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UEBER NIRGENDS LÖSBARE LINEARE
ODER NICHTILINEARE PARTIELLE

DIFFERENTIALGLEICHUNGEN

N0tll (*) di HANS HORNICH ( a 

In einer kürzlich erschienenen Arbeit 1) wurde für jedes
beschränkte Gebiet G der xy-Ebene eine stetige Funktion
~ (~, y) konstruiert, so dass die Differentialgleichung

für jedes Teilgebiet G’ C G , in welchem y) stetig ist,
3f 3/
ay 

existiert und nicht 0 ist, ’ keine Lösung hat. 
3~ 3~

vorhanden und = 0 in G, also etwa auf jeder Kreisscheibe
in nur abhängig, so ist eine

-triviale- Lösung von (1).
Die Funktion q(s, y) wird so konstruiert, dass in jedem

Teilgebiet von G also überall dicht - Punktepaare P, Q
existieren, zwischen denen die gewöhnliche Differentialgleichung
y’ _ ~ (x, y) zwei verschiedene Lösungskurven -sog. " Doppelwe-
ge "- aufweist.

Wir geben hier dazu einige Erweiterungen und Folgerungen
anch für nichtlineare Differentialgleichungen.

(*) Pervenuta in Redazione il 14 febbraio 1955.

Indirizzo dell’A.: Technische Hochschule, Graz (Austria).
1 ) Monatsh. f. Math., 59 (1955), 34-42.
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1. eine solche y) für die
ganze Ebene Iconstruz,eren, so dass der obige Satz also für jedes
beliebige Gebiet Q~ der Ebene gilt.

Ist nämlich y) in dem Intervall I : 1 x  1,
j y ~  1 konstruiert worden, so setzen wir

wodurch I auf die volle Ebene der (t, transformiert wird;
es ist dann .

und aus (1) wird:

welche Gleichung also wieder für jedes Teilgebiet der 4, -q
in dem f steti g ist existiert und nicht - 0 ist, &#x3E;

keine Lösung hat. _ 

3’l

11. -Die homogene Gleichung

hat in G nur die triviale Lösung u = konstant.
Sei nämlich u eine Lösung von ( 3) ; wir bilden mit u" = 

u ist nach Voraussetzung stetig differenzierbar ; daher ist

nach unserem Satz L u, .- u in Q~ nur dann lösbar, wenn
au 

0 in (,~ ~ dann ist aber we en ~ auch 0 in Q~~- == 0 in G ; dann ist aber wegen (3) auch - ==0 in Gax -
und u = l~an~tant.
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I II. - Sei F(x, y, ~c) f ür (x, y) auf G und alle u stetig

und sei ap 1tnd ap worhariden und stetig. 8011 die
ay äi~

Di f f ererit-i,algleich~urg .

eine m G haben, BO y 

sein : 0 in (~ es rr~uss ür d~ese Lös s~oerte u _-__ u a~~~w: - ~ mu88 für c)

11 eine der ~~o~Kc~e~ Dt~crc~~~Mc~f~

du - F(~ ~ u) igein.

Sei eine Lösung von (4); wieder nMMa nach dem ange-
führten Satz, wenn wir y) in die rechte Seite vob
(4) eintragen, diese von y unabhängig sein:

Dann aber hat nach unserem Satz die Differentialgleichung

auf jeder Kreisscheibe in (~ als Lösung sicher das unbestimmte
Integral 

-

und nach Il ist dies auch die allgemeine Lösung von (5),
also auch
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und weiter: . 0. Wegenay -

DlD8 aber auch 0 in 9 sein.
ay

Diese Bemerkungen lassen sich sofort auf Dioerentialglei-
chungen höherer Ordnung übertragen, wobei wir uns wieder
auf zwei Variable beschränhen.

Es sei

es mögen dabei rechts nur Derivierte mit 1  . i,es mögen dabei rechts nur Derivierte t,

m:9 k auftreten; die Funktion F sei ft1r alle (~ y) in 0
und alle Werte der restlichen Argumente d~niert~ stetig und
möge in allen Argumenten mit Aufnahme von. stetige Ablei-
tungen besitzen. Nach dem vorhin Bewienenen hat dann (6)
höchstens dann eine Lösung wenn -für die Werte

dieser Lösung eingesetzt gilt: 
’

~ ist ferner

wo i-mal stetig nach s differenzierbar und
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Nur dann, wenn a18o.. mit geeigneten Aj (x) die8er Wert

ul in y u, ... ) einge8etzt, letztere won y uriabhär~gige
Funktion liefert, ist (6) tösbarr, und dann auf eine
gewöhnliche D~~f erentzatgte~chung in x ~urüc".ufü"’r8ft,.

Es gibt also zu jeder -linearen oder nichtlinearen- Differen-
tialgleichung, in der Derivierte von grösster Ordnung in jeder
~ariablen ~ und y auftreten, beliäbig ,, benachbarte " Di~eren-
tialgleichungen, die überall unlösbar sind. Denn die Funktio-
nen 9 können ja absolut beliebig klein g~ew~,hlt werden.


