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UEBER NIRGENDS LOSBARE LINEARE
ODER NICHTILINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Nota (*) di Hans HorNicH (a Graz)

In einer kiirzlich erschienenen Arbeit?) wurde fiir jedes
beschrinkte Gebiet G der zy-Ebene eine stetige Funktion
9 (2, y) konstruiert, so dass die Differentialgleichung

. 2 e
6y 35+ ¥o W5 = 1@ 9)

fiir jedes Teilgebiet G' C @, in welchem f(z, y) stetig ist,
g—‘—; existiert und nicht =0 ist, keine Losung hat. Ist 2—5
vorhanden und =0 in @, also etwa auf jeder Kreisscheibe
in @ f=jf(x) nur von x abhingig, so ist u = f f(x)dz eine
-triviale- Losung von (1).

Die Funktion ¢(2, y) wird so konstruiert, dass in jedem
Teilgebiet von G — also iiberal dicht — Punktepaare P, Q
existieren, zwischen denen die gewohnliche Differentialgleichung
Yy = ¢(@, y) zwei verschiedene Losungskurven -sog. ” Doppelwe-
ge - aufweist.

Wir geben hier dazu einige Erweiterungen und Folgerungen
anch fiir nichtlineare Differentialgleichungen.

(*) Pervenuta in Redazione il 14 febbraio 1955.
Indirizzo dell’A.: Technische Hochschule, Graz (Austria).
1) Monatsh. f. Math,, 59 (1955), 34-42.
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1. -Wir konnen eine solche Funktion ¢(x, y) sogar fiir die
ganze Ebene konstruieren, so dass der obige Satz also fiir jedes
peliebige Gebiet G der Ebene gilt.

Ist nimlich etwa ¢(#, y) in dem Intervall I:|z|<1,
|9 | <1 konstruiert worden, so setzen wir

— tg %" —te¥"

wodurch I auf die volle Ebene der (&, n) transformiert wird;
es ist dann

ou Ju T
or 9k 1 Ez)é
du _ du T
By'_Bn(l t1)g

und aus (1) wird:
(2 2 149" % _
(2) x + ?(1‘ arctg E’ uﬂretg n)l + E! a." -

2 1 2 2
= ;: ﬁ—éi f(E arctg E, ‘l—t arctg 1))

welche Gleichung also wieder fiir jedes Teilgebiet der &, 7

-Ebene, in dem f stetig ist, f existiert und nicht =0 ist,

o
keine Lisung hat.

I1. -Die homogene GQleichung

ou - d
@) Iu=g + %@ v =0

hat in G nur die triviale Losung u=— konstant.
Sei nidmlich u eine Losung von (3); wir bilden mit u, = 2-u

Lu,=u+zlu=wu;

u ist nach Voraussetzung stetig differenzierbar; daher ist
nach unserem Satz Lu,—wu« in G nur dann losbar, wenn

3—3 =0 in G ; dann ist aber wegen (3) auch g—: =0 in @
und % = konstant.

12
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IIL. - Sei F(z, y, u) fiir alle (@, y) auf G und alle u stetig

und sei auch 3_5’ und Z%P vorhanden und stetig. Soll die
Differentialgleichurg

: ou o%
4) 3z = y)@ =F(z, y, %)

eine Losung u in G haben, so muss diese von y unabdbhingig

sein : g'—;s 0 in G, es muss fir diese Losungswerte v = (o)
F@ y, %) _
oy

und u eine Losung der gewb‘hmlichqn Differentialgleichung
du .
iz =F(=z, y, u) sein.

Sei u, ¢ine Losung von (4); wieder muss nach dem ange-
fiilhrten Satz, wenn wir %, = u,(2, y) in die rechte Seite von

(4) eintragen, diese von y unabhiingig sein :

3F(z, y,ay “Wz W _0 e

Dann aber hat nach unserem Satz die Differentialgleichung
ou ou
%) 3zt v(f, y)@ = F(z, ¥, %z, ¥))

auf jeder Kreisscheibe in G als Ldsung sicher das unbestimmte
Integral

*= [ F(z, y, vz, y)dz

und nach II ist dies auch die allgemeine Losung von (5),
also auch

% = { F(z, y, wi(z. y)dz
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und weiter aa% =0. Wegen

oFz, y, wi(z, y) __OF 4 0F oF du,
%y T u

=0

muss aber auch 8—1’ =0 in @ sein.

%
Diese Bemerkungen lassen sich sofort auf Differentialglei-
chungen hoherer Ordnung iibertragen, wobei wir uns wieder
auf zwei Variable beschriinken.

Es sel
t+ry Ity u
(6) az‘ay. + ¢(z’ y) ax‘_lay..;.; = 3, y, “7 a z )
oty
es moigen dabei rechts nur Derivierte 3ziag™ mit 1<%,

m < k auftreten; die Funktion F sei fir alle (o, y) in G
und alle Werte der restlichen Argumente definiert,-stetig und
moge in allen Argumenten mit Ausnshme von 2 stetige Ablei-
tungen besitzen. Nach dem vorhin Bewiesenen hat dann (6)
hdchstens dann eine Losung u = u,(», y) wenn -fiir die Werte
dieser Lisung eingesetzt- gilt:

du\(z, ¥)
oz

%F(z, z, %, (z, ¥), ,...)’E 0 in @G, also
o (z, y)

z, Y Wz, ¥Y), ———,...|= Fy(2)
A )

Es ist ferner

3Ry, dt+hy, )
PR 0 und Py Fy(z) in G, also
h = Ao(z)y. + Al(z)y‘_l + ... 4 Ax(2),

. . . . dtAyz;
wo A (#) i-mal stetig nach x differenzierbar und 3 =

1
=i F, (o) ist.
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Nur dann, wenn also, mit geeigneten A, (x) dieser Wert
u, in F(z, y u, ...) eingesetzt, letztere eine von y unabhingige
Funktion F,(x) liefert, ist (6) losbar, und ist. dann auf eine
gewdhnliche Differentialgleichung in @ zurickzufihren.

Es gibt also zu jeder -linearen oder nichtlinearen- Differen-
tialgleichung, in der Derivierte von griosster Ordnung in jeder
Variablen # und y auftreten, beliebig ,, benachbarte ” Differen-
tialgleichungen, die iiberall unlésbar sind. Denn die Funktio-
nen ¢ konnen ja absolut beliebig klein gewihlt werden.



