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1. Assumptions and statement of results.

The theory of Fredholm determinants (see for instance [10]) has been extended by
Grothendieck {5] and applies to certain linear operators % defined by kernels. One
associates with % an entire analytic function d 5 called the Fredholm determinant,
such that

(1—2 %) = #(2)/d 5(2)
where . is an entire analytic operator—valued function. In what follows we shall obtain
results of the same type. The radius of convergence of the "determinant" will possibly be
finite rather than infinite, but larger than the inverse of the spectral radius of %.

Let > 0,0< 0< 1, andlet X be a compact metric space. We denote by
C%* = C*(X) the Banach space of (uniformly) o—Holder functions X € with the usual
norm. We assume that VC X, ¢ Ve X and pe % are given such that ¢ isa
contraction:

d(yz,9y) < 0 d(z,y)
and ¢ hasits support in V. A bounded linear operator .£on C% is then defined by

o(z)-¥(yz) if zeV
(L8)(a) = | .
if z¢gV
The operators % which will interest us are integrals of operators of the form ¢

= fu(dw),z; (1.1)
where ezz) is defined with Vw, ¢w, P, as above, and where pu is a finite positive measure
(which we may take to be a probability measure). The following will be standing
assumptions.

(i) [ wdw)lo )l < o
where || || is the norm in C%.

(ii) Thereis 6> 0 such that, forall w, V  containsthe é-neighborhood of the
support of 0,

(ill) ww V, ¥, e, are measurable. [Using (ii), and possibly changing 6, we may

assume that there are only finitely many different Vw’s, and that they are compact
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subsets of X. We may take as measurability condition the assumption that

wr V, (wz)w (), ¢, (z) are Borel functions).

We write
C=J 1(dwy)- - p(dw ) 0y (@, (0, D)o, ¥, 42)
(1.2)
where the integral extends to values of Wyt W, such that ¢ wlrl)wz- X/ w has a fixed

point, which is then necessarily unique, and which we denote by #(@). A zeta function is

then defined through the following formal power series
® zm
((2) = ezp mzl 7 S (1.3)

1.1. Theorem. Let | %| denote the operator obtained when Y. is replaced by |<pL ul
in the definition of %, and let eP be the spectral radius of | J#|. The spectral radius of
K is then < eP, and the part of the spectrum of ¥ contained in {\: |A] > 0aep}
consists of isolated eigenvalues of finite multiplicities. Furthermore, 1/({(z) converges in

{z]2] 0% < 1) | (1.4)
and its zeros in this domain are precisely the inverses of the eigenvalues of %, with the
same multiplicities. We may thus write

(1= 2%)" = (2 H(2)

where 4" is a holomorphic operator—valued function in (1.4).

The proof of this theorem is given in Section 2.

1.2. Remarks.

(a)  Wesee that 1/({(z) plays the role of a Fredholm determinant. However, ((2)
depends on the decomposition (1.1) and not just on the operator J%. We shall obtain a
"true" determinant in the differentiable case below.

(b) Let E be a finite—dimensional a—Holder vector bundle over X (i.e., E is

trivialized by a finite atlas, and the transition between charts uses matrix—valued
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a—Holder functions). We assume that % Ew E is an adjoint vector bundle map over
Y, forevery w (i.e, ¢ (2): E(¢ z)» E(z)). We can then define the operator % as

before, it now acts on the Banach space C% of o—Holder sections of E. We also define

(= [ Mdw))- - pldw )Tro, (@) 0, (¥, A&)-+9, (¥, ¥, &)
m m—~1 “m 1 72 m

where Tr is the trace on E(2(®)).

Let | ()| be the norm of ¢ () for some metricon E, and || the operator
on C% obtained by the replacement 9, |gaw| in the definition of % Finally, let &
be the spectral radius of | #|. It is easily seen from the proofs that, with these new
definitions, Theorem 1.1 remains true. [For a sharper result, let | %] be obtained by

1 : m
the replacement fpwm- P, |<pwm- .- gpwll in %, and take

AT |
L7

P =lim X log|
m i
Thecrem 1.3 below can similarly be extended to differentiable vector bundles. In
particular, this permits the treatment of the operators % (9) corresponding to % but
acting on Z-forms; see Corollary 1.4.
(c) lLet r=(r,a) withinteger r>0 and 0< a< 1. We denote by Chv = C&(X) the
Banach space (with the usual norm) of functions X+ € which have continuous derivatives

up to order r, the r—th derivative being uniformly a—Hélder. We shall write r > 1 if

r>1, and Irf =1+«

1.3. Theorem. Let X be a smooth compact Riemann manifold. We make the same
assumptions as in Theorem 1.1, but with ¢rw, 0, of class C'Iv, r > 1. We require that
fu(dw)]}gow}] < w, where ||-|| is now the C% norm, and let J% act on Cv. With these
assumptions, the part of the spectrum of J contained in {A: |A] > 0 Izl eP} consists of
1solated eigenvalues of finite multiplicities.

Define tr Nyl by
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tr %M = fp,(dwl)- . -,u,(dwm)[det(l - D:D(E))"pwl' .. ¢wm)]—1

¥ e, (@, d@) -9, (¥, -9, A¥))
wm(z( ) Yro—1 Ym Wy “m
(where Dzw denotes the derivative of ¥ at the fized point z), and write

® m
d(z) = ezp— % z—7ﬁtr x™,
m=1

Then, d(z) converges in

(z: |2 015 eF < 1) (1.5)
and its zeros there are precisely the inverses of the eigenvalues of % , with the same
miltiplicities. We may therefore write

(1-2 % )—_1 = %"-g}
where n s a holomorphic operator—valued function in (1.5).

The proof of this theorem is given in Section 3.

1.4. Remarks.

(a)  Theorem 1.3 also holds if we take r = (0,a), @ > 0, but assume that the ¢  are
differentiable. In that case zn ((2)d(2) is analytic and without zero in (1.4).

(b)  The assumption that X is compact is for simplicity. It would suffice to assume
that U V ~and Uy V = are contained in a compact subset of a finite—dimensional

(non—compact) manifold.

1.5.  Corollary. Under the conditions of Theorem 1.8, define an operator J{(l) acting
on the space of [—forms of class cE oo x by
(8 - (9
F = [ dv) 2,

where
" o(2) AT ) 4(9 o) if zeV

z w W
0 if z¢ Vw

Let also
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5 Om _ fu(dwl)...ﬂ(dwm)[dem_%)gowl---ww )

m

Trp Doy by 0 (A0, (8, AD)0, (4, ¥, 40)

“m “m-1 “m 1 72 m
where Tr, is the trace of operators in A (Tz(_)X) and

d(l)(z) = ezp — E tr %(l)m

With these definitions x(0) g d(O)(z) = d(z), and the spectral radius of x0
P
< Hl € .

Furthermore, if £> 1, the essential spectrol radius of & () is < 9|£|+Z—-16P

, and
d([)(z) converges in

{z |2 0lAHETP <
and its zeros there are precisely the inverses of the eigenvalues of JF (4) , with the same
multiplicities.

To obtain the corolliary, we have to use the extension of Theorem 1.3 to vector
bundles {(here the co—-tangent bundle) as explained in Remark 1.2(b). It is clear that the
spectral radius of & & is < é’leP. Note also that when £> 1, the degree of
differentiability r has to be replaced by r —1. From this, the corollary follows. [For the

case where 1 -1 <1, use Remark 1.4(a).]

1.6. Corollary. Under the conditions of Theorem 1.3, we may write
dim X +1
o) = 1 10
=0
so that the zeta function (1.3) is meromorphic in (1.5).

This follows from the identity

dim X
(= zz (~0)r O™
=0

where (  was defined in (1.2).
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r r
1.7.  Corollary. (a). Let % and J& be operators on "l and C? defined by the

)y

same p dw), v, and ww, v, of class C’vl, with £ > I, Then, in the domain
|z

(A >0 )

the operators ﬂl and ]7/2 have the same eigenvalues with the same multiplicities and the

T
same generalized eigenspaces (which consist of 1 functions). If ¢ o P, 0re c®, it
therefore makes sense to speak of the eigenvalues and eigenfunctions of J% acting on ",

*
and d(z) clearly is an entire function. )
*
(b) If | M| > gl,{,l eP, the elements of the generalized eigenspace of the adjoint % of &

corresponding to the eigenvalue X are distributions in the sense of Schwartz, of order s for

P-log| X
S>‘TTO_%-|—L.

To prove (a) note that the generalized eigenspace of % maps injectively by

all

inclusion in the generalized eigenspace of H, but both have the same dimension given by

the multiplicity of a zero of d(2). From (a), one derives (b) easily.

1.8. Expanding maps.

The case where the p 2T local inverses of a map f X+» X has relations to
statistical mechanics and applications to Axiom A dynamical systems and hyperbolic Julia
sets. Various aspects of this case have been discussed by Ruelle [12], Pollicott [9],
Tangerman [15], and Haydn [6], and a general review has been given in [13]. Note that the
conjectures A and B of [13] are proved in the present paper. The real analytic situation,
not considered here, has been discussed in Ruelle [11], Mayer [7], and Fried [3], and leads to
Fredholm determinants in the sense of Grolhendieck [5]. Note that an erroneous statement
about the growth of determinants in [4] and [11] has been corrected by Fried [3]. For

piecewise monotone one—dimensional maps see Baladi and Keller [1].

*
) 1t would be interesting to estimate the growth of d(z2) at infinity.
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The case of an expanding map f is analysed by using a Markov partition (for which
see Sinai [14] and Bowen [2]). In the more general situation discussed here, there are no
Markov partitions. Our proofs will make use, instead, of suitable coverings of X by balls.
The present treatment is completely self—contained, but reference to [13] is interesting in
providing for instance an interpretation of the spectral radius eP as exponential of a

topological pressure.

1.9. Other examples.

A class of examples where the results of the present paper apply is described as
follows. Let X be a compact manifold, X its universal cover, and X» X the
canonical map. We assume that ¢ XnwXisa contraction, such that
d({/m,fpy) < 0d(ny), and that ¢: Xn € isof class Cv and suitably tending to zero at

infinity. Define

(F8)(z)= T4 o(y) {(¢y).
YET T Z

It is not hard to see that % is of the form discussed above.

2. Proof of Theorem 1.1.

2.1. Coverings of X by balls.

The following construction involves the constants #,§ of Section 1 and a constant
k which will be selected later; for the moment we only assume that 0 < k< 1. Let (xi)ie I
be a finite g 8(1 — f)—dense family of points of X. In particular, the balls

1
X.={z dzz) <5 6}
cover X. For each jw with Xj C Vw we choose measurably u(jw) such that
K
d(gbwz], zu(j,w)) < 5 5(1 - 0)

and therefore

X CX o
Yu¥i ¢ Kuiw)
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For each integer m > 0 we shall now define a finite set J(m) and a family

(X(a)) Am) of open balls in X. We choose ¢’ suchthat 6 < 6’ <1, and we shall
ae

define ™ and (X(a)) by induction on m.

First, S0) - {(v): i€ I}, and we let X‘; = X, be as before the balls of radius %— 6
and centers z‘z = z, forming a g 6(1 — f)—dense set in X. For m > 1, let similarly (XG?)
be a finite family of open balls of radius % §6'™ and centers :cr;: forming a
g &0’ — 6)¢ M1 _dense setin X. We put

KM= (G b G- B) € ™) and @7, 7Y <m 6 00™ 1),
Choose now k = %(1 —0). If a=(14,---,k{)¢€ J(m') we have then XT‘ C XTI?_I, and by
induction
Xy« X’Z‘l Cor CX,
We shall write #{a) = z?, X(a) = X?. We define p: Am),, Am=1) by
o3, - k&) = (4, - k).

Given b= (i’,---,k") € J(m—l) and w suchthat X, c V , we define

wb,w) = (4,---,k{) by
i = u(i,w)

(4,--+,k) = vpbw) if m>1

and ¢ chosen measurably such that
dy o, T < 580 -0 o™
We have thus
p w(7),w) = w(i',w)
? Y(b,w) = »(ph,w) for m>1

¥ X(5) ¢ X(u(b,w)).

22. Lemma. ubuw)e€ Am),

We write b= (¢’,-++,5,k’). We only have to check that
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Aoy < dTpp g A, Y )
K0 0™ 4 o™ 5( ) a'm‘2
k&0 -0 ™ 25+ k500 ™ 2 k6™ !

for m > 1, and a similar inequality for m = 1.

2.3 The operator 4

We define

J 0 otherwise
Let iz-, (F 6)7- denote the restrictions of ¢, &¢ to Xi and X]. respectively. We may

_[1 if X;cV, and i=ujw)
7. (w) = .

then write
(F0)f2) =3 [ a7 i) () 8 (0, (2.1)

If ¥ Xz- is the disjoint sum of the Xi’ we may write
el
o, C(X) = C"(2 X))
and define an operator 4 on that space by
(£9) (@) =2 [ plde)ri{ee (=) 4 (4,7
This is the same formula as (2.1), but the QZ. may now be chosen independently on the
various X If we identify C*(X) with a subspace of fBz-Ca(Xi), we see that the
restriction of 4 to C%X) is % Note that

(478), (=7 pldw)e - pldw Y, 5 (wp)eemy ;s (wy)
b 'o’”"im—alf 1 mg b, gt M Yy 1

oy, PR, (U, v, D) (2:2)

2.4. 'The operators X (m)

For m> 1 we define an operator
(M)

by the formula
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(#™8) () = [ udoy)---lds,)
«pwm(Z) wwm_l(zbwmz)- : -wwl(wwz- : -¢wmz)9,,( i) (¢wl- Y, 1)
(2.3)

where o(j,@) = o+ - (j),w,)," - +)w;). Define
o™ e, c%(x ) ° (m C(X(a))

as the restriction operator such that

(@™s) = 4| X(a)
when pa = (1). In view of (2.2), (2.3), we have

Jg(m)Q(m) = 4™
We shall also need the operator

7{m). ° (m C%(X(a)) » o J(m)Ca(X(a))

such that

(1{™4)_ = #(o(a).

We define the norm on eBZ.C'a(Xi) by

|#,(2)2,(y)]
18]] = max(sup|# (2)| + sup ———=—
i€l z gty d(z,y)
and similarly for m) C%(X(a)).
ae

Note that, with these norms

1™y ¢, 1rim™y <

2.5.  Proposition.
(a)  The spectral radius of A (and thus &) 1s < the spectral radius f of | J#.

(b)  Given € >0, we have
1AM (M) dmhy ¢ const(gr 2ePHeym (2.4)

and therefore the essential spectral radius of A (and thus %) is < 6%eL.
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Using (2.2) we have
[(4™8)(z)-( & "4)(y)]
d(zy) ©
m
k-1 -
<A + const. B 1A SN

so that
. 1 . 1
Lim (| 4™)Y™ = Lim (™) )™
Mmoo m-w
. 1 . 1
< Lim (] ™ )Y ™ = Vim ()] ™)) )1/ ™
m- o m-w
. 1 . 1
= Lim (] %™ )™ = 1im () H™) )Y/ ™
[{{ad m-w

and (a) follows from the spectral radius formula.
Using the definition (2.3) and the estimate {|# — T(m)QHO < ||§|I(% §0'™% we have
also

(M- (2) - (-]
d(z,y) *
< 1A 1es™® + const.kglcw- 811G 60 ™)

where the const. comes from the Holder norm of ¢ and C(k) is estimated, taking
absolute values, by
Ry <A Ry
<IHF 1  L

0]

From this the estimate (2.4) follows, and (b) results from Nussbaum’s essential spectral

radius formula [8].

2.6. The operators 4 k and A gm).
If k>0, we shall define an operator 4 p on

Ca(X. n...nX.)

G, . .
(ZO’. °t )zk) zO zk
where the sum extends over the set Ik of k+ l1-tuples 7 = (z'o,- . -,ik) such that

1,<+++< g and XZ.0 N---nN Xik;& ¢. Let (7 ,w) = (u(fyw),- - - u(j,w)) and
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1 (or—1) if on,---,Xjkc v, and
= (W) = w(77,w) is aneven (or odd)

permutation of T
0 otherwise.

We write then
=% dw) T ¢ .
(J(ki)] (z) z fu( w) ; z(w)qo (2) z (v, 2)

Let now

Q(ao,- . _’ak)Ca(X(ao) n---n X(ay))

be the sum over those k+ 1—tuples of elements of J(m) such that
X(a ) n---n X(ay) # ¢ and pa_ = (4,)- - -,pmakz (4), with 3 <...<7. We define

0

then

ng): (i i) Ca(Xz'o”' ++n Xz.k)

" ®a,, - .,ak)Ca(X(ao)ﬂ- <N X(ap))
so that Qgcm) is the restriction from X, n---n Xik to X(a ) N---n X(ay).

(0]
We also define
a{m™; .- _’ak)Ca(X(ao)n- -0 X(a}))
"8 i) Ca(Xz.on n sz)
by
(ﬂ&cm)é)f(@ = [ o)) ldon)o, (-0, (b, ¥y 9

LR AR )
where €, and ad,- € J(m) are determined as follows. If pmv( jo,w),- .. ,pmv( jk,c"u)
are not all different, write € = 0. Otherwise, let 7 be the permutation which arranges
these indices in increasing order, and write € = sign 7, (a ,-* -,ak)zw(v(jo,w),- | Jp®)).
Finally, we choose an arbitrary point*) a) € X(a )n---n X(a, ) for every |

k+ 1-tuple @ = (a,---,a;) and define an operator Tgcm) on
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%% .ea C*(X(a,)n---n X(a})) by
( 07 )
rﬁm)c) #(o(2).

With these definitions we have

l{™<r nd’”nu
m) olm) = 4
“2 QSC = Ay
Note that for k= 0 the operators A4 p Qgcm), M ](gm) reduce to A, Q(m), M (m)'

2.7. Proposition.

(a)  The spectral radius of A is < e

(b)  Given € >0, we have

1™ — () ) < const (67 %P E)™
and therefore the essential spectral radius of A k s < anp.

The proof is essentially the same as that of Proposition 2.5.

28. Lemma. Supposethat ¢  ---9 hasa fised point 7Z(w) € support v, - Then
1 m m

2(-1)%g, - (w
k 1,0

--T__»_*(w) _\_}(w1)=1 (2.5)

2 Y 1%
* *
Let I ={J Xje V, } and e I » I bethe map such that there exist
m
z'l,- .. ’im—l for which
.. W )T w,)=1
Tﬂm—l( m) zla(])( D
* * % -

By assumption I # ¢, and clearly af cI . Let I be the subset of a—periodic points in

~

* N ~ ~
I, and a the restrictionof « to I. Then I# ¢ and @& is a permutation of I. Let &

consist of ¢ (disjoint) cycles. Then, the non—zero terms of the left—hand side of (2.5) are

*
) When k=0, take :c(ao) to be the center of X(a ) as before.
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those for which ~¢ o consists of the elements of ¢ cycles of @& with £> 1. The value of

such a term is thus

(1)) P = (!

and the sum is
1 '

2.9. Corollary. Write
= Y dw,) - pd
S N Lot
{"—zo—zm_l(“’m)“”wm(x(‘—"m' - '[T—;ﬁo(“’l)g"wl(”’wz' -9, 40
(2.6)
then

(= )

2.10. Proposition. The power series

® m
z

df2)=exp— ¥ =—¢(
k m=1 ™ mk
converges for |z 0% < 1, and its zeros in this domain are the inverses of the eigenvalues

of A P with the same multiplicities.

Before proving this result, we note the following consequence.

2.11. Corollary. The power series

w zm
Y@ =em= ¥ Eo¢,

P

o . . . . . .
converges for |z| 07 e <1, and its zeros in this domain are the inverses of the eigenvalues

of %, with the same multiplicities.
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Corollary 2.9 yields
' k
-1
1/¢(d) = 1 [d 27"
k>0
Corollary 2.11 therefore results from Proposition 2.10 if we can prove that, for
[A] > OQeP,
m) = B (-1)Fm,(3) (2.7)
k0
where m(}) and m(}) are the multiplicities of A as eigenvalues of % and A

respectively. To derive this result, let

C, =o,. . Ca/,X.n"'nX-
k (,0,. . "’k) { i ’k)
and define co—boundary operators oy Cp+ Ck+1 in the usual manner [i.e.,
k+1 o
$), . . = ¥ (-1)%,. % .| X.]. The existe f tition of
(g )(Zo" ) "zk+1) !3:0( ) (i "Zk)l Zg e existence of a partition o

unity associated with the covering (Xi) ensures that the following is an exact sequence:

g «a a
0- C*(X) = C’O—Q»Cl-*---ﬂC'k—+Ck+1-*--'

where f is the natural injection, and =0 for sufficiently large k. We also have
BE= AL f, gk = Koy
Let Py = ot f gz resp. Py, = oo dz ) where the integral is over a small circle
A= P = AP Py = om P, :

centered at A. Then, P, (resp. P,,) is a linear projection of C*(X) (resp. Cy) onto
the generalized eigenspace of .¢ (resp. A k) corresponding to A. Furthermore
Prof = PPy Py 1% =P ok

We therefore have an exact sequence

g a,
O—DimP/\—iimP)‘O—-»imP)\l-w--—oO

so that
dimim P, = ¥ (-1)"dimim P
A 10 Ak
which is precisely (2.7).
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2.12. Proof of Theorem 1.1.

Theorem 1.1 results from Proposition 2.7 and Corollary 2.11. We are thus left with

Proposition 2.10 to prove.

2.13. Proof of Proposition 2.10.

There is a finite number of eigenvalues /\ of /& such that IA | > 0% P oy m;
is the multiplicity of A 7 we may write
Em(x)™
jm]( ])
=5\ %o, (S.)
j J 5 e
Yo, (ATS.)
- k
7y Vil Y .
where (Uj’)/) and (Sj'y) are dual bases of the generalized eigenspaces of 4, and 4
respectively for the eigenvalue /\j Therefore
Emx)™
jm]( .7)
_ 3 Jl(m m)T(m
P 7l 2zt J’Y)
e (ch )c.) (2.8)
7y JY
where C’Y has the constant value b (1:( T4)) on X(a )n---n X(ay).
Using Proposition 2.7 we ha've
m)_ (m){m)y,(m) ,a P+eym
|jf2y ah((xcgc a{m 7{mh) of 5;,)1< const. (0" %P TE)™ (2.9)
Let x__ be the characteristic function of X(ao)n- -+N X(a;) as an element of
a
o
ea(ao’_ _ _}ak)C (X(a)n--+n X(ay).
Then
to (aiMe.
i 7y 44 Ciy
=338, (o (#x)
AR a
- 5.((1- 2) A} ) _)((73) (210)
a a
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where 2 is the projection corresponding to the part of the spectrum of 4 k in
| < 0 %)
The right—hand side of (2.10) is the sum of two terms. The first can be written as

&(azﬁm)x_axﬂ))

a

=) b} ) u,(dw )...u(dw )
(io,-n,ik)elk a,ozpmav,o=z'0 ak:pmak=z'kf 1 m

)jr(Sign 7r)5((ao,- v ,ak),W(U((iO),E)),- v ’v((ik))w)))
o ()0, (0 ¥, )

=% _ Ifu(dw wdw, )7, (W), _, (o), _, ()
Pt P& % Zn—l 2 U ‘1%
0 @I @)0,, (9, -+, A1)
m
where |9 1,@)| is the permutation of (v(zo,w),:-o,v(zk,w)) such that
"™ "1,@)| = 1. If we replace in the right—hand side z(|v(—* ,@)|) by the fixed point

Hw) of 9 w. ¥, » theerroris bounded by const. (0" %e P +€) (using the same sort of
1 Y

estimates as in the proof of Proposition 2.5). Therefore, by the definition (2.6) of Emk’ we

have
12.(# My )a(2) ¢, ] < const. (0 %P TE)™ (2.11)
a a
We are left with the study of
2 (2 4y )o(72).
a a

Remember that the sum is over the set J(m) of those “a= (a_,---,a,) € J(m) k+1 such
k 0 k

that p"" a= ( . -,ik) with io<- < Y Note that, if 0 < £< m, we may write

5, Ji"‘)(M(m) )™ )
m~{
=3 N J( (P4 Ay x(—?;))

(lump together those T2 such that p™ ~t— a= _73). Therefore
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5.(2 4y )a(2) 2, (2ATX )T
a a k 3

=5 (@M ™) - (2 4™ )
=1 a ) a
m

=% ¥ [
(=1 —Eejg,[)“

From this we get

(# -ﬂm“x_g)(z(—z)) —(# wm“x_g)(m(ﬂ))].

15.(2 ™y _)(e(70))] < constl] 2 AT
a a

+ const.gln a3, 40! A )t B

m
[(9/ 016P+€)m+ Y (01 aeP+€)m—l(eP+e)£0,la]

< const.
(=1
< const. m(§’ aep+€)m. (2.12)
Putting together (2.8), (2.9), (2.10), (2.11), (2.12) we obtain
% m()\j)m ~{_,| < const.m(8’ aeP+e)m
L mk
JJ
and therefore
d (Z) © m
k
e = exp §1 A EmO)" =)
m{1-Az) 7 m= J
J J
converges for |z| 0’ aPte 1, proving Proposition 2.10.

3. Proof of Theorem 1.3.

3.1. The essential spectral radius of %.

We shall follow the proof of Theorem 1.1 in Section 2, and note what changes have
to be performed to deal with the differentiable situation.

First of all, we make a choice of charts for the balls Xi’ which will thus be
identified in what follows with subsets of Euclidean space. We may assume that the balls

Xi have small radii and that the Riemann metric is closely approximated by the Euclidean
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metric. Confusion between the two metrics is then inconsequential. The linear structures
which we have chosen will allow us to define Taylor expansions.

Replacing C% by C% everywhere, we define
M, M (m)’ Q(m), M P M 2m)’ Qgcm) as before. The operator T(m) on

eaej(m)Cﬁ(X(a)) is now defined by

(T(m)é)a: Taylor expansion of order r of & at z{a)
and similarly for T;cm) We have then
= T’§cm)§“o < const ||| o™ IEl.
Following the arguments of Sections 2.5, 2.6, 2.7 with obvious changes, we get

A P < cons (18] Py 1)

and therefore the essential spectral radius of 4, is < 0I | eP. In particular, the same
k

estimate holds for the spectral radii of 4 and &

3.2. Proposition. Define

Tr A7 = [uldoy)- - plduy)ldet(1-Dy 3, -1

9, )
1 m
A N . C) AN A A CREE A )

o ‘m—1 1 ‘o
Then, the power series
o).y _ 22" m
d;c (z) =exp— % ——Tr A
m=1

converges for |z| 6 B £« 1, and its zeros in this domain are the inverses of the
etgenvalues of A 2 with the same multiplicities.
Before proving this result, which corresponds to Proposition 2.10, we note that it

allows us complete the demonstration of Theorem 1.3. We have indeed

a9= 1 14"
k>0

by Lemma 2.8. The proof of Corollary 2.11 again applies, and yields that the zeros of d(2)

in (1.5) are precisely the inverses of the eigenvalues of %, with the same multiplicities.
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3.3. Remark.

Before embarking in the demonstration of Proposition 3.2, we prove a necessary
n

estimate. Let n= (nl,- . -,ndij) be a multi—index, %7—1% the corresponding derivative,
l=nte.. ! = . es .
and nl =mn - ng 4. Weassume that |n| =ny +---+ g y$ 1. Define then
BT} =7 Wder)-pldw, ) o (@) ()
152 io" . "irr'—lf 1 moit, 1t m 18, 1

" .
Tl (@ (b A0 b, 2= 6@ g ;o)

and assume that £, € X(v(z'o,w)) for k=1,2,3. Replacein Eén% the expression
152

5"

P

total order up to r. One finds thus that the error is bounded by

by its Taylor expansion around £4(i,,), keeping derivatives of

const.(ﬂ’m)|£|‘|n| -(eP+€)m(o/ m)l n|

= const.(eP+€0’ lgl)m.
Define now
1 o(n)
E,= % B}
¢ nin](rﬁ‘T ¢
le.,
E,= % ) wdw,)e - pdw )T, - w, YeeoT, . (w
¢ n:|n|<t io""’im—lf 1) oMo, Zozm—l( m zlzo( 2
8" RN &
gx—'n[‘ﬂw (z)-- ww1(¢w2---wwmx)(wwl---wwmx—f(zo,w)) ”n———ﬁ(io,w)'

(3.2)

Introducing limited Taylor expansions as explained above in each term of E§ , we simply
1
obtain E.f . Therefore

3
1B =B | ¢ const.(F TEg/ 1E1ym (3.3)

3.4. Proof of Proposition 3.2.

We shall prove the proposition for A (= 4 O) rather than & E [This simplifies
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notation, and the general case is easily recovered by reference to Section 2.13.]

There is now a finite number of eigenvalues )\7. of  such that I)‘jl > o121 eP

Let m i be the multiplicity of A] and (o (Sj'y) be dual bases of the generalized

Tiv"
*
eigenspaces of 4 and . respectively for the eigenvalue )‘j Then

Zm(A )™

J
Mg
—EU (J( J’y)

“3 o ,,((m? () gl gl
]’Y (m)
Lo (4, 3.4
* ]-fﬂ( i (34)
where C |X(a) is the Taylor expansion to order r of S at z{a). Note that (3.1)

gives

% o, ((J((m () p(m) )Q(m)S

; )
iy 7 gl

< const.( 6’ 5] ePJ"E)m. (3.5)
Let x, denote the characteristic function of X(a) and write 6? for the derivative of

order n=(n,-+-,ny. ) evaluated at ¢ We have

'm,l
3 o (4 ™e)

J’Y
=1 L% Lam C (M) g g\
j’Yan:[n](r n %a(e)”1" 7 ((+ —={(a))"x )
SED O 2 ) ) (35)
an]n](rn z(a) a
where 2 is the projection corresponding to the part of the spectrum of £ in
(o (Al ¢ o Ry,
We have

49



33 by o # N () )]
an

=23 L i)+l dw ) Ko, o(p™e,@))

6% 100, (30, (b, ¥y 0y by, 7))

B Ez;o, e ,im_lfu(dwl). . .M(dwm)rioim—l(wm)' h Tilio(wl)
1 0

2=l (200, (0¥, 9

le' Y, T 1(1’(%@)))71“3—_1(@(10,@)) = E§1 (3.7)

m
where we have used the notation (3.2) with él(io,w) = m(v(z'o,w)). If we choose

63(i0)w) = ), we get

m
{E, —E, | <const.(¢ |5l Pe) (3.8)
ST
in view of (3.3). Furthermore
E, =% pdw ) p(dw 1. . (w, )T (wy)
é3 io""’im—lf 1 mt, 1 m iyiy 1
- _ 1
o, @@)p, (B, ¥, ()2 v
“m Wi “m n:lnlgI‘m n

Here \Iln is the sum of the products

Yoity 5yt

where ¢st denotes the (s,t} matrix element of DJJ(C))("‘I)wl' . .'¢wm), and (31,. . "Slnl)’

( AR -,tl n|) are arbitrary subjected to the condition that the indices 1,---,dimX which
occur have the same multiplicities, give by n. It is easily recognized that ¥ ¥ n/ n! is the

development of [det(1 — D )]—1 to order r. [Use the fact that

27{(7)}1/)0)1. Y,

m
v f
(det(1 — D))—I: exp Tr % 17)—-, and take D to be in Jordan normal form.] Therefore
=1
g, &™) < const.(FTLLHEY™ (3.9)

From (3.7), (3.8), (3.9) we get

50



1 N
1230 0 oy N —e{a) ) — tr F
an
< const.( 6 |zl eP+€)m. (3.10)

There remains to estimate

n (M), _ )
Ei]nlqma()y% ((- —=a))"x,)

=30 B fay) 247 =)
Thus
geJ( m) X lT az"z(a) ? Jl(m}((' B Z(a))nxa)

-3 2—,3" 2A™(- —n)"X)
€eln™ ™

-3 n ot
=2 3 (g 2l 24T -

~{ n
= 3y ? AT A = o)y
The absolute value of the right—hand side can be estimated in terms of Taylor expansions

(as in Remark 3.3). We get a bound
const. £ 3 J(g)z L d(a(0) oot 5117 2 ™ O = )y

Coonst. 53 Lo HlEI=lnl g [l Preym—L  Preytp ylnl
(=17"

= const. m(§’ M e +s)m

Therefore
355 8 g 2 {0,
< const. m( ¢’ X ep+€)m. (3.11)
From (3.4), (3.5), (3.6), (3.190), {3.11) we conclude that
1% m]()\j)m— tr ™| < const. m(6’ |l eP+€)m.
J
Therefore
m
__i(ﬁ’)__m__ exp 2 —— (% m(/\]) —tr &™)
(122 m=1

converges for |z| 6’ £l Pte < 1, proving Proposition 3.2.
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