KENNETH MESSA

A generalization of Ulm subgroups

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 1-7

<http://www.numdam.org/item?id=RSMUP_1977__58__1_0>
A generalization of Ulm subgroups

Kenneth Messa *

Abstract: The investigation of U_n-submodules yields a generalization of Ulm subgroups. Through this generalization, we study the α-th Ulm submodule of M, M^α, and the functor $M \mapsto M^\alpha$, in relation to its preserving sums, products and certain quotients. We also discover conditions for which every module is the first Ulm submodule of some module. Finally, the well-known result that the first Ulm subgroup of an algebraically compact abelian group is divisible is extended to semi-hereditary rings.

1. - Introduction.

This paper deals with certain submodules, called U_n-submodules, of arbitrary left R-modules. When $n = 1$, we get a generalization of the concept of Ulm subgroup of an Abelian group. We are chiefly concerned with this generalization.

It is well-known in Abelian Group Theory that the first Ulm subgroup of an algebraically compact group is divisible. See Fuchs [1]. One aim of this paper is to extend this theorem to semi-hereditary rings. We will also show that the map $M \mapsto \alpha$-th Ulm submodule of M preserves sums, products and certain quotients. A theorem relating purity to the first Ulm submodule is proved. In addition, necessary and sufficient conditions for an arbitrary

(*) Indirizzo dell'A.: Queen's College Charlotte, North Carolina - 28274 - U.S.A.
module to be equal to the first Ulm submodule of some module are
given.
Throughout this paper \(R \) will be an associative ring with identity. All
modules considered will be unitary left \(R \)-modules. The symbol \(\dim R \)
will denote the left homological dimension of \(R \), and hereditary
and noetherian will mean left hereditary and left noetherian.
The letters \(k, n, m \) are always taken from the set \(\{1, 2, 3, \ldots \} \cup \{0\} \).

We will let \(L_n = \{P \rightarrow Q | \text{where } Q/P \text{ is finitely presented of}
dimension \leq n \text{ and } Q \text{ is finitely generated free}\} \).

The author wishes to thank his thesis advisor Laszlo Fuchs for his
inspiration and guidance. Parts of this paper are included in
the author's doctoral dissertation.

2. - \(U_n \)-submodules.

A submodule \(A \) of \(M \) will be called a \(U_n \)-submodule if given a
monomorphism \(P \rightarrow Q \in L_n \), every map \(f: P \rightarrow A \) can be extended
to a map \(g: Q \rightarrow M \).

We can interpret \(U_n \)-submodules in terms of systems of equations. A system of equations

\[
\sum_{j=1}^{s} r_{ij} x_j = a_i \quad (i \in I)
\]

will be called an \(n \)-system in \(A \) if the \(a_i \)'s are in \(A \) and if \(P \rightarrow Q \in L_n \)
where \(Q \) is free with generators \(x_j \) and \(P \) is generated by the \(\Sigma r_{ij} x_j \)
for \(i \in I \). Thus a submodule \(A \) of \(M \) is a \(U_n \)-submodule if and only
if any finite compatible \(n \)-system of equations in \(A \) is solvable in \(M \).

Some easy relations between the various \(U_n \)-submodules are
given below:

A. A submodule of a \(U_n \)-submodule of \(M \) is again a \(U_n \)-submodule
of \(M \).

B. Every \(U_n \)-submodule is a \(U_k \)-submodule for all \(k \leq n \).

C. The union of an ascending chain of \(U_n \)-submodules is again
one. Hence, every \(U_n \)-submodule is contained in a maximal one.

D. Every injective submodule is a \(U_n \)-submodule for all \(n \).
E. If \(\text{dim } R = n \) then every \(U_n \)-submodule is also a \(U_k \)-submodule for all \(k \geq n \).

The particular case when \(R \) is a P.I.D. reduces the definition of a \(U_1 \)-submodule to solutions of \(rx = a \) for all \(r \in R \) which are not zero divisors. That is, \(A \) is a \(U_1 \)-submodule of \(M \) if \(rx = a \) is solvable in \(M \) for each \(a \) in \(A \) and each non-zero divisor \(r \) in \(R \). In particular when \(R = \) the ring of integers, \(A \) is a \(U_1 \)-subgroup of an abelian group \(M \) if and only if \(A \) is contained in the first Ulm subgroup of \(M \). See Fuchs [1].

We can generalize this somewhat in the theorem following lemma 1:

Lemma 1: An arbitrary sum of \(U_1 \)-submodules is again one.

Proof: Let \(A_i, i \in I \), be \(U_1 \)-submodules of \(M \) and let \(P \rightarrow Q \in I \)
with \(f: P \rightarrow A_i \). As \(P \) is finitely generated, we may assume that \(I \) is finite. It suffices to verify lemma 1 for \(|I| = 2 \). Consider the following diagram where \(\alpha: A_1 \oplus A_2 \rightarrow A_1 + A_2 \) is the epimorphism given by \(\alpha(a_1, a_2) = a_1 + a_2 \) and \(\nabla \) is the codiagonal map:

As \(P \) is projective, \(f \) factors through \(\alpha \). As \(A_1 \) and \(A_2 \) are \(U_1 \)-submodules, there exists a map \(g: Q \rightarrow M \oplus M \) making the outside rectangle commute. Thus \(\nabla \circ g \) makes the inside rectangle commute. Hence, \(A_1 + A_2 \) is a \(U_1 \)-submodule of \(M \).

The proof of theorem 1 is immediate.

Theorem 1: Every module contains a unique maximal \(U_1 \)-submodule. This maximal \(U_1 \)-submodule of \(M \) will be called the first Ulm submodule of \(M \) and will be denoted \(M^1 \).

In abelian groups, the first Ulm subgroup of a group \(A \) is the intersection of all subgroups \(nA \) where \(n \) ranges over all positive
integers. Clearly then, if R is the ring of integers, the first Ulm submodule is exactly the first Ulm subgroup. In fact, for a P.I.D. both concepts coincide.

Just as for abelian groups, we define for each ordinal α, $M_{\alpha+1} = \bigcap_{\beta < \alpha} M_\beta$ and for each limit ordinal β, set $M_\beta = \bigcap_{\alpha < \beta} M_\alpha$. By this process we get a descending sequence of Ulm submodules of M. We call the sequence

$$M \supset M^1 \supset M^2 \supset \ldots \supset M^\beta \supset \ldots$$

the *Ulm sequence* for M. A cardinality argument gives us that $M^\gamma = M^\gamma+1$ for some ordinal γ. We will denote this Ulm submodule by M^γ.

It is important to note that as an injective module is a U_1-submodule in any module containing it, any injective submodule of M is contained in M^γ.

For a fixed ordinal α, the function $M \mapsto M^\alpha$ is functorial; i.e. if $f : M \to N$ then $f(M^\alpha) \subseteq N^\alpha$. Thus M^α is a fully invariant submodule of M. We then have:

Theorem 2: If $C \subset M^\alpha$ then $(M/C)^\alpha = M^\alpha/C$.

Proof by transfinite induction: the previous discussion shows that M^α/C is a U_1-submodule of M/C and hence is contained in $(M/C)^\alpha$. For the reverse inclusion, let A/C be a U_1-submodule of M/C. We must show that $A \subset M^\alpha$. Consider the following diagram for arbitrary $P \to Q \in \mathcal{L}_1$ and $f : P \to A$:

![Diagram]

where h and k are the canonical maps. By assumption, $h \circ f$ can be extended to $t : Q \to M/C$. As Q is free, there exists a map $s : Q \to M$.
such that $k \circ s = t$. Now $s \circ i = j \circ f : P \to \ker k = C$. As $C \subseteq M^1$, we get an extension $g : Q \to M$ of $s \circ i = j \circ f$. Then $s + g$ extends f.

It is clear that if β is a limit ordinal or if $\beta = \alpha + 1$ and $M^\beta/C = (M/C)^\alpha$ for all $\alpha < \beta$, then we have $(M/C)^\beta = M^\beta/C$.

The function $M \to M^a$, for fixed a, also preserves direct sums and direct products. The proof of lemma 2 is straightforward.

Lemma 2.

$$(\bigoplus_i A_i)^a = \bigoplus_i A_i^a,$$

$$(\prod_i A_i)^a = \prod_i A_i^a.$$

It also follows immediately that the canonical map $M \to M/M^a$ preserves all Ulm submodules up to the a-th; i.e. the image of the β-th Ulm submodule is equal to the β-th Ulm submodule of M/M^a, for $\beta \leq a$.

The next theorem relates, to a certain extent, the first Ulm submodule to purity. Recall, A is pure in M if every finite system of equations which is solvable in M is solvable in A. See Warfield [6]. The result generalizes that in abelian groups.

Theorem 3: A pure in M implies $A^1 = M^1 \cap A$.

Proof: It is clear that $A^1 \subseteq M^1 \cap A$. For the reverse, we must show that $M^1 \cap A$ is a U_1-submodule of A. Given any compatible n-system of equations in $M^1 \cap A \subseteq M^1$, this system has a solution in M. As A is pure in M, the system is solvable in A. Hence $M^1 \cap A$ is a U_1-submodule of A.

Corollary: Let R be hereditary and noetherian. If M^1 is pure in M then M^1 is injective.

Proof: The proof is immediate upon observing that M^* is injective with respect to all elements of L_1. In closing this section, we would like to give necessary and sufficient conditions for an R-module to be the first Ulm submodule of some module.

Theorem 4: Every R-module A is the first Ulm submodule of some module M if and only if the first Ulm submodule of all quotients $Q/P \in L_1$, is of the form X/P where $X = P \oplus Y$ for some Y.
Proof: For necessity, let \(P \hookrightarrow Q \in L_1 \). Consider the diagram below where \(P = M^1 \):

\[
\begin{array}{ccc}
P & \xrightarrow{f} & Q & \xrightarrow{g} & Q/P \\
\downarrow & & \downarrow & & \downarrow \\
P & \xrightarrow{} & M & \xrightarrow{} & M/P
\end{array}
\]

The map \(f \) is from the universal property of the Ulm submodules and \(g \) is the natural extension of \(f \). Let \((Q/P)^1 = X/P \subset Q/P \). As \((M/P)^1 = M^1/P = 0 \), \(f(X) \subset P \). Hence \(P \hookrightarrow X \) splits.

For sufficiency, consider the set \(I \) of all diagrams

\[
\begin{array}{ccc}
P & \xrightarrow{f} & X & \xrightarrow{f \oplus 0} & Q \\
& \downarrow & & \downarrow & \\
& & A
\end{array}
\]

where \(X = P \oplus Y \) and \(P \hookrightarrow Q \) ranges over the set \(L_1 \). Now take \(M \) to be the pushout of the two maps \(\oplus X \hookrightarrow \oplus Q \) and \(\oplus f : \oplus X \to A \).

Clearly, \(A \) is a \(U_1 \)-submodule of \(M \). \(A = M^1 \) follows immediately as \((Q/X)^1 = 0 \).

3 - \(n \)-algebraically Compact Modules.

Recall: a module \(M \) is called algebraically compact if any compatible system of equations in \(M \) which is finitely solvable is also solvable in \(M \). See Warfield [6]. This concept can be generalized as follows: call a module \(M \) \(n \)-algebraically compact if any compatible \(n \)-system of equations in \(M \) which is finitely solvable in \(M \) is solvable in \(M \). Any \(n \)-algebraically compact module is also \(k \)-algebraically compact for \(n \geq k \). If \(\dim R = k \) then any \(k \)-algebraically compact module is \(n \)-algebraically compact for \(n \geq k \).

It is known that if \(A \) is an algebraically compact abelian group then \(A^1 \) is the maximum injective subgroup of \(A \). The next theorem generalizes this.
THEOREM 5: Let be semi-hereditary. If \(M \) is 1-algebraically compact then \(M^1 \) is injective; hence, \(M^1 \) is the maximum injective submodule.

Proof: Let \(\hat{M} \) be an injective hull of \(M \). Let \(E \) be the injective hull of \(M^1 \) in \(\hat{M} \). As \(M^1 \) contains all injective submodules of \(M \), it suffices to show that an injective submodule of \(M \) contains \(M^1 \). Let \(E \) be generated by \(M^1 \cup \{ e_i : i \in I \} \). Consider all relations in \(E \) between \(e_i \) and the elements of \(M^1 \) (i.e., a presentation of \(E \mod M^1 \)),
\[
\sum_{finite} r_{ij} e_j = m_i \text{ where } r_{ij} \in R, m_i \in M^1 \text{ and } i \in I.
\]
As \(R \) is semi-hereditary, any finite subsystem is a 1-system. Thus, any finite subsystem in \(M^1 \) is solvable in \(M \). As \(M \) is 1-algebraically compact, the entire system is solvable in \(M \) i.e., there exists a map \(\varrho : E \rightarrow M \) which leaves the elements of \(M^1 \) fixed. As \(E \) is an essential extension of \(M^1 \), we have \(\ker \varrho = 0 \). Therefore \(M^1 \subset \varrho E \subset M \) where \(\varrho E \) is injective. Hence \(M^1 = \varrho E \) is injective.

Remark: for all modules \(M, M^* \) is injective if and only if \(R \) is hereditary and noetherian.

Proof: the necessity is obvious. For the sufficiency, let \(I \) be a left ideal of \(R \). As \(R \) is hereditary and noetherian, \(I \rightarrow \mathbb{R} \in L_I \). Thus, as \(M^* \) is injective with respect to all elements of \(L_I \), Baer's criterion implies \(M^* \) is injective.

BIBLIOGRAPHY

Manoscritto pervenuto in redazione il 13 aprile 1977.