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RECIPROCITY IN MATROID LATTICES

di DAVID SACHS (a Urbana, Ill.) *)

A considerable number of papers have been written on ma-

troid lattices (also known as exchange or geometric lattices)
because these lattices appear in such diverse areas as the foun-

dations of geometry, graph theory, and field theory. Never-

theless, a method for describing these lattices in terms of more
easily handled structures has not yet been discovered, and much
remains to be known about them. If L is a matroid lattice of

finite length, then its dual is a matroid lattice ~ L is modular.
In this paper we shall define and study a matroid lattice connected
with a given matroid lattice of finite length by a method which
is closely related to  turning a lattice upside down &#x3E;&#x3E;. This pro-
cess is connected with certain other problems studied by the
author and ’others, and we shall mention these questions as we
proceed.

For the convenience of the reader we include some defini-

tions and results without proof. (See [1], [2], [5]). A matroid
lattice of finite length is a relatively complemented semi-modular
lattice of finite length. If .L is a lattice with operations +, .,
then we write (a, ( c + a)b = c + ab for every c C b. If

*) This research was supported by the National Science Foundation
Contract No. GP 1909.
Indirizzo dell’A.: Math. Depart. University of Illinois. Urbana,
Ill. U.S.A.
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this relation is symmetric, we say the lattice is semi-modular,
and if it is universal, then we say the lattice is modular. A lattice
of finite length, is semi-modular ~ a ~- ab ~ a -~-- b ~ b (where
a ~ b (a covers b) means a &#x3E; b and there is no x with a &#x3E; x &#x3E; b).
A point (atom) is an element which covers 0. A matroid lattice of
finite length is a semi-modular lattice in which every element

is a join of points. A lattice L is le f t-complemented if for every
a, b E L, there exists b’  b with a --r- b’ = a + b, ab’ - 0, and
(b’, a)M. Left-complemented lattices are semimodular, and lat-
tices of finite length are left-complemented « they are matroid.
Since maximal chains between elements in a semi-modular lat-

tice have the same number of elements, one can define a dimen-
sion function D(x) which we normalize by setting D(o) - 0.
In semi-modular lattices of finite length, D(x) +D(y) &#x3E;D(x + y) +
+ D(xy), and equality holds « (z, y)M. Finally, a hyperplane
(coatom) is an element which is covered by 1.

Let L be a matroid lattice of finite length with operations
+ and denoting join and meet respectively. Let if be a subset
of L having the following properties:

(1) ~t1 contains 0, 1 and all the points of L,

(4) x E E L implies the existence of y E ~
with the property that z + y = 1, zy = x.

We define if to be the dual of the poset lVl. if is said to be
a reciprocal of L, and L is said to be an inverse of if.

THEOREM 1. - matroid lattice of the same length as that
of L, and meets in if and L agree. If U is the join operation in
if) then (a, b)M in the lattice a + b = a U b. Finally, M
generates L.

Proo f . - if generates L because if contains the points of L.
if is meet closed by definition so that it must be a lattice, and
meets in if and L must agree. We observe that if a, b E then

a U b ~ a + b. If a, b E M, then there exists E M such that
(a -~- b)b’ = b, (a -~-- b) -~-- b’ - 1. Thus ab = ab’, a + b’ = 1 so



68

that a U b’ = 1. If c e m with c &#x3E; a, then c ( b’ U a ) = c, and
also c(b’ + a) = cb’ -~- a or c = cb’ + a. Thus c  cb’ U a, and

since the reverse inequality is obvious, c = cb’ U ac. This equation
implies that if is a left-complemented lattice and therefore

a matroid lattice. Now condition (4) implies that if h is a hyper-
plane in M, then h must be a hyperplane in L. Since if is a ma-
troid lattice, we can find a finite sequence of hyperplanes (hi)
such that hl &#x3E;- ... ~ h1h2 ... hn = 0 where covering is in
the sense of .lVl. But then hi ~ hlh2 ~ ... ?- hlh2 ... hn = 0 in

the sense of L because of the modularity of the elements. Thus
kand L have the same length.

If a+b =aUb and c &#x3E; b with c E M, then =

- c(a + b) = ca + b, and so U b)  ca U b. This implies that
(a, b)M in if. Now suppose that U b &#x3E; a + b. Using the element
b’ of the preceding paragraph, we see that b’a U b = b. But

&#x3E; b, for if not, then a U b = (a U b)(b’ -~- (a+b)) =
- (a U b)b’ + (a + b) (since (b’, a U b)M in L) - a + b. Hence
(a, b)M’ in M.

60rollary. - In (4), we can make the further assumption
that (z, 

Proo f . - Let m be a maximal element with the properties
m zm = x, (z, m)M. If m + z # 1, then since ltl is a matroid
lattice of the same length as L, there exists n E if with n ~ m
and m + z 5 n. But since (n, m -f- if t  z, then (t + n)z =
- (t + n)(m + z)z = (t + m)z = t + mz. Thus (n, z)M and we
have a contradiction since zn = (m -E- z)zn = mz = x.

We needed the fact that contained all the

points of L only to show that .lVl generates .L. In the subsequent
material we shall often make statements in terms of ~ll instead

of if because the order relation and the meet operation in M
and L are identical (relative to elements of of course).

THEOREM 2. - Condition (4) can be replaced by

(4’) matroid lattice of the same length as that of L.

Proo f . - Since M and L have the same length, a hyperplane
in .lVl is a hyperplane in L. Let c E ~’1 and b E L with b &#x3E; c. There

exists a minimal element m with the property that b -E- m = 1,



69

mb &#x3E; c, there must exist a hyperplane h c if
w-ith h ~ c, h 5 mb because if is a matroid lattice with the same
length as that of L. Thus b + mh = b + mh + mb = b +

+ m(h + mb) - b -~- m (since h -~- mb = 1 ) - 1. Thus mh = m
which is impossible since h 5 mb. It follows that condition (4)
is satisfied. The converse follows from Theorem 1.

Does every matroid lattice of finite length have a reciprocal
In the finite case we can give a negative answer without even
giving an explicit counter-example. We first observe that if L

is not a modular lattice, then neither is if. For by Theorem 1,
if is modular « .lVl is join closed. But since if contains the set
of points, .M must then be equal to _L. Now if L is finite and not
modular, then is not modular and must contain fewer elements

then L, but it must be of the same length. If ll has a reciprocal,
we can repeat the above process. If this process never terminates,
then we obtain a strictly decreasing sequence of finite lattices,
each of the same length. This is clearly impossible. Since for
each number n &#x3E; 4, finite non-modular matroid lattices of

length n exist, we have the fact that matroid lattices of any
length 4 exist which have no reciprocals.

The above argument cannot be applied to infinite lattices,
so we shall give an explicit example in this case. Let B be the
lattice of subsets of an infinite set. The sets with n or fewer

elements form a matroid lattice L with the natural partial or-
dering if we adjoin a unit element 1. Now two n-element sets
are modular precisely when their intersection contains n - 1
elements. Thus the set S = [1, 2, 3, ..., n] (n &#x3E; 3) is modular

with the other n-element sets « it differs from them by one ele-
ment. Suppose that ~S lies in the reciprocal of L. Let a and b
be distinct elements not in ~’. Now [a] and [b] must be the inter-
section of n-element subsets of L which are pairwise modular.
If T and W contain a and b respectively, then it is impossible
that ~S, T, and W be pairwise modular unless 
= T n set with n = 1 elements. Thus ~P = (S fl T) u [b].
It is then impossible that [b] be the intersection of n-element
subsets which are modular with both 8 and T. Since ~S is typical,
L has no reciprocal.
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We shall see later that not every matroid lattice of finite

length has an inverse. It is also not true, in general, that the
reciprocal characterizes the inverse (despite the fact that it ge-
nerates it), but later, we shall add other conditions that are suf-
ficient to guarantee that this does happen.

EXAMPLES. - Let h be a complemented modular lattice of
finite length and let S be a set of hyperplanes in 1~ with the pro-
perty that 0 is the meet of S. The set if of elements of .1~ which
are meets of hyperplanes in 8 is a lattice under the induced or-
dering because it is a meet closed subsystem of 1~. Its dual if
is a matroid lattice because if m E ll and h is a hyperplane in
.lll, then h is a hyperplane in 7~, and mh is covered by m because
that is what occurs in 1. Now h and if have the same length
so that points in if are points in .r. Let T be the set of points
in if and let L be the set of elements in T which are joins (in
the sense of .1~) of the elements in T. L is clearly a matroid lattice
which has the same length as that of T and M. If m c- .lVl, then
m is the join of the points it contains (in the sense of if) since M
is a matroid lattice. The same set W of points has a join in 1-’

which is  m. However, there exists a maximal chain of ele-
ments in if between 0 and m, and this chain is maximal in h

because M and h have the same length. It follows that m is

the join of yY in the sense of 1~. Thus every element in M lies in .L.

It is evident that if satisfies condition (1). If ac E M and

b E .lVl, then ab (in r) lies in if by the very definition of if. But
obviously ab must then be the greatest lower bound of a and b
in .L. Thus condition (2) is satisfied. As we have just seen, a e if
and b E if have the same meet in L as they do in 1. As L is
join closed, a and b also have the same join in L as they do in T.
As the dimension of an element in .L is the same as it is in 1~,
D(a) + D(b) - D(a + b) + D(ab). Thus (a, b)M in L, and con-
dition (3) is satisfied. We have already seen that condition (4’ )
is satisfied, so it follows that is a reciprocal of L.

Another example of a lattice with a reciprocal is the lattice
of partitions on a finite set. The set of singular partitions (at
most one subset is a non-singleton) form a reciprocal of the lattice.
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(See [5]). Later we shall see that this example is really a special
case of the previous one.

If 1’ is a matroid lattice of not necessarily finite length, and
L is a join-closed system of rT’ formed by taking a set of points
of h and all their joins, then .1~ is a matroid lattice. We shall

call L representable if 1~ is modular. Our M and L lattices of the
first example are representable. It is easily seen that if L is re-
presentable, then it can be represented by a lattice 1~ in which
the unit elements coincide. In particular, a representable lattice
of finite length can be represented by a lattice of the same length.

Suppose now that we have a sequence of lattices 
- ... - Lk - .., where Ln is a reciprocal of for each n = 1,
2, 3, .... Evidently (as sets). Now the union 0
(odd limit) of L1, ... has a partial ordering on it induced
in the natural way, and the same is true for the even limit 8.

Suppose that b and c lie in Ln . Then they lie in Ln+ x and by
definition they form a modular pair in Consider now bc

and b -E- c in The element bc lies in Ln and the element
b + c lies in Ln « (b, c)M in Ln . The same reasoning applied
to Ln+l and Ln+2 shows that the join of b and c in is bc and

the meet is b + c because (b, c)M in By induction we see
that b and c have the same join and meet in Z~+4? L~+g, ... as
well as in Ln+s, ... so that they are modular pairs in both
0 and &#x26;. Thus and &#x26; are dually isomorphic complemented
modular lattices. It is to be observed that length of &#x26; is the same

as the length of L1.
Now let us look at the relationship among L1, .L2, 0, and 8.

The poset L1 was meet closed in the lattice L2, and the analysis
in the previous paragraph shows that it is meet closed in any
of the even Lk . Hence it is meet closed in ~. Furthermore, the
points of .L1 are hyperplanes in &#x26; and the hyperplanes of .L1
(points of L2) are points of &#x26;. Thus L1 and L2 are lattices of the

type we considered in our first example. Evidently the process
in the first example can be repeated indefinitely to give a se-
quence of reciprocals.

Thus a necessary and sufficient condition that a lattice and its
reciprocal be of the type considered in the first example is that a
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sequence of reciprocals exist. The existence of a sequence of reci-
procals is also necessary and sufficient f or the representability o f
a lattice of finite length.

The notion of such a sequence of reciprocals can be used to
prove that there exists a matroid lattice of finite length which
is not the reciprocal of another lattice L. If L~ -~ ...

is a sequence of lattices with .L~ a reciprocal of then as

was noted previously, L1 is a representable lattice. If we can

show the existence of a lattice L of finite length which cannot
be represented then the sequence must ultimately terminate
with a lattice which is not the reciprocal of any lattice.

Let C be the direct union of infinitely many projective geo-
metries ki, each of length n (n &#x3E; 6), over fields of different cha-
racteristics. If we consider the poset L of elements of dimension
C n and adjoin 1, we obtain a matroid lattice of finite length
which contains intervals [0, ti] isomorphic to the various pro-
jective geometries ki with which we started. If L can be repre-
sented by P, a complemented modular lattice of finite length,
then P is a direct union of finitely many projective geometries
G, (some of which may be degenerate). In such a representation
meets are preserved for a given pair (a, b) ~ (a, b)M in Z. This
is because (a, b)M in L ~ D(a) + D(b) = D(a + b) + D(ab). It
follows that each of the projective geometries ki with which
we started will be sublattices of P since they are modular, and
their points will be points in P. Since every line in a ki contains
at least 3 points, each ki must be a sublattice of some G~ . By
the pigeon hole principle, some projective geometry G, of P con-
tains at least two of the It is then easily seen that planes of
the two ki can be viewed as subplanes of a plane in the proje-
ctive geometry But this is impossible as the characteristic
of the co6rdinatizing division ring of G, is determined by any
subplane.

A simple modification of this example can be used to show
the existence of a finite matroid lattice which cannot be repre-
sented by a finite projective geometry. (Use two finite geometries
of different characteristics.) Lazarson [3] first produced an exam-
ple of a finite matroid lattice which cannot be represented by a
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finite projective geometry by making some vector space cal-

culations. His example is, however, easily represented by a direct
union of two finite geometries.

We now consider a situation where the reciprocal satisfies

the following stronger property:

(4") E L with w &#x3E; z &#x3E; x implies the existence
of y e if such that z + y = it7, zy = x.

It is easily seen that (4") says that the .M elements contained
within w form a reciprocal of [0, w] if we adjoin w to them. We
then obtain the following result analogous to the corollary to
Theorem 2.

Corollary. - In (4") we can make the further assumption
that (y, 

L. R. Wilcox [6] considered the dual of property (4"), but
made the assumption that L was a complemented modular
lattice (no finiteness restrictions). We can obtain a result about
if which he obtained in his situation.

DEFINITION 1. - A semi-modular lattice Z’ is full if when

a -~- b does not cover b, there exists x with a + b &#x3E; x &#x3E; b such

that (a, 
Remark. - The conclusion always holds if (a, b)M.
THEOREM 3. - I f (4n) is satisfied., then M is full.

Proof. - Suppose that ac, b and that b does not cover ab.

Since (a, b)M in L, ac + b does not cover a, By (4") there exists
y e M with a + b &#x3E; y &#x3E; a. If we define x =_by 
- yb -~- c~) - y. Thus (a, in ..M.

This property is not satisfied by the reciprocal of the partition
lattices cited in our second example. As an example where (4")
is satisfied, we consider the following: .I’ is a projective geometry
of finite length, .L is r - [p] where p is a point is and is

1 and the set of elements in L which do not contain p. ~11 is pre-

cisely the set of elements in L which are modular with every
element in L, and, of course, it is an affine geometry. (see [5;
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p. 327] for the details.) Property (4") imposes rather strong
conditions on L as we shall see in the following lemma and theorem.

LEMMA 1. - with hk ~ 0. Then (h, k)M.
Proo f . - We assume that k &#x3E; hk &#x3E; 0 for otherwise there is

nothing to prove. By (4"), there exists I E if such that hk +
-~- Z = k, hkl = 0, (hk, I)M. Now D(h) + D(k) = D(h) + D(hk)
-E-D(~). There-

fore D(h) + D(Z) - D(h + 1) = D(h + k). It follows that D(h)
+ D(k) = D(hk) + D(h + k). Hence (h, k)M.

THEOREM 4. - If hk &#x3E; p, where p is a point, then (h, k)M.
Proo f . - We assume k &#x3E; hk. By (4") there exists ? such

From Lemma 1 we deduce that an interval [p,1] is a modulated
lattice (see [5]). Whether or not it is actually a modular lattice
is unknown.

We now look into the problem of when a lattice is uniquely
determined by its reciprocal. The following notion plays a central
role here. 

_

DEFINITION 2. - Let .~ be a matroid lattice of finite length.
A set H of elements in M (the dual of ~) is said to be a quasi-dual
ideals of .~ «

A maximal quasi-dual ideal is a proper one contained in no other.
The quasi-dual ideal generated by A will be denoted by 

If now ~ is a reciprocal of L, then each element z in L deter-
mines a quasi-dual ideal of namely the set of elements in
.M that it contains. For condition (5) is immediately satisfied.
If z E L has the and (x, y)M in then

z ~ x u y because x u y = x + y. Thus (6) is satisfied. However,
one cannot expect all quasi-dual ideals of if to correspond to
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elements in L. If the hyperplanes of L are uniquely determined,
then L is uniquely determined because L is the completion by
cuts of its hyperplanes and points. Our first result guaranteeing
the uniqueness of L is given completely in terms of if.

THEOREM 5. - I f lattice in which each maximal quasi-
dual ideal B not a dual ideal has a pair of elements which generate
it, then if has at most one inverse L.

Proof. - Evidently maximal dual ideals in M correspond to
hyperplanes in If and conversely. Suppose that M is the reci-
procal of L and that h is a hyperplane in L not in .lVl. The set S
of elements in if  h is a quasi-dual ideal of JJL If it is not max-
imal, then we can extend it to a maximal one S’ which cannot
be a dual ideal. By hypothesis S’ - ~ a, b ~. Now a U b = 1 for

otherwise could not be a maximal quasi-dual ideal which
was not a dual ideal. Furthermore, a + b must be a hyperplane h’,
again because of the maximality of S’. The quasi-dual ideal
determined by h’ evidently contains a and b and thus S’ since
S’ _ ~ a, b ~. Hence by the maximality of S’, this quasi-dual
ideal is equal to S’. But this implies that every element in S
in contained in h’, so that h  h’. Since both are hyperplanes,
h=h’ and S=S’.

Conversely, if ~S is a maximal quasi-dual ideal but not a dual
ideal in then S _ ~ a, b ~. Now a + b =1= 1, for then S would
be M. If a + b is not a hyperplane, then S cannot be generated
by a and b since S is maximal. Thus S is exactly the quasi-dual
ideal determined by a + b. Therefore there is a one-to-one cor-
respondence between the maximal quasi-dual ideals of if and

the hyperplanes of any L of which it is the reciprocal. In sum-
mary, L is isomorphic to the completion by cuts of the partially
ordered system of maximal quasi-dual ideals of if and points
of M.

Q.E.D.

The reciprocals discussed for the partition lattices satisfy
the hypothesis of the above theorem (see [5; p. 339]), and there
are other examples as well. But in many cases it is difficult to
determine the structure of the maximal quasi-dual ideals. In
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many of the important examples a lattice arises from another
lattice as a reciprocal. Examples of these are reciprocals satis-
fying property (4"). Our next aim is to show that these lattices
characterize their inverses.

LEMMA 2. - c e M + bc = b + c (in E), then
.r belongs to the quasi-dual ideal {b, c}.

Proof. - Now xb and xe belong to {&#x26;y c}. But

Thus (xb, xc)M in M. Hence x belongs to {b, c}.
THEOREM 6. - If h is a hyperplane in L (a lattice of length

&#x3E; 5) and h = b -~- c, c, with b, c E then the quasi-dual
ideal in M determined by h is {b, e~ *.

Proo f . - Without loss of generality we can assume that 0.

For suppose that bc = 0. It is impossible that both b and c are
points because of the length of L. If b is not a point, then h does
not cover c, and therefore there exists c’ E M with c  c’  h.

Thus bc’ ~ 0, b + c’ = h, and since bc’ + c = c’(b + c) = c’,
ol e {~ c?. But obviously ~ b, c’ ~ contains c since c’ &#x3E; c. Thus

Now let x c M with h &#x3E; x. We first suppose that x ~ bc.
Now b 

If b --~- c = x + bc, then by Lemma 2, x E ~b, c}. Thus suppose
that b + c &#x3E; x -f- be. There exists y E 1~ such that y(x + bc) = x,

Now since

y &#x3E; x. Therefore by Lemma 2, y E ~b, c}. Thus x E ~b, c} since

Suppose however that x ~ be. Now b + c &#x3E; bc &#x3E; 0. There-

fore there exists y e M such that y + be = b + c, ybc = 0.

*) L. R. WILCOX [6] has proved a stronger result assuming that
L is modular. A stronger result can be proved in this context, but it
is unnecessary for our purposes.
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By Lemma 2, y E {b, c}. Thus xy E {b, c~. But xy -f- bc = x(y + bc)
(since x ~ bc) = x(b -f- c) = x. Hence x E {b, c}.

THEOREM 7. - Suppose that If is a reciprocal o f Ll and sa-
tisfies (4"), and that M is a reciprocal o f L2 and satisfies merely (4).
Then L1 and L2 are isomorphic. (We assume that M has length &#x3E; 5.)

Proof. - We shall first show that the hyperplanes in L1 not
in lVl are determined by maximal quasi-dual ideals in If with
two generators, and conversely. Any hyperplane h in L1 is the
join of two elements b and c in By Theorem 6, the quasi-dual
ideal determined by h is ~b, c}. Let p be a point in L1 not contained
in h. There egists d E lVl with h - d. Now d + p is a hyperplane
which determines a quasi-dual ideal in .lVl. Again by Theorem 6,
this is p}. Now there exists f E M, f ~ d with d + p ~ f .
Thus f lies in ~ d, c, p}. (Note that h &#x3E; f since h(d + p)
= d). If we apply (4"), we deduce the existence of d’ E .M with
h&#x3E;-d’ and d’ ~ d f . Thus d’ +f =d’ 
Hence b, c, {p} is the entire lattice If. Thus ~b, c} is maximal.
Conversely, if {b, c} is maximal, then b + c must be a hyper-
plane.

Now let hi be a hyperplane in L1 . The assertion is that L2
has a hyperplane h2 which contains precisely the same elements
of If as does hi (in particular, the same set of points). If hi E M,
this is obvious. If h, = b + c where b, c E ~, then the join of
b and c in L2 must also be a hyperplane, say h2 . This follows
from dimensionality consideration. Now h2 determines a quasi-
dual ideal in .M which must contain b and c. Since ~ b, c} is maximal,
h2 determines precisely {b7 c} (as does hl).

Conversely, suppose that h2 is a hyperplane in L2 not in M.
Then h2 = PI + P2 + ... + pn where the set P of points is inde-

pendent. Since Ll and L2 must have the same length (that of ~),
there exists a hyperplane hi in L1 which contains all the pZ .
Now hi = b + c where b, celt. As was shown in the previous
paragraph, there exists h,’ E L2 which determines ~b, c}. But
then h’ must contain all the pi because c}. Thus h’ = h2 .
Hence h2 and hi contain precisely the same set of points in 1~,
namely those in ~ b, c ~. Thus there is an isomorphism between


