RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

H. M. SRIVASTAVA

A watsonian theorem for multiple series

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 241-245

http://www.numdam.org/item?id=RSMUP 1977 58 241 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Watsonian theorem for multiple series **

H. M. SRIVASTAVA *

1. - Introduction

Put

$$(1) \quad (\lambda)_n = \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} = \begin{cases} 1, & \text{if } n=0, \\ \lambda(\lambda+1) \dots (\lambda+n-1), & \forall n \in \{1, 2, 3, \dots\}, \end{cases}$$

and let $F_{l:m:n}^{p:q:k}$ denote Kampé de Fériet's double hypergeometric function [1, p. 150] in the (modified) notation of Burchnall and Chaundy [2, p. 112], defined by

(2)
$$F_{l:m;n}^{p:q:k} \begin{bmatrix} (a_{p}) : (b_{q}) ; (c_{k}) ; \\ (a_{l}) : (\beta_{m}) ; (\gamma_{n}) ; \end{bmatrix}$$

$$= \sum_{r,s=0}^{\infty} \frac{\prod\limits_{\substack{j=1\\j=1}}^{p} (a_{j})_{r+s} \prod\limits_{\substack{j=1\\j=1}}^{q} (b_{j})_{r} \prod\limits_{\substack{j=1\\j=1}}^{k} (c_{j})_{s}}{\prod\limits_{\substack{j=1\\j=1}}^{m} (a_{j})_{r+s} \prod\limits_{\substack{j=1\\j=1}}^{m} (\beta_{j})_{r} \prod\limits_{\substack{j=1\\j=1}}^{m} (\gamma_{j})_{s}} \frac{x^{r}}{r!} \frac{y^{s}}{s!} ,$$

where, for convenience, (a_p) abbreviates the sequence of p parameters a_1 , ..., a_p , with similar interpretations for (b_q) , (c_k) , etc.

^(**) Supported, in part, by NRC grant A-7353.

^(*) Indirizzo dell'A.: Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2.

Recently, B. L. Sharma [4] gave a double-series analogue of the familiar Watson's summation theorem (*cf.*, *e. g.*, [6, p. 54, Eq. (2. 3. 3. 13)]; see also [8])

$$= \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}+c\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}a+\frac{1}{2}b\right)\Gamma\left(\frac{1}{2}-\frac{1}{2}a-\frac{1}{2}b+c\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{2}a\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}b\right)\Gamma\left(\frac{1}{2}-\frac{1}{2}a+c\right)\Gamma\left(\frac{1}{2}-\frac{1}{2}b+c\right)},$$

which holds true when Re (2c - a - b) > -1; indeed, making use of the notation (2), we have Sharma's result (cf. [4, p. 95, Eq. (3)])

$$\begin{split} & (4) \qquad F_{2:0;0}^{2:1:1} \left[\begin{array}{c} a, \beta : \ \gamma \ ; \ \delta \ ; \\ 2a, \ (1+\beta+\gamma+\delta)/2 : - \ ; - \ ; \end{array} \right] \\ = & \frac{\Gamma\!\left(\!\frac{1}{2}\right)\!\Gamma\!\left(\!\frac{1}{2}+a\right)\!\Gamma\!\left(\!\frac{1}{2}+\frac{1}{2}\,\beta+\frac{1}{2}\,\gamma+\frac{1}{2}\,\delta\right)\!\Gamma\!\left(\!\frac{1}{2}+a-\frac{1}{2}\,\beta-\frac{1}{2}\,\gamma-\frac{1}{2}\,\delta\right)}{\Gamma\!\left(\!\frac{1}{2}+\frac{1}{2}\,\beta\right)\!\Gamma\!\left(\!\frac{1}{2}+\frac{1}{2}\,\gamma+\frac{1}{2}\,\delta\right)\!\Gamma\!\left(\!\frac{1}{2}+a-\frac{1}{2}\,\beta\right)\!\Gamma\!\left(\!\frac{1}{2}+a-\frac{1}{2}\,\gamma-\frac{1}{2}\delta\right)} \ , \end{split}$$

provided that $Re(2a - \beta - \gamma - \delta) > -1$.

In his long and involved proof of the summation formula (4), Sharma [loc. cit.] applies a number of results including, for example, the well-known Gaussian summation theorem for ${}_2F_1$ [a, b; c; 1], a formula of his own [5, p. 105, Eq. (5)], and indeed, the Watsonian theorem (3). The object of the present note is first to observe that the summation formula (4) is essentially equivalent to, and not a generalization of, Watson's theorem (3); we then show how readily one can derive a similar multiple-series analogue of (3) and (4).

2. - Equivalence of (3) and (4)

We begin by recalling the known result (cf. [7, p. 297, Eq. (16)])

(5)
$$\sum_{m,n=0}^{\infty} \Delta_{m+n} (\gamma)_m (\delta)_n \frac{x^{m+n}}{m! \ n!} = \sum_{n=0}^{\infty} \Delta_n (\gamma + \delta)_n \frac{x^n}{n!} ,$$

where γ , δ are arbitrary parameters, real or complex, and $\{\Delta_n\}$ is a sequence of arbitrary complex numbers, it being assumed that the series involved are absolutely convergent.

Of our concern here is merely a special case of (5), involving hypergeometric functions, which was indeed given by Appell and Kampé de Fériet [1, p. 155] as long ago as 1926. Thus, by further specializing this 1926 result or by setting x=1 and

(6)
$$\Delta_n = \frac{(\alpha)_n (\beta)_n}{(2\alpha)_n \left(\frac{1}{2} + \frac{1}{2}\beta + \frac{1}{2}\gamma + \frac{1}{2}\delta\right)_n}, \forall n \in \{0, 1, 2, ...\},$$

in (5), we readily have

(7)
$$F_{2:0;0}^{2:1;1} \begin{bmatrix} \alpha, \beta \colon \gamma; & \delta; \\ 2\alpha, (1+\beta+\gamma+\delta)/2 \colon -; & -; \end{bmatrix}$$
$$= {}_{3}F_{2} [\alpha, \beta, \gamma+\delta; 2\alpha, (1+\beta+\gamma+\delta)/2; 1],$$

which exhibits the fact that the first member of (4) is just the hypergeometric $_3F_2$ series occurring on the left-hand side of Watson's theorem (3) with, of course, $a=\beta$, $b=\gamma+\delta$, $c=\alpha$, and the equivalence of (3) and (4) evidently follows.

We remark in passing that, in view of the well-known formula [1, p. 23, Eq. (25)]

(8)
$$F_1[a, b, b'; c; x, x] = {}_2F_1[a, b + b'; c; x], |x| < 1,$$

also contained in the general result (5), Sharma's formula [4, p. 96, Eq. (6)] for the Appell function F_1 is, in fact, equivalent to (and not a generalization of) Gauss's second summation theorem [6, p. 32, Eq. (1.7.1.9)], viz

$$(9) \ _{2}F_{1}\left[a, \ b \ ; \frac{1}{2} \left(1+a+b\right); \frac{1}{2}\right] = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}+\frac{1}{2} \ a+\frac{1}{2} b\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{2} \ a\right)\Gamma\left(\frac{1}{2}+\frac{1}{2} \ b\right)}.$$

3. - A multiple-series analogue

A multiple-series analogue of the summation formulas (3) and (4) would follow readily from a generalization of (5) considered recently by R. Panda [3], who also gave the hypergeometric form [op. cit., p. 168, Eq. (12)]

(10)
$$F_{q:0;\dots;0}^{p:1;\dots;1} \begin{pmatrix} a_{1},\dots,a_{p}:\gamma_{1};\dots;\gamma_{n}; \\ \beta_{1},\dots,\beta_{q}:-;\dots;-; \end{pmatrix} = {}_{p+1}F_{q} \begin{bmatrix} a_{1},\dots,a_{p},\gamma_{1}+\dots+\gamma_{n}; \\ \beta_{1},\dots,\beta_{q}; \end{bmatrix},$$

where, for convergence, p < q and $|x| < \infty$, or p = q and |x| < 1, or p = q, x = 1, and

(11)
$$\operatorname{Re}\left(\sum_{j=1}^{q} \beta_{j} - \sum_{j=1}^{p} \alpha_{j} - \sum_{j=1}^{n} \gamma_{j}\right) > 0.$$

If, in the reduction formula (10), we set p=q=2, $\alpha_1=\alpha$, $\alpha_2=\beta$, $\beta_1=2\alpha$, $\beta_2=(1+\beta+\gamma_1+...+\gamma_n)/2$, and x=1, and apply Watson's theorem (3), we shall at once get the following multipleseries analogue:

$$\begin{split} &(12) \ F_{2:0\,;\,\ldots\,;\,0}^{2:1\,;\,\ldots\,;\,1} \left(\begin{matrix} a\,,\,\beta\,:\,\,\gamma_1\,;\,\ldots\,;\,\gamma_n\,; \\ 2a\,,\,(1\,+\,\beta\,+\,\gamma_1\,+\,\ldots\,+\,\gamma_n)/2\,:\,-\,;\,\ldots\,;\,-\,; \end{matrix} \right) = \\ &= \frac{\Gamma\!\left(\!\frac{1}{2}\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,a\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,\frac{1}{2}\,\beta\,+\,\frac{1}{2}\,\gamma_1\,+\,\ldots\,+\,\frac{1}{2}\,\gamma_n\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,a\,-\,\frac{1}{2}\,\beta\,-\,\frac{1}{2}\,\gamma_1\,-\,\frac{1}{2}\,\gamma_1\,-\,\frac{1}{2}\,\beta\,\Gamma\!\left(\!\frac{1}{2}\,+\,\frac{1}{2}\,\beta\,\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,\frac{1}{2}\,\gamma_1\,+\,\ldots\,+\,\frac{1}{2}\,\gamma_n\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,a\,-\,\frac{1}{2}\,\beta\,\right)\!\Gamma\!\left(\!\frac{1}{2}\,+\,a\,-\,\frac{1}{2}\,\gamma_1\,-\,\frac{1}{2}\,\gamma_n\right)}{-\,\ldots\,-\,\frac{1}{2}\,\gamma_n\right)}\,, \end{split}$$

provided that $Re(2\alpha - \beta - \gamma_1 - ... - \gamma_n) > -1$.

Evidently, the reduction formula (10) can be applied to derive similar multiple-series analogues of several other known hypergeometric summation theorems including, for example, Gauss's second summation theorem (9) above.

REFERENCES

- [1] P. APPELL et J. KAMPÉ DE FÉRIET, Fonctions hypergéométriques et hypersphériques: Polynômes d'Hermite (Gauthier-Villars, Paris, 1926).
- [2] J. L. BURCHNALL and T. W. CHAUNDY, Expansions of Appell's double hypergeometric functions (II), Quart. J. Math. Oxford Ser., 12 (1941), 112-128.
- [3] R. PANDA, Some multiple series transformations, Jñānabha Sect. A, 4 (1974), 165-168.
- [4] B. L. Sharma, A Watson's theorem for double series, J. London Math. Soc. (2), 13 (1976), 95-96.
- [5] B. L. Sharma, Some relations between hypergeometric series, Simon Stevin, 50 (1976), 103-110.
- [6] L. J. Slater, Generalized hypergeometric functions (Cambridge Univ. Press, Cambridge, 1966).
- [7] H. M. SRIVASTAVA, On the reducibility of Appell's function F_4 , Canad. Math. Bull., 16 (1973), 295-298.
- [8] G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. (2), 23 (1925), xiii-xv.

Manoscritto pervenuto in redazione il 15 dicembre 1977.