Periodic solutions of a differential delay equation of Rayleigh type

Rendiconti del Seminario Matematico della Università di Padova, tome 61 (1979), p. 115-124

<http://www.numdam.org/item?id=RSMUP_1979__61__115_0>
Periodic Solutions
of a Differential Delay Equation of Rayleigh Type.

S. Invernizzi - F. Zanolin (*)

1. Introduction.

It is well-known that the ordinary differential equation of Rayleigh type

\[
x''(t) + f(x'(t)) + g(x(t)) = h(t)
\]

is physically significant. For instance, in the problem of vibrations of a suspended wire subjected to disturbances as wind (like an electrical transmission line), the periodic solutions of

\[
x'' + |x'x' + qx + x - P^2x^3 = r \sin \omega t
\]

are of interest (see Cecconi [1]). This suggests to study the existence of p-periodic solutions of the differential delay equation

\[
x''(t) + f(x'(t + \sigma(t))) + g(x(t + \tau(t))) = h(t, x(t + r(t)), x'(t + s(t)))
\]

where the deviations \sigma, \tau, r, s are p-periodic, and \(h \) is a bounded function, \(p \)-periodic in \(t \). We assume that \(g \) is differentiable and we allow \(g' \) to change sign; hence we need some « Lyapunov-Schmidt »

(*) Indirizzo degli AA.: Istituto di Matematica, Università di Trieste - P.le Europa 1 - I-34100 Trieste, Italy.
Lavoro eseguito nell’ambito del G.N.A.F.A.; i contributi degli autori sono equivalenti.
technique. In particular, we shall use a theorem from the coincidence degree theory (see Mawhin [3]). A particular feature of our existence result for (D) (Theorem 1) is that we require only the continuity of \(f \), according to the fact that the differentiability of a damping term is not a reasonable physical requirement (see Utz [6]).

As a corollary of Theorem 1, we have an existence theorem of periodic solutions of ordinary differential equations (Corollary 1), which contains a result due to Reissig (see [5]).

At the end of the paper, we get an existence-uniqueness theorem (Theorem 2) for periodic solutions of (R) under a monotonicity condition for \(g \) and a regularity condition for \(f \).

2. Preliminaries.

We call \(x : R \to R \) a \(p \)-periodic function \((p > 0)\) if, for every \(t \in R \), \(x(t + p) = x(t) \). We denote \(C^i(p, R) \) \((i = 0, 1, 2)\) the Banach space of all \(p \)-periodic functions \(x : R \to R \) of class \(C^i \), with the norm \(x \to \sum_{k=0}^{i} |x^{(k)}|_{\infty} \), where \(| \cdot |_{\infty} \) denotes the supremum norm. Moreover, if \(x \in C^0(p, R) \), the symbol \(|x|_2 \) denotes the \(L^2(0, p) \)-norm of \(x \), i.e. \(|x|_2 = \left(\int_0^p |x(t)|^2 \, dt \right)^{1/2} \), and the symbol \(\delta(x) \) denotes the diameter of the set \(x(R) \cup \{0\} \). Observe that \(\delta \) is an equivalent norm for \(C^0(p, R) \).

In [2] the following technical lemma is proved:

Lemma 1. Let \(\tau \in C^0(p, R) \). Then the formula

\[
x(\cdot) \to \int_0^{\tau(\cdot)} x(\cdot + s) \, ds
\]

defines a linear operator \(G(\tau) : C^0(p, R) \to C^0(p, R) \) such that for every \(x \)

\[
|G(\tau)x|_2 < \delta(\tau)|x|_2.
\]

3. Main results.

We denote

\[
L_\tau = \sup_{\xi, \eta \in R: \xi \neq \eta} \left| \frac{f(\xi) - f(\eta)}{\xi - \eta} \right| \quad \text{(possibly } L_\tau = +\infty\text{)}.
\]
and we define similarly L_g. We assume the convention that

$$0 \cdot (+\infty) = 0.$$

Theorem 1. Let us consider the following equation

$$x''(t) + f(x'(t + \sigma(t))) + g(x(t + \tau(t))) = h(t, x(t + r(t)), x'(t + s(t)))$$

where $f \in C^0(R, R)$, $g \in C^1(R, R)$, $h \in C^0(R^3, R)$ and it is p-periodic in the first variable, and the delays $\sigma, \tau, r, s \in C^0(p, R)$. Assume that

(i) h is bounded, \(|h(t, x, x')| < M\),

(ii) the derivative g' is bounded above, and the frequency $\omega = 2\pi/p$ satisfies $g'(\cdot) < K < \omega^2$ for some $K \in R$.

If the norms $\delta(\sigma)$ and $\delta(\tau)$ are so small that

(iii) $\omega^2 L_\sigma \delta(\sigma) + \omega L_\tau \delta(\tau) + K < \omega^2$,

and if

(iv) $\lim_{|x| \to +\infty} g(x) \text{ sign } x = +\infty \text{ (or } -\infty)$

then (1) has a least one p-periodic solution.

Remark 1. In the ordinary case, i.e. when $\sigma = \tau = 0$, we do not require any Lipschitz condition on f or on g, since in this case the hypothesis (iii) means simply $K < \omega^2$. For instance, if $\sigma = \tau = 0$, we can assume $g(x) = a$ polynomial in x of odd order with negative leading coefficient, as in the classical Rayleigh equation where $g(x) = -x - P^2x^3$. In fact for a polynomial of this kind, the hypothesis (ii) and the hypothesis (iv) with the limit equal to $-\infty$, are always satisfied, for suitable p.

Corollary 1. If $g \in C^1(R, R)$ has its derivative bounded above by a constant $K < \omega^2$ ($\omega = 2\pi/p$), if $h \in C^0(R^3, R)$ is a bounded function, p-periodic in the first variable, and if

$$\lim_{|x| \to +\infty} g(x) \text{ sign } x = -\infty \text{ (or } +\infty),$$

then the ordinary equation

$$x'' + f(x') + g(x) = h(t, x, x')$$

has at least one p-periodic solution, whatever the function $f \in C^0(R, R)$ may be.
Proof. Put $\sigma = \tau = r = s = 0$ in Theorem 1, and use the convention $0 \cdot (\pm \infty) = 0$.

Corollary 2 (Reissig [5], Theorem 5). The ordinary equation

$$x'' + f(x') + Kx + \gamma(x) = e(t),$$

where f, γ, e are continuous and e is p-periodic, has at least one p-periodic solution when $0 < K < \omega^2, |\gamma(x)| \leq P$.

Proof. Put $Kx = g(x), e(t) - \gamma(x) = h(t, x)$, and use Corollary 1.

Proof of Theorem 1. We use a result of coincidence degree theory. Let $X_i (i = 0, 1, 2)$ be Banach spaces, $X_2 \subseteq X_1 \subseteq X_0$ with completely continuous embeddings. Let $L: X_2 \to X_0$ be a continuous linear Fredholm map of index zero. This means that $\text{im } L$ is closed and $\dim \ker L \equiv \dim \text{coker } L < \infty$. As a consequence, we can find two continuous projections $P: X_1 \to \ker L, (I - Q): X_0 \to \text{im } L$. The restriction $L: X_2 \cap \ker P \to \text{im } L$ is bijective: we call K its inverse. Let $N: X_1 \to X_0$ be an L-completely continuous map: this means that $QN: X_1 \to \ker P \to \text{im } L$ is continuous and maps bounded sets into bounded sets, and that $K(I - Q)N: X_1 \to X_1$ is completely continuous. Actually the map $A: X_1 \to X_0, Ax = Px$, is L-completely continuous. In fact, $QA: X_1 \to X_0$ and $K(I - Q)A: X_1 \to X_2$ are linear bounded (and the embedding $X_2 \to X_1$ is completely continuous). Moreover,

$$\ker (L - A) = \{0\}.$$

Then it follows directly from a theorem by Mawhin (see [3]) that if there exists $\rho > 0$ such that $|x|_{X_1} < \rho$ whenever $(\lambda, x) \in]0,1[\times X_2$ satisfies

$$Lx = (1 - \lambda)Ax + \lambda Nx,$$

then the equation $Lx = Nx$ has at least one solution $x \in X_2$.

We shall apply this result with $X_i = C^i(p, R) (i = 0, 1, 2)$. We define $L: C^0(p, R) \to C^0(p, R), (Lx)(t) = -x''(t)$. It is well known that L is a continuous linear Fredholm map of index zero. Moreover the projections

$$P: C^1(p, R) \to \ker L = \{\text{constants maps } R \to R\}$$
and
\[Q: C^0(\mathbb{R}, \mathbb{R}) \to \{ \text{constants maps } \mathbb{R} \to \mathbb{R} \} \]

can be chosen as follows:
\[
(Px)(t) = \left(\frac{1}{p} \right) \int_0^p x(\xi) \, d\xi, \quad (Qx)(t) = \left(\frac{1}{p} \right) \int_0^p x(\xi) \, d\xi.
\]

We define \(N: C^1(\mathbb{R}, \mathbb{R}) \to C^0(\mathbb{R}, \mathbb{R}) \)
\[
(Nx)(t) = f(x'(t + \sigma(t))) + g(x(t + \tau(t)) - h(t, x(t + r(t)), x'(t + s(t))).
\]

Since \(f, g, h \) are continuous, and \(Q \) is linear bounded, we have easily that the composite map \(QN: C^1(\mathbb{R}, \mathbb{R}) \to C^0(\mathbb{R}, \mathbb{R}) \) is continuous and maps bounded sets into bounded sets. Moreover \(K(I - Q): C^0(\mathbb{R}, \mathbb{R}) \to C^2(\mathbb{R}, \mathbb{R}) \) is linear bounded; hence \(K(I - Q)N: C^1(\mathbb{R}, \mathbb{R}) \to C^1(\mathbb{R}, \mathbb{R}) \) is completely continuous. It follows that \(N \) is \(L \)-completely continuous.

Now equation (1) has a \(p \)-periodic solution \(x \) if and only if the coincidence equation \(Lx = Nx \) has a solution \(x \in C^2(\mathbb{R}, \mathbb{R}) \). So, to prove the existence of a \(p \)-periodic solution of (1), in virtue of the Mawhin's theorem, we need only to show that there exists a constant \(q > 0 \) such that, if \(\lambda \in]0, 1[\) and \(x \in C^2(\mathbb{R}, \mathbb{R}) \) verify

\[
(2) \quad Lx = (1 - \lambda) Ax + \lambda Nx
\]

(where \(Ax = \left(\frac{1}{p} \right) \int_0^p x(\xi) \, d\xi \)), then we have \(|x'|_\infty + |x|_\infty < q \).

First we prove the existence of a bound for \(|x'|_\infty \). If we multiply (2) by \(-x'' \) and we integrate on \([0, p]\), we have easily
\[
|x''|^2 = -\lambda \int_0^p (Nx)x'' \, dt.
\]

We shall use now the definition of \(N \), the boundedness of \(h \) (condition (i)), the upper bound of \(g' \) (condition (ii)), and, possibly, the
Lipschitz constants of \(f \) and \(g \):

\[
- \int_0^p (N x) x'' \, dt = - \int_0^p f(x'(t)) x''(t) \, dt - \int_0^p \left(f(x'(t + \sigma(t))) - f(x'(t)) \right) x''(t) \, dt - \int_0^p g(x(t)) x''(t) \, dt - \int_0^p \left(g(x(t + \tau(t))) - g(x(t)) \right) x''(t) \, dt + \int_0^p h(t, x(t + \tau(t)), x'(t + s(t))) x''(t) \, dt < 0 + L_r |x'(\cdot + \sigma)| < |x'|_2 + K |x'|_2^2 + L_x |x(\cdot + \tau) - x|_2 |x'|_2 + M p^4 |x''|_2.
\]

It follows from Lemma 1 that

\[
|x'(\cdot + \sigma) - x'|_2 < |x''|_2 = \int_0^{|x''|_2} d\xi_2 < \delta(\sigma)|x''|_2, \quad \int_0^{|x'(\cdot + \tau) - x|_2} d\xi_2 < \delta(\tau)|x'|_2.
\]

Using the Wirtinger inequality \(\omega |x'|_2 < |x''|_2 \), we obtain, since \(0 < \lambda < 1 \),

\[
|x''|_2 < \int_0^p (N x) x'' \, dt < \left(L_r \delta(\sigma) + \frac{1}{\omega} L_x \delta(\tau) + \frac{1}{\omega^2} K \right) |x''|_2^2 + M p^4 |x''|_2.
\]

It follows from condition (iii) that \(|x''|_2 < \text{const} \), and this implies, by an elementary argument, that there exists a constant \(\alpha > 0 \) such that

\[
|x'|_\infty < \alpha.
\]

In order to show the existence of a bound for \(|x|_\infty \), we shall use the condition (iv). There is no loss of generality if we assume that \(g(x) \) sign \(x \to + \infty \) (as \(|x| \to + \infty \)). In fact, if \(g(x) \) sign \(x \to - \infty \), we have only to define the map \(A : X \to X_0 \) in the « abstract » part by \(Ax = - P x \) instead of \(Ax = P x \), that is, for the « concrete » case, \((Ax)(t) = - (1/p) \int_0^p x'(\xi) d\xi \). It is easy to see that, with this sign modification,
the a priori bound $|x'|_\infty < \alpha$ is still true, and that the a priori bound for $|x|_\infty$ we shall prove for the case $g(x)$ sign $x \to + \infty$ can be obtained, in the case $g(x)$ sign $x \to - \infty$, with the same argument.

We compute the average for both terms of (2): we have $-Qx^s = (1 - \lambda)AQx + \lambda QNx$, that is

$$0 = (1 - \lambda)Ax + \lambda QNx.$$

Claim. There exists $\beta > 0$ such that, for any $x \in C^2(p, R)$ which satisfies (3) with some $\lambda \in]0, 1[$,

$$|Ax| < \beta.$$

This statement guarantees the existence of a bound for $|x|_\infty$. In fact, for each $x \in C^1(p, R)$, for every $t \in [0, p]$, there exist two points ξ, η such that $x(t) = Ax + x'(\xi)(t - \eta)$. It follows that if x is a solution of (2) then $|x - Ax|_\infty \leq \alpha p$, and so, if the claim is true, we obtain $|x|_\infty \leq \alpha p + \beta$.

Let us assume our claim is false. We can find a suitable sequence of pairs $(\lambda_n, x_n) \in]0, 1[\times C^2(p, R)$ such that

(j) for every n, $0 = (1 - \lambda_n)Ax_n + \lambda_n QNx_n$,

(jj) the sequence λ_n is convergent to some point of the closed interval $[0, 1]$,

(jjj) $Ax_n \to + \infty$ or $Ax_n \to - \infty$.

By definition, QNx_n is equal to the sum of the sequence

$$a_n = (1/p) \int_0^p g(x_n(t + \tau(t))) dt$$

and of another sequence of the form

$$b_n = (1/p) \int_0^p (f(x')(\ldots) - h(\ldots)) dt.$$

Clearly b_n is bounded (by $\sup_{|x'| \leq \alpha} |f(x')| + M$). Let us consider a_n. We assume that the function g reaches its minimum, on the interval
\[[Ax_n - \alpha p, Ax_n + \alpha p], \] at the point \(u_n \), and its maximum on the same interval at the point \(v_n \). Since
\[
a_n = \left(\frac{1}{p} \right) \int_0^p g(x_n(t + \tau(t)) - Ax_n + Ax_n) \, dt,
\]
and since
\[
\sup_{t \in [0,p]} |x_n(t + \tau(t)) - Ax_x| \leq \sup_{t \in [0,p]} |x_n(t) - Ax_n| \leq \alpha p,
\]
we obtain easily that \(g(u_n) \leq a_n \leq g(v_n) \). Thus, if \(Ax_n \to +\infty \), we must have \(u_n \to +\infty \). It follows from condition (iv) that \(g(u_n) \to +\infty \) and hence \(a_n \to +\infty \). This is a contradiction with (j), since we have simultaneously \(Ax_n \to +\infty \) and \(QNv_n \to +\infty \). On the other hand, if \(Ax_n \to -\infty \), we obtain \(g(v_n) \to -\infty \) and \(a_n \to -\infty \), which is again a contradiction with (j).

This proves our claim and completes the proof of the theorem.

As a consequence of Corollary 1 we obtain the result that the non-linear ordinary differential equation
\[
x'' + f(x') + g(x) = h(t),
\]
where \(f \in C^0(R, R) \), \(g \in C^1(R, R) \), \(h \in C^0(p, R) \) has at least one \(p \)-periodic solution if \(g'(\cdot) \leq K < 0 \). In fact this condition implies that (ii) and (iv) hold.

A natural question arises: do the monotonicity condition \(g'(\cdot) \leq K < 0 \) imply the uniqueness of the periodic solution of (4)? We are able to give an affirmative answer provided that \(f \) satisfies only a regularity condition: \(f \) is of class \(C^1 \). For instance, all the viscous dampings \(f(x') = \beta |x'|^\sigma \text{sign}(x') \), with \(\beta > 0 \), \(\sigma > 1 \), can be considered.

Theorem 2. The ordinary differential equation
\[
x'' + f(x') + g(x) = h(t)
\]
where \(h \) is continuous and \(p \)-periodic, \(g \in C^1(R, R) \), and \(g'(\cdot) \leq K < 0 \), has exactly one \(p \)-periodic solution whatever \(f \in C^1(R, R) \) may be.

Proof. The existence follows from Corollary 1. Let us assume that \(x, y \) are \(p \)-periodic solutions of (5). Then the difference \(z = x - y \) is a \(p \)-periodic function which satisfies the linear homogeneous equa-
tion
\[z''(t) + a(t)z'(t) + b(t)z(t) = 0 , \]
where
\[
 a(t) = \int_0^1 f'(sx(t) + (1 - s)y(t)) \, ds , \quad b(t) = \int_0^1 g'(sx(t) + (1 - s)y(t)) \, ds ,
\]
are continuous coefficients with \(b(\cdot) < 0 \). Let us define the auxiliary function \(w = e^A(z') \), where \(A(t) = \int_0^t a(s) \, ds \). We have
\[
 w' = 2e^A(z'^2 + z(z'' + az')) = 2e^A(z'^2 - bz^2) \geq 0 ,
\]
hence \(w \) is increasing. We consider the set \(N = \{ t \in R : z'(t) = 0 \} \).

REMARK 2. Theorem 2 can be proved using the Caccioppoli global inversion method (see [4]). In fact we can define a map
\[
 T : x \in C^2(p, R) \to x'' + f(x') + g(x) \in C^0(p, R)
\]
and we need only to prove that \(T \) is proper and that at each point \(x \) the differential \(DT(x) \) is bijective. The differential \(DT(x) \) is a linear map defined by
\[
 DT(x)[v] = v'' + f(x')v' + g'(x)v.
\]
Since \(g'(x) < 0 \), the argument of Theorem 2 shows that it is one-to-one, hence it is onto by the Fredholm Alternative. To prove the properness of \(T \), we take the \(L^2 \)-inner product of \(Tx = h \) with \(x'' \): we have
\[
 |x''|_2^2 - \int_0^p g'(x(t))x''(t) \, dt = \int_0^p h(t)x''(t) \, dt .
\]
It follows \(|x''|_2^2 \leq K|x'|_2^2 + |h|_2 |x''|_2 \leq p^\delta |h|_\infty |x''|_2 \). The usual technique yields that \(|x'|_\infty \) and consequently \(|f(x')|_\infty \) is bounded in terms of \(|h|_\infty \). Using \(Tx = h \), we deduce that \(|g(x)|_2 \) is bounded. Now it is
easy to see that $|x|_s$ is bounded: in fact, for $s \neq 0$, we have $(g(s) - g(0))/s < K < 0$, and so $(g(s) - g(0))^2/s^2 > K^2 > 0$, that is $s^2 < (1/K)^2 \cdot (g(s) - g(0))^2$, or $s^2 < e_1|g(s)|^2 + e_2|g(s)| + e_3$, with $e_1 > 0$, e_2, $e_3 > 0$. This last inequality holds for every s. In particular, for $s = x(t)$, we can deduce that $|x|_s$ is bounded. An elementary argument shows that $|x|_\infty$ is bounded in terms of $|h|_\infty$. This implies that T is a proper map.

In this way we obtain the further result that the unique p-periodic solution x of the equation (5) C^1-depends upon the forcing term h.

REFERENCES

Manoscritto pervenuto in redazione il 25 maggio 1978.