felt. Therefore the so called existence rule was formulated. For instance the philosopher Reichenbach states it as follows:

RULE 8.1. «If the numerical value p of a probability implication $(A \ni_p B)$, provided the probability implication exists, is determined

(*) Indirizzo degli A.A.: Istituto di Analisi e Meccanica, Via Belzoni 7, 35100 Padova.

(**) Bressan's contribution to this work belongs to the sphere of activity of the C.N.R. (Consiglio Nazionale delle Ricerche) in the academic years 1978-79 and 1979-80.

The summary of this paper is included in the one of Part I, i.e. [2].
by given probability implications according to the rules of the calculus, then this probability implication \((A \ni_p B)\) exists \(\textit{cf.} [4] \text{ p. 53 (1)}\).

This rule is substantially used also by some probabilists, e.g. by Dore-\(\textit{cf.} [3] \text{ p. 66}\). Such rules are said to be metalogical by all users of them-\(\textit{cf.} \text{ the preceding footnote}\) and even meta-probabilistic by some of them \(\textit{(2)}\). Let us add that these formulations also have an intuitive and not very precise character.

By the reasons above, in \([1]\) the existence rule, a logic-probabilistic rule on a pair with inference rules such as modus ponens, is replaced with an (existence) axiom scheme, as a proposal to be tested.

In the present paper the afore-mentioned axiom scheme is considered-\(\textit{cf.} A9.1\)—and it is hinted at its reduction to an admittedly more complex single axiom, \(A9.1'\) which is meaningful also in \(ML'\). Then the test of \(A9.1\) proposed in \([1]\), is performed with a positive result. A precise existence rule, Rule 10.1, strictly weaker than \(A9.1\), is derived from this axiom scheme in \(PC\ast [PC]\); and the main existence assertions ordinarily reached on the basis of the intuitive Rule 8.1,—\(\textit{cf.} [2]\)—are rigorously and explicitly derived by the new rule. The probability calculus \(PC\ast [PC]\) supplemented with \(A9.1 [A9.1']\) will be called the probability theory \(PT\ast [PT]\).

9. **On a rigorous axiom scheme in \(MC\ast\), that can replace Rule 8.1, and a single axiom equivalent to it.**

In order to formulate the axiom scheme \(A9.1\) below, to be substituted for Rule 8.1, we consider the following conditions \((a)\) to \((d)\), which refer to \(MC\ast\).

\(\text{(1)}\) In \([4]\), p. 53, Reichenbach says about Rule 8.1: «The rule of existence is not an axiom of the calculus; it is a rule formulated in the metalanguage, analogous to the rule of inference or the rule of substitution. It must be given an interpretation even in the formal treatment of the calculus. There must exist a formula that can be demonstrated in the calculus and that expresses the probability under consideration as a mathematical function of the given probabilities, with the qualification that the function be unique and free from singularities for the numerical values used. This is what is meant by the expression “determined according to the rules of the calculus”».

\(\text{(2)}\) In \([3]\), p. 53, about the existence rule it is said that its metalogical and metaprobabilistic character is evident, and that its basis must be found in the intuitive content of the concept of probability.
(a) \(x_1 \) to \(x_n \) \((n \geq 0)\) are distinct propositional variables,

(b) \(p_1 \) to \(p_m \) and \(u_1 \) to \(u_\mu \) \((m > 0, \mu > 0)\) are distinct variables of type \(t_R \), the type of real numbers; and

\[
\gamma_n \equiv D \bigwedge_{i=1}^{m} \alpha_{r_i} \exists p_i \alpha_i, \quad \delta_{\lambda \mu} \equiv D \bigwedge_{j=1}^{\mu} \alpha_{s_j} \exists u_j \alpha_{\tau_j},
\]

where \(r_i, s_i, \sigma_j, \tau_j \in \{1, \ldots, n\} \) for \(i = 1, \ldots, m \) and \(j = 1, \ldots, \mu \);

(c) \(\varepsilon_n \) is any assertion equivalent to \(\Box \varepsilon_n \) and built by means of only \(x_1 \) to \(x_n \), \(\sim \), \(\land \), \(\Box \), and parentheses (so that \(p_i, u_i, \) and \(v_i \) fail to occur in \(\varepsilon_n \));

(d) \(\mathcal{D}_p \) is an assertion equivalent to \(\Box \mathcal{D}_p \), that belongs to the theory \(RT \) of real numbers and contains no variables different from \(p_1 \) to \(p_m \).

Now we can formulate the existence axiom stated in [1].

A9.1 (existence)

\[
\Box \mathcal{D}_p \gamma_n \varepsilon_n (\exists u_1, \ldots, u_\mu)(\exists x_1, \ldots, x_n) \gamma_n \varepsilon_n \delta_{\lambda \mu} \bigcup_{j=1}^{\mu} (\exists u_j)(\alpha_{\sigma_j} \exists u_j \alpha_{\tau_j}).
\]

Intuitively, by \((a) \) to \((d) \), A9.1 means the following:

Let us consider (i) a mathematical condition \(\mathcal{D}_p \) on the real numbers \(p_1 \) to \(p_m \) —e.g. \(p_1 + p_2 < 1 \) —, (ii) the conditions \(\gamma_n \) and \(\delta_{\lambda \mu} \) on the propositional variables \(x_1 \) to \(x_n \) and the real-valued variables \(p_1 \) to \(p_m \) and \(u_1 \) to \(u_\mu \), defined by (9.1), (iii) a non-contingent (modally constant) condition \(\varepsilon_n \) on only \(x_1 \) to \(x_n \), that can be expressed in the (modal) propositional calculus, and (iv) the assumptions

A) conditions \(\mathcal{D}_p \), \(\gamma_n \), and \(\varepsilon_n \) hold,

B) condition \(\alpha_{\sigma_j} \) can occur \((j = 1, \ldots, \mu)\),

and

C) if conditions \(\gamma_n \), \(\varepsilon_n \), \(\delta_{\lambda \mu} \), and \(\delta_{\lambda \mu} \) also hold, then \(u'_j = u''_j \) \((j = 1, \ldots, \mu)\).

Assumptions A) to C) necessarily imply the existence of real numbers \(u_1 \) to \(u_\mu \) such that \(\alpha_{\sigma_j} \) implies \(x_{\tau_j} \) with the probability \(u_j \) \((j = 1, \ldots, \mu)\).

In \(MC^*_\Box \) A5.r can be regarded as a single axiom \((r = 1, \ldots, 8)\) whereas A9.1 is necessarily an axiom scheme. In order to reduce it
briefly to a single axiom (meaningful also in \mathcal{MC}^r), in connection with (a) we use a variable A of type (t_N) (capable of expressing properties of natural numbers). In connection with (b) we introduce in \mathcal{MC}^r_α the class

\[(9.2) \quad C_{\mu,n} = D\{1, \ldots, n\}^{(1,\ldots,\mu)} \]

formed by the mappings f of type $(t_N : t_N)$, such that $f(x) < \mu$ for $x < \lambda x n$, and $f(x) = a^*$ otherwise. We can define

\[(9.3) \quad U_\mu = D\{0, 1\}^{(1,\ldots,\mu)} \quad \text{where} \quad [0, 1] = D\{x \in \mathbb{R} : 0 \leq x < 1\}, \]

in a similar way. Then (9.1) can be replaced by

\[(9.1') \quad \left\{ \begin{array}{l}
\gamma_{A,p,m,r,i} \equiv D (\forall i \leq N m) A(r, i) \exists \gamma A(\theta_i), \\
\delta_{A,p,m,r,i} \equiv D (\forall j \leq N \mu) A(\sigma, j) \exists \gamma A(\tau_i).
\end{array} \right. \]

In connection with (c), first, we consider the additional variables \mathcal{M}, m, and q, of the respective types (t_N), t_N, and t_N; second, we introduce a substitutum for ε_α by setting

\[(9.4) \quad \varepsilon_{A,\mathcal{M},m,q} \equiv D (i) \cdot [i \leq N m \supset \mathcal{M}(i) \equiv \wedge A(i)] \land \\
\land \{m < i \leq q \supset (\exists r, s < i)[\mathcal{M}(i) \equiv \wedge A(r, i) \land \mathcal{M}(s) \land \mathcal{M}(r) \land \mathcal{M}(s)] \land \\
\land \mathcal{M}(i) \equiv \wedge \mathcal{M}(r) \land \mathcal{M}(i) \equiv \wedge (x) x = x\}. \]

In connection with (d) we consider R as a constant of \mathcal{MC}^r (hence of \mathcal{MC}^r_α) that expresses the natural absolute concept of real numbers; furthermore we replace D_p with $D_{p,R,m}$ where p, R, and m are variables of the respective types $(t_N : t_R)$, $(t_N : t_R)$, and (t_N), and where

\[(9.5) \quad D_{p,R,m} \equiv D R(p) \land (\forall p' \in U_n) [R(p') \equiv \wedge \mathcal{M}(p')] \]

Now we can replace axiom scheme $A\theta 9.1$ with the equivalent single axiom (in \mathcal{MC}^r)

\[(A9.1') \quad (\forall n, m, \mu, q, j, r, s, \sigma, \tau, p, A, \mathcal{M}, \mathcal{N}) (n, m, \mu, q, j) \in \mathbb{N}) \land \\
\land (r, s \in C_{\mu, n}) \land (\sigma, \tau \in C_{\mu, n}) \land p \in U_m \land D_{p,R,m} \land \gamma_{A,p,m,r,s} \land \varepsilon_{A,\mathcal{M},m,q} \land \\
\land j \leq \mu \land (\exists u_1) \ldots (\exists u_j) (\exists A, \mathcal{M}, \mathcal{N}) (u \in U_m \land \\
\land \gamma_{A,p,m,r,s} \land \varepsilon_{A,\mathcal{M},m,q} \land \delta_{A,\mu,\mu,\sigma,\tau} \supset (\exists u_j) (A(\sigma) \exists \gamma A(\tau_j)) \ldots \land \varepsilon_{A,\mathcal{M},m,q} \land \delta_{A,\mu,\mu,\sigma,\tau} \supset (\exists u_j) (A(\tau_j)). \]
10. A precise existence rule derived from A9.1. Application of it to prove some fundamental existence theorems.

In the theory $PT^* = PC^* + A9.1$ we derive the following

RULE 10.1 (existence). Assume that (i) β, γ, δ, α and the variables α_1 to α_n and β_1 to $\beta_m (\in \mathcal{E}_n)$ and γ_1 to $\gamma_m (\in \mathcal{E}_m)$ are other distinct variables, (ii) β_1 to β_m are obtained from $\mathcal{E}[\delta_{\alpha}]$ by the replacement of α_i and β_i with γ_i and δ_i, respectively ($i = 1, \ldots, m; j = 1, \ldots, m; \mu < n$) and (iv) under abbreviations such as

$$(10.1) \quad u = v \equiv D \wedge_{j=1}^{\mu} u_j = v_j, \quad (\exists u) \delta_{\alpha} \equiv D \wedge_{j=1}^{\mu} (\exists u) (\alpha_j \land u_j \land \gamma_j)$$

we have

$$(10.2) \quad D_p, \mathcal{E}_p, \mathcal{E}_\gamma \vdash \gamma \cap (\exists u) \delta_{\alpha}.$$

Then

$$(10.3) \quad \vdash_{TP^*} \gamma \vdash D_{p, \mathcal{E}_p, \mathcal{E}_\gamma} \cap (\exists u) \delta_{\alpha}.$$

PROOF OF RULE 10.1. A9.1 is equivalent to $(\Box)B \vdash D_p \gamma \mathcal{E}_p \mathcal{E}_\gamma \supset (\exists u) \alpha$ where $B \equiv D (\exists u) (\exists x_1, \ldots, x_n) \gamma \mathcal{E}_p \mathcal{E}_\gamma$. By the deduction theorem, (10.2) implies $\vdash_{TP^*} B$.

Now we prove the existence theorems (10.4, 6) below:

$$(10.4) \quad \vdash \alpha \beta \land \beta \gamma \vdash \alpha \beta \land \beta \gamma \vdash (\alpha \beta \land \beta \gamma).$$

PROOF. Set $\alpha_1 = \alpha, \alpha_2 = \beta, \alpha_3 = \gamma$ and $\alpha_4 = \beta \land \gamma$. With a view to applying Rule 10.1, we set

$$(10.5) \quad \left\{ D_p \equiv D \equiv 1, \quad \mathcal{E}_\alpha \equiv D (\alpha_1 \alpha_2 \land \alpha_3), \quad \delta_{\alpha} \equiv D (\alpha_1 \alpha_2 \land \alpha_3), \quad \delta_{\alpha} \equiv D (\alpha_1 \alpha_2 \land \alpha_3) \right\}.$$

In the case \ldots we easily obtain $\alpha \vdash \gamma$ by (6.1), whence $\alpha \vdash \gamma$; hence (10.4) holds.

Now we consider the case $\Diamond \alpha$ and assume the antecedent of \supset
in (10.4). Then by the choice rule (for some \(\alpha_4, \alpha_5, p_1, \) and \(p_2 \)) we obtain \(D_p, \varepsilon_\alpha, \gamma_\beta \). Furthermore by \(\diamond \alpha_1, \delta_{su}, \) and (6.3), we obtain
\[(\exists p) \alpha_1 \equiv \alpha_2 \] . Then, by (10.5) and \(\Lambda 5.6 \), from \(\varepsilon_\alpha, \gamma_\beta \) and \(\delta_{su} \) we deduce \(p_2 = p_1 + u \). Analogously, from the assumptions \(\gamma_\beta, \delta_{\beta v} \) and \(\diamond \beta \), we deduce \(p_2 = p_1 + v \) whence \(u = v \).

Thus (10.2) holds, and by Rule 10.1, \(\varepsilon_\alpha, \gamma_\beta, \) and \(\delta_{su} \) yield \((\exists u) \delta_{su}, \) which by (10.5) is \(\alpha_4 \equiv \alpha_5 \). Thus (10.4) has been proved. For \(\gamma \equiv \sim \beta \) it yields (10.4).2

\[\left\{ \begin{array}{l}
(\exists p \neq 0)(x \equiv \beta)(x \equiv \beta \gamma) \supset (x \equiv \beta, \gamma), \\
(\exists q \neq 0)(x \equiv \beta q)(x \equiv \beta q) \supset (x \equiv \beta).
\end{array} \right.
\]

PROOF. Indeed if \(\sim \diamond (x \beta) \), then \(x \beta \equiv \gamma \) by (6.1), so that (10.6) holds.

Now we assume \(\diamond (x \beta) \) and with a view to applying Rule 10.1 we set

\[\left\{ \begin{array}{l}
D_p \equiv D, p_1 \neq 0, \\
\varepsilon_\alpha \equiv D, (x_4 \equiv \gamma)(\alpha_4 \equiv \gamma), \\
\gamma_\alpha \equiv D, (x_1 \equiv \gamma)(\alpha_1 \equiv \gamma), \\
\delta_{su} \equiv D, (x_5 \equiv \gamma)(\alpha_5 \equiv \gamma).
\end{array} \right.
\]

We also assume the antecedent of \(\supset \) in (10.6), hence by the choice rule, for some \(\alpha_4, \alpha_5, p_1, \) and \(p_2 \) we have \(D_p, \varepsilon_\alpha, \gamma_\beta, \) and \(\delta_{su} \). Furthermore by \(\diamond (x \beta), \delta_{su}, \) and (6.3), we have \((\exists u)(x_5 \equiv \gamma u) \). Then by \(\Lambda 5.7 \) and (10.7), \(\varepsilon_\alpha \) and \(\gamma_\beta \) yield \(p_1 u = p_4 \). Similarly from \(D_p, \gamma_\beta, \delta_{su}, \varepsilon_\beta, \) and \(\diamond \beta \), we deduce \(p_1 v = p_4 \). Then since \(p_1 \neq 0, u = v \). Thus (10.2) holds, which by Rule 10.1 yields (10.3). Hence \(D_p, \varepsilon_\alpha, \gamma_\beta \) yields \(\alpha_5 \equiv \gamma \alpha_3 \). We conclude that (10.6) holds. We can prove (10.6) in a quite similar way.

By (10.4) we deduce the first of the theorems

\[\left\{ \begin{array}{l}
(\sim \diamond (x \beta) \supset (x \equiv \beta), \\
(\sim \diamond (x \equiv \beta) \supset p \neq 1, \\
(\sim \diamond (x \equiv \beta) \supset (x \equiv \beta, \gamma)(x \equiv \beta) \supset (x \equiv \beta, \gamma). \\
\end{array} \right.
\]

from (6.2), the second from \(\Lambda 5.5 \), and the third from \(\Lambda 5.4 \).
11. **Version in \(ML_* \) or \(ML' \) of some theorems of probability calculus. Stochastic independence.**

We formulate a definition of stochastic independence in \(TP^* \) \([TP]\) and some theorems connected with it. We do not write their formal (modal) proofs because it is easy to write them on the basis of \(NN \). 9-10 and the corresponding ordinary mathematical proofs.

Theor. 11.1. Assume that \(\beta \in \{ \beta, \sim \beta \} \), \(\gamma \in \{ \gamma, \sim \gamma \} \), and that \(\mathcal{F} \) is a matrix built by means of \(\beta, \gamma, \sim, \land \), and parentheses; and set

\[
(11.1) \quad G_{x,\beta,\gamma} \equiv D (\exists p, q, r \in \mathbb{R})[p \neq 1 \neq q \land r \neq 0(x \lor_p \beta)(x \lor_q \gamma)(x \lor_r \beta \gamma)];
\]

then

\[
(11.2) \quad \vdash G_{x,\beta,\gamma} \lor (x \beta \lor \gamma)(x \beta \lor \gamma)(x \beta \lor \gamma);
\]

Now we define \(SI(x, \beta, \gamma) \), \(\gamma \) is stocastically independent of \(\beta \) with respect to \(x \), by

\[
(11.3) \quad SI(x, \beta, \gamma) \equiv G_{x,\beta,\gamma} H_{x,\beta,\gamma}(\forall p, q \in \mathbb{R})(x \beta \lor_p \gamma)(x \beta \lor_q \gamma) \lor p = q,
\]

where

\[
(11.4) \quad H_{x,\beta,\gamma} \equiv D (x \beta \lor \gamma)(x \sim \beta \gamma)(x \sim \beta \gamma)(x \sim \beta \gamma).
\]

For \(\beta \) and \(\gamma \) as in Theor. 11.1, one can prove that

\[
(11.5) \quad \vdash SI(x, \beta, \gamma) \equiv SI(x, \gamma, \beta) \lor SI(x, \beta, \gamma) \lor SI(x, \beta, \gamma),
\]

\[
(11.6) \quad \vdash SI(x, \beta, \gamma)(x \sim \beta \lor_p \gamma)(x \sim \beta \lor_q \gamma) \lor p = q.
\]

BIBLIOGRAFIA

[2] A. Bressan - A. Montanaro, Contributions to foundations of probability calculus on the basis of the modal logical calculus MC^Π or MC^Π_* - Part I: Basic theorems of a recent modal version of the probability calculus, based on MC^Π or MC^Π_*, Rend. Sem. Mat. Univ. Padova, 64 (1980), p. 11.

Manoscritto pervenuto in redazione il 12 dicembre 1980.