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AN EXTENSION OF THE THEORY OF FREDHOLM DETERMINANTS 

by 

David Ruelle 

ABSTRACT: Analytic functions are introduced, which are analogous to the Fredholm 

déterminant, but may have only fînite radius of convergence. Thèse functions are 

associated with operators of the form £μ(άω)<&ω, where = ^ ( ζ ) · Φ ( ^ χ ) , Φ 

belongs to a space of Hôlder or C r functions, φ is Hôlder or C r, and ψω is a 

contraction or a C r contraction. The results obtained extend earlier results by Haydn, 

Pollicott, Tangerman and the author on zeta functions of expanding maps. 
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1. Assumptions and statement of resuit s. 

The theory of Fredholm déterminants (see for instance [10]) has been extended by 

Grothendieck [5] and applies to certain linear operators defîned by kernels. One 

associâtes with J6 an entire analytic function d^-, called the Fredholm déterminant, 

such that 

where Jfis an entire analytic operator—valued function. In what follows we shall obtain 

results of the same type. The radius of convergence of the "déterminant" will possibly be 

finite rather than infinité, but larger than the inverse of the spectral radius of J6. 

Let α > Ο , Ο < 0 < 1 , and let X be a compact metric space. We dénote by 

(f = cf*(X) the Banach space of (uniformly) ce-Hôlder functions I H C with the usual 

norm. We assume that Vc Χ, ψ: V» X and φ e (f1, are given such that ψ is a 

contraction: 

d(i)x^y) < 0 d{x,y) 

and ψ has its support in V. A bounded linear operator Jfon is then defined by 
* φ(χ)'ϊ(ψχ) if xe V 

(Jfi)(x) = -
[0 if χ t V 

The operators J6 which will interest us are intégrais of operators of the form JÎ: 

X= f μ{άω)^ω (1.1) 

where Jf is defined with V . ψ ,φ as above, and where μ is a finite positive measure 

(which we may take to be a probability measure). The following will be standing 

assumptions. 
(i) / K ^ ) l k J I < » 

where || || is the norm in 

(ii) There is δ > 0 such that, for ail ω, V' contains the <5-neighborhood of the 

support of φ . 

(iii) υ H V , ψ } ψω are measurable. [Using (ii), and possibly changing 6, we may 

assume that there are only finitely many différent V % and that they are compact 
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subsets of X. We may take as measurability condition the assumption that 

uj H V (ω,χ) H $Jx)> Ψω(χ) a r e B o r e l fonctions]. 

We write 

(1.2) 

where the intégral extends to values of α;ρ· · ·,ω such that ψ ψω · · ·ψω has a fîxed 
1 2 m 

point, which is then necessarily unique, and which we dénote by χ(ω). A zeta function is 

then defîned through the following formai power séries 

(1.3) 

1.1. Theorem. Let \J6\ dénote the operator obtained when φω isreplacedby \φ \ 
ρ 

in the définition of J% and let e be the spectral radius of \ Jë\. The spectral radius of 
Ρ OL Ρ 

Jè is then < e , and the part ofthe spectrum of J6 contained in { λ : | λ | > 0 e } 

consists ofisolated eigenvalues offinite multiplicities. Furthermore, l / ( ( z ) converges in 

{z:\z\eaeP < 1} (1.4) 

and its zéros in this domain are precisely the inverses ofthe eigenvalues of Jï, with the 

same multiplicities. We may thus write 

( ι - ^ Γ 1 = ({z)jr{z) 

where Ji is a holomorphic operator-valued function in (1.4). 

The proof of this theorem is given in Section 2. 

1.2. Remarks. 

(a) We see that l / ( ( ^ ) plays the rôle of a Fredholm déterminant. However, ζ(ζ) 

dépends on the décomposition (1.1) and not just on the operator J6\ We shall obtain a 

"true" déterminant in the differentiable case below. 

(b) Let E be a fînite—dimensional α-Hôlder vector bundle over X (i.e., E is 

trivialized by a finite atlas, and the transition between charts uses matrix—valued 
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α-Hôlder functions). We assume that ρ : Ε» Ε is an adjoint vector bundle map over 

ψ for every ω (i.e., φω(χ)' E(7pjc) H E(X)). We can then defîne the opérât or JÇ as 

before, it now acts on the Banach space Cg, of o-Hôlder sections of E. We also defîne 

m m—l m 1 2 m 

where Tr is the trace on Ε{τ{ω)). 

Let \φω(χ)\ be the norm of φω{χ) for some metric on E, and | Jë\ the operator 

on C** obtained by the replacement ψω -> \ φ \ in the définition of X Finally, let e^ 

be the spectral radius of \J&\. It is easily seen from the proofs that, with thèse new 

définitions, Theorem 1.1 remains true. [For a sharper resuit, let | JSm\ be obtained by 

the replacement ψ · - · φ -> j φ "-φ | in Jém, and take 
m 1 m u l 

P = U m l l o g | | | J 8 r m | | | ] . 

Theorem 1.3 below can similarly be extended to differentiable vector bundles. In 

particular, this permits the treatment of the operators Jtifà corresponding to Jè but 

acting on forms; see Corollary 1.4. 

( c ) Let r = ( r , α ) with integer r > 0 and 0 < a < 1. W e dénote by = C*(X) the 

Banach space (with the usual norm) of functions I H ( which have continuous derivatives 

up to order r, the r—th derivative being uniformly o-Hôlder . W e shall write r > 1 if 

r > 1, and j r | = r + a. 

1.3. Theorem. Let X be a smooth compact Riemann manifold. We make the same 

assumptions as in Theorem 1.1, but with ψω, φ of class r > 1. We require that 

jμ(άω)\\ψ^\\ < ω, where ||·|| is now the C~ norm, and let J6 act on C~. With thèse 

I r I Ρ 

assumptions, the part ofthe spectrum of J6 contained in {λ: \\\ > θ e } consists of 

isolated eigenvalues of finite multiplicities. 

De fine tr J6m by 
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m m—l m 1 2 m 
(where D ψ dénotes the denvative of ψ atthe fixed point x)y andwrite χ 

00 zm m d(z) = exp — Σ — tr J6 . ι rn 

Then, d(z) converges in 

{z: | z | ^ i l e P < 1} (1.5) 

and its zéros there are precisely the inverses ofthe eigenvalues of J6 , with the same 

miltiplicities. We may therefore write 

where η is a holomorphic operator—valued function in (1.5). 

The proof of this theorem is given in Section 3. 

1.4. Remarks. 

(a) Theorem 1.3 also holds if we take r = (Ο,α), a > 0, but assume that the ψ are 

differentiable. In that case ζ H ((z)d(z) is analytic and without zéro in (1.4). 

(b) The assumption that X is compact is for simplicity. It would suffîce to assume 

that υ V , and υ ώ ,V , are contained in a compact subset of a finite-dimensional 
U ω LU U ω 

(non-compact) manifold. 

1.5. Corollary. Under the conditions of Theorem i.5, define an operator JS^ acting 

on the space of l—forms ofclass C*~~^ on X by 

jfib = f μ(άω) JfJQ 

where 

( ^ ( % Ι ) = ί φ ) ' Λ ' ( Γ ^ ) ' * ( ^ ) i f " v 
ω | 0 if x( V ' 

Let also 
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trJf(£)rn = fltdu1):.udu,n)[deil-D,-^ )] 1 

Χ 777» 

v ' 1 m m m—l m 1 2 m 
ί 

where Tr^ is the trace of operator s in Λ ( ^ ^ ^ ) a n ^ 

m—l 

With thèse définitions J&K°)= JIS, d^°\z) - d{z), and the spectral radius of jfà is 

<JeP. 
(Cl I r I +1—1 Ρ Furthermore} if l> 1, the essentialspectral radius of J6K ' is < e , and 

converges m 

and its zéros there are precisely the inverses ofthe eigenvalues of Jêfà ^ with the same 

multiplicities, 

To obtain the corollary, we have to use the extension of Theorem 1.3 to vector 

bundles (here the co—tangent bundle) as explained in Remark 1.2(b). It is clear that the 

spectral radius of jfâ is <(feP. Note also that when l> 1, the degree of 

differentiability r has to be replaced by r — 1. From this, the corollary follows. [For the 

case where r - 1 < 1, use Remark 1.4(a).] 

1.6. Corollary. Under the conditions of Theorem l.S, we may write 

dim X (ff\ r - i \ £ f l 

ζ ( ή = π [ ^ % ) ] ^ 

so that the zeta function (1.3) is meromorphic in (1.5). 

This follows from the identity 

where ζ was defîned in (1.2). 
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Γ 1 Γ 2 
1.7. Corollary. (a) . Let and be operators on (f and (f defined by the 

r l 
same μ(άω), V and ψ , φ ofclass (f , with r^ > r^ Then, in the domain 

the operators Jé^ and J £ > have the same eigenvalues with the same multiplicities and the 

same gêneralized eigenspaces [which consist of (F fonctions). If ^ , φ are C 0 0, it 

therefore makes sensé to speak ofthe eigenvalues and eigenfunctions of J6 acting on C*, 

*) 
and d(z) clearly is an entire function. ' 

Ir! Ρ * (b) / / | λ | > 0' ~ 1 e , the éléments ofthe generalized eigenspace ofthe adjoint J£ of J6 

corresponding to the eigenvalue X are distributions in the sensé of Schwartz, of order s for 

ail 

To prove (a) note that the generalized eigenspace of Jif^ maps injectively by 

inclusion in the generalized eigenspace of Jë^} but both have the same dimension given by 

the multiplicity of a zéro of d(z). From (a) , one dérives (b) easily. 

1.8. Expanding maps. 

The case where the ψ are local inverses of a map /. Χ H X has relations to 

statistical mechanics and applications to Axiom A dynamical Systems and hyperbolic Julia 

sets. Various aspects of this case have been discussed by Ruelle [12], Pollicott [9], 

Tangerman [15], and Haydn [6], and a gênerai review has been given in [13]. Note that the 

conjectures A and B of [13] are proved in the présent paper. The real analytic situation, 

not considered here, has been discussed in Ruelle [11], Mayer [7], and Fried [3], and leads to 

Fredholm déterminants in the sensé of Grolhendieck [5]. Note that an erroneous statement 

about the growth of déterminants in [4] and [11] has been corrected by Fried [3]. For 

piecewise monotone one—dimensional maps see Baladi and Keller [1]. 

J It would be interesting to estimate the growth of d(z) at infmity. 
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The case of an expanding map / is analysed by using a Markov partition (for which 

see Sinai [14] and Bowen [2]). In the more gênerai situation discussed here, there are no 

Markov partitions. Our proofs will make use, instead, of suitable coverings of X by balls. 

The présent treatment is completely self-contained, but référence to [13] is interesting in 
ρ 

providing for instance an interprétation of the spectral radius e as exponential of a 

topological pressure. 

1.9. Other examples. 

A class of examples where the results of the présent paper apply is described as 

follows. Let X be a compact manifold, X its universal cover, and π: X»X the 

canonical map. We assume that ψ. Χ H X is a contraction, such that 

ά(ψη,ψι/) < 0 and that ψ: I H ( is of class C& and suitably tending to zéro at 

infinity. Define 

(JTi)(s)= Σ_χ <p(y)#(fo). 
yE7T χ 

It is not hard to see that J6 is of the form discussed above. 

2. Proof of Theorem 1,1. 

2.1. Coverings of X by balls. 

The foliowing construction involves the constants 0,6 of Section 1 and a constant 

κ which will be selected later; for the moment we only assume that 0 < κ < 1. Let j 

be a fînite ̂  6(1 — 0)—dense family of points of X. In particular, the balls 

Xi = {T. d(x,z%) <^6} 

cover X. For each j,u with X-cV we choose measurably u(j,u) such that 
J ^ 

and therefore 

•φ Xc Χ ι • ν ψω j u{j,u) 
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For each integer m > 0 we shall now defîne a finite set and a family 

(X(a)) / \ of open balls in X. We choose θ' such that θ < θ' < 1, and we shall 

define . / m ) and (X(a)) by induction on m. 

First, = {(i): % e 7}, and we let X? = be as before the balls of radius ^ δ 

and centers x° = ^ forming a ^ £(1 - 0)-dense set in X. For m > 1, let similarly {X™) 

be a finite family of open balls of radius ^ δ θ'171 and centers x™ forming a 

ξδ(0' - tf^'^-dense set in X. We put 

M): (v-.,Â:)e j i ^ 1 ) and d(x™ χ™"1) < « δ θ'711"1}. 

Choose now /c = 1(1-0 ' ) . If a = (t> · . ,* , / ) 6 we have then I ^ C l J " " 1 , and by 

induction 

l ' J c x f c . . . c l . 

We shall write z(c) = z™, X(a) = X™. We defîne p: / m l i " 1 - 1 ) by 

Κν··>Μ) = (*>···>*)· 

Given è = ( t ' , · · · ,* ' ) e . Ζ 7 7 1 - 1 ) and ω such that X, c V , we defîne 

v{b,u) = ( ν · · , M ) by 

i = ΐ^ί',ω) 

(i, - · -,k) = ΐ̂ ρδ,α;) if m > 1 

and ^ chosen measurably such that 

< v T 7 l > 2 ; ? ) < ? ^ / - ^ ^ m " 1 -

We have thus 

ρ ν((ϊ),ω) = φ ' , ω ) 

y = v{pb,u) for m > 1 

^ Χ ( δ ) c X(t<M). 

2.2. Lemma. v(b,u)) € ,/m). 

We write b = (z v,· · · , / ) . We only have to check that 
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< ξ δ{θ' - θ)θ'Τη~'1 + θκ δ β,7ϊΐΓ~2+ ξ δ(θ' - θ) θ*™"2 

< κ δ{θ' - θ)θ/7η~2δ + κδθ Θ/Τη~~2 = κδ θ,πι~1  

for m > 1, and a similar inequality for τη = 1. 

2.3 Theoperator 

We defîne 
Ρ 1 if X . c V" and ζ = τ^',ω) 

r n M = i ; ω 

J [ 0 otherwise 

Let dénote the restrictions of $, JT# to X and X. respectively. We may 

then write 

( Xi) (χ) = Σ /μ(άω)τ^ω)φ^χ) i^jc). (2.1) 

If Σ λ'· is the disjoint sum of the X-, we may write 

and defîne an operator M on that space by 

{Μ*)μ = Σ /μ(άω)τ^ω)φω(ζ) i^jc). 

This is the same formula as (2.1), but the Φ . may now be chosen independently on the 

various X·. Ifweidentify C0t{X) with a subspace of e . C 0 ^ . ) , we see that the 

restriction of JL to Cf*(X) is X Note that 

m ζ . · · · ,2 .< m m—1 1 ο 
Ο' ' 777—1 

φ (χ)*··φ (ψ - - -^ .τ)# - (ψ ---ψ χ) (2.2) 
m 1 2 m o l m 

2.4. Theoperators JÎ^M\ 

For m > 1 we defîne an operator 

J m h « ,m)C<»(A-(a)) » . ^ j y 

by the formula 
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(2.3) 

where t<j,ô;) = v(v( • · · v{(j),u)m), · · · )ω 1 ) . Defîne 

as the restriction operator such that 

when pma = (i). In view of (2.2), (2.3), we have 

We shall also need the operator 

such that 

(2< r a )*) f l = *Wa)). 

We defîne the norm on e^Ca(X^) by 

11*11 = max(sup|#/x)| + sup — — — 
iel χ χΦν d(x,y) 

and similarly for e j^m^Ca(X(a)). 

Note that, with thèse norms 
| | g ( T O ) | | < l , | |7< m ) | |< l . 

2.5. Proposition. 
Ρ 

(a) The spectral radius of M {andthus J6) is < the spectral radius e of \<%\. 
(b) Given ε > 0, we have 

I) _ JÎMJ(™)\\ < c o n s t ( ^ a e P + e ) m (2.4) 
Cl Ρ 

and therefore the essential spectral radius of Ji (andthus Jiï) is < θ e . 
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Using (2.2) we have 

\{JCmi){z)-{JCmk){y)\ 
d(x,y)a 

< ΜΊίοΡΙΙ +const Σ \\JÎk-%\\Jim-k\\0\\% 
Je— 1 

so that 

l i m ( | | ^ m | | ) 1 / m = l i m d l ^ i y 1 / 7 7 1 

< i i m ( | | u n i 0 ) 1 / m = l i m d H ^ l X ) 1 / ™ 
m-* QD m-* ou 

= l i m ( | | | ^ r i | | o ) 1 / ^ = 1 i m (H I 
77Ί~· ω 77?-—» CD 

and (a) follows from the spectral radius formula. 

Using the définition (2.3) and the estirnate \\i - 7^m)*|| < | |*||(j S0'm)a, we have 

also 
\(yAm\i-^mhi)(x) - (^m\i-^mhi)(y)\ 

d(x,y) a 

< I l ^ m \ \ \ i \ \ { 6 e m ) a + const. Σ C(*).||*||(5 δθ/Τη)α 

k—- IL 

where the const. cornes from the Hôlder norm of φ and C(k) is estimated, taking 

absolute values, by 
<**) <\\\^\k~\-\\\^\m~kM\0 

< Ι Ι Ι ^ Ί ^ Ι Ι - Ι Ι Ι ^ Γ " ^ · 

From this the estirnate (2.4) follows, and (b) results from Nussbaum's essentiel spectral 

radius formula [8]. 

2.6. The operators Jlk and JC^\ 

If k > 0, we shall defîne an operator Λ^ on 

^o' ' V *o lk 
where the sum extends over the set 1^ of k + 1-tuples î = (i0> · · · such that 

* ο < " " < * Α a n d Xi n ' " n x i * Φ- L e t u(T,u) = (u(jQ>u)r-',u(Jk,u)) and 
Ο k 
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"Ι (or-1) if Xj ...,Χ. c νω and 

τ-*-τ*(ω) = · u(~j^ , ω) is an even (or odd) 
permutation of t 

*- 0 otherwise. 
We write then 

(JÎJ)Jx) = ? f μ { ά ω ) ^{ω)φJx)*Ji>jt). 
3 ι 3 » ι 

Let now 

( α ο' '** ' W 0 k 

be the sum over those A; + 1-tuples of éléments of . / m ) such that 

X{aQ) η· · · η X{ak) Φ φ and pma Q = (iQ),· · · ,pmak = with » Q < · · · < i k We define 

then 

<?im ) ; *a i \ ^ x i η·· ·η X ) 

Λ ^ ( * ( Ο η · · · η - Χ ( α Λ ) ( a o ' " * ' V 0 * 
so that QJj.m) is the restriction from Π· · ·Π X- to X(oQ) Π· · ·Π Χ(α^)· 

ο A; 
We also define 

4 ^ • ( α Ο Ι . . . ι α Α ) ^ β ο ) η " · η ^ ) 

l V ' V *o lk 
by 

( 4 m ) * ) > ) = / ^ 1 ) " - ^ r o ) ^ *) 
j m 1 2 m 

(ε $/ \(ψ — - ψ χ)) 

where ε, and α

0 > ' · · a r e determined as follows. If pmv(j0,u),-· *>ymv{j^u) 

are not ail différent, write ε = 0. Otherwise, let π be the permutation which arranges 

thèse indices in increasing order, and write ε = sign 7Γ, (aQ,- · ·,ΰρ=7τ(φ0,ά;),· · mMjfca))-

Finally, we choose an arbitrary point ; z(a) G ^(αο)ΓΙ· · - Π Χ(α^) for every 

k + 1-tuple gT= (α 0,· · · and define an operator TJJ,771) on 
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Ο κ 

(?1™)ί )_=#(*(Γ)) . 
a 

With thèse définitions we have 

I IQ [ m ) l l < i , i | î i m ) | | < i 

Note that for k=0 the operators JC^ Q[m\ reduce to JC, Q^m\ JC^m\ 

2.7. Proposition. 
ρ 

(a) The spectral radius of Ji^ is < e 
(b) Given ε > 0, we have 

|| j(M _ zj.™)|| < Const ( ^ 0 !

e

j P + e ) m 

λ Ρ 
and therefore the essential spectral radius of JC^ is < 0 e . 

The proof is essentially the same as that of Proposition 2.5. 

2.8. Lemma. Suppose that ψ ---^ has a fixe d point χ(ω) G support φ . 27&en 
1 m 771 

Σ Η ) ^ _^ ( a ; ) - . -
* V ' W * *o 

• • • ^ ^ ( « 2 ) ^ ^ K ) = 1 (2-5) 
z2 z l l l zo 

Let / = {j: X-G V } and a: I H J be the map such that there exist 
J um 

*n" e e iC ι for which 1' ' m—1 

By assumption I φ φ, and clearly al C I . Let / be the subset of (>-periodic points in 

I , and à the restriction of a to /. Then IΦ φ and à is a permutation of /. Let à 

consist of c (disjoint) cycles. Then, the non-zero terms of the left-hand side of (2.5) are 

} When k = 0, take x(û q) to be the center of X(a>0) as before. 
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those for which ~~t consists of the éléments of 1 cycles of à, with l > 1. The value of 

such a term is thus 

and the sum is 

2.9. Corollary. Write 

(2.6) 

then 

2.10. Proposition. The ρower séries 

converges for \ z\ θ e < 1, and its zéros in this domain are the inverses ofthe eigenvalues 

of JC^ with the same multiplicities. 

Before proving this resuit, we note the following conséquence. 

2.11. Corollary. The power séries 

CL Ρ 

converges for \z\0 e < 1, and its zéros in this domain are the inverses ofthe eigenvalues 

of with the same multiplicities. 
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Corollary 2.9 yields 

1/ζ(ζ) = Π [dk(z)]^k. 
k>0 K 

Corollary 2.11 therefore results from Proposition 2.10 if we can prove that, for 

|λ | >θαβρ, 
τη(λ) = Σ (~l)kmk(\) (2.7) 

k>0 κ 

where τπ(λ) and m^(A) are the multiplicities of λ as eigenvalues of J6 and Jlk 

respectively. To dérive this resuit, let 

and defîne co—boundary operators o^: Cj» in the usual manner [i.e., 

(ak*)(i . . . » ï = Σ ( - 1 ) # ί » . . . î . . . n l X J - The existence of a Cr partition of 

unity associated with the covering (Xj) ensures that the following is an exact séquence: 

where /? is the natural injection, and Cj= 0 for suffîciently large k We also have 

Let Ρχ = ̂ (f) jrjATesV- Ρχ^ - j^i j z-M ^ w ^ e r e ^ intégral is over a small circle 

centered at λ. Then, Ρχ (resp. P ^ ) is a linear projection of (^(X) (resp. onto 

the generalized eigenspace of J^(resp. Ji^) corresponding to λ. Furthermore 

Ρ λο^ = ^ λ ' Ρ λ Α ; + 1 ^ = ^ Ρ λ Α ; · 
We therefore have an exact séquence 

β % 

0 -> im Ρχ -* im P^ o —> im P^j 0 

so that 

dim im Ρ λ = Σ (-1)* dim im Ρ*, 
which is precisely (2.7). 
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2.12. Proof of Theorem 1.1. 

Theorem 1.1 results from Proposition 2.7 and Corollary 2.11. We are thus left with 

Proposition 2.10 to prove. 

2.13. Proof of Proposition 2.10. 
ù. Ρ 

There is a finite number of eigenvalues of JC^ such that |λ^| > θ' e . If 

is the multiplicity of we may write 

= Σσ- (JlTS. ) 
j 7 JV k JY 

where ( σ ^ ) and (S^) are dual bases of the generalized eigenspaces of JC^ and JC^ 

respectively for the eigenvalue Therefore 

+ ^ n ( l [ m ^ . ) (2.8) 
fi ; 7 _ n 

where has the constant value S^{x{ a)) on X(aQ)f]- · -0 X(a^). 

Using Proposition 2.7 we have 

| Σ a. {{M{m^-M[m)^)Q[m)s,)|< c o n s t . ^ V ^ ) ™ (2.9) 
τι 

Let χ be the characteristic function of X(aQ)n-· ·Π X(a^) as an élément of 
a 

• ( ν - , / Η ) " · · · » * ! » · 

Then 

jj a n JT « a 

= M i - ^ i m ) x _ ) ( r t ) (2-10) 
α α 
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where 9 is the projection corresponding to the part of the spectrum of JC^ in 

{λ: t A | < 6'aeP}. 

The right—hand side of (2.10) is the sura of two terms. The first can be written as 

a K a 

= Σ . w

 Σ m . · ' · Σ m . / ^ i ) " - M ^ m ) 
( V ' ' V e / i f e ao:p ao=îo ak:p ak=lk 

E(sign tt)î((û0,. · -,ak),w(v((i0),U>)r · •.«((ι^,ω))) 
7Γ 

m 1 2 m 
= L /μ(άω1)-'fj(dum)T^ _^ (o>m)- · -r_^ _^ ( ^ 2 ) r - * 

ο' ' τη—1 A ο m—1 ζ 1 1 ο 
(a<11<"~t ,cï>)|)) — ^ {i> - - -^ a<11<~? ,δ>)|)) 

m 1 2 m 
where | v{ ι,ω) | is the permutation of {v(i0,û)r • · suc^ ^ a t 

pm\vÇ^îjU) | = If we replace in the right-hand side x{ \ ν(~~Ϊο,ώ) | ) by the fixed point 

τ{ω) of ψ "'Ψω > the error is bounded by const . (0 ' a e^ + e ) m (using the same sort of 
1 m 

estimâtes as in the proof of Proposition 2.5). Therefore, by the définition (2.6) of ξ ^ we 

have 

I L ( ^ ( m ) X _ J 0 T * ) ) - Cmk\ < const . (0 ' a e P + e ) m . (2.11) 
a a 

We are left with the study of 

a K a 

Remember that the sum is over the set </jj.m) of those ~o= (aQ,« · · 6 ( , / 7 7 1 ) ) ^ " 1 such 

that pm~a— (iQ, · · · , ^ ) with i Q < · · · < î . Note that, if 0 < ί < m, we may write 

^ ^ ^ ^ 

Je 
(lump together those "~a such that pm~^~a= ~Ί>). Therefore 



46 

a a zG/̂  i 

= ς L K ^ ^ Î m ) x ^ ( ^ , ^ ) - ( ^ ^ i m ) x L J W p ^ + 1 " 2 ) ) ] 

l=\ a K a K a 

= Σ Σ ( , p l m " L ) ( r t - ( ^ m ^ J W r t ) ] -
From this we get 

I L ( ^ ^ i m ) X ^ ) W ~ ^ ) ) l <const | |^™|| 
α α 

+ const. ς ι ^ Λ ^ ι - ς . J l A _ Λ < < ~ ΐ ) Λ ρ ~ * ) ) α 

<cons t . [ (0 ' a e P + e ) m + Σ a

e

P + e ) m ^ ( e P + e ) V ^ ] 

<const. m ( 0 ' a e P + e ) m (2.12) 

Putting together (2.8), (2.9), (2.10), (2.11), (2.12) we obtain 

|Σ ™(Xj)m-Cmk\ < < » n e t . m ( * ' e / + e ) m 

and therefore 
d,( Z) OD 777» ^ 

OL P-\~ ε 
converges for \ζ\0' V τ ο < 1, proving Proposition 2.10. 

3. Proof of Theorem 1.3. 

3.1. The essentiel spectral radins of J6, 

We shall follow the proof of Theorem 1.1 in Section 2, and note what changes have 

to be performed to deal with the differentiable situation. 

First of ail, we make a choice of charts for the balls ΧΊ which will thus be 

identified in what follows with subsets of Euclidean space. We may assume that the balls 

X- have small radii and that the Riemann metric is closely approximated by the Euclidean 
0 
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metric. Confusion between the two metrics is then inconsequential. The linear structures 

which we have chosen will allow us to define Taylor expansions. 

Replacing (f* by C& everywhere, we define 

JC, JÎ^m\ Q^m\ JCk, Ji[m\ asbefore. The operator on 
φ r~»\C"(X(a>)) is now defined by 

( î ^ m ^ i ) = Taylor expansion oforder r of i at x(a) 

and similarly for 2^ m ) . We have then 

\\*-l[m\<œmt.\\i\\ * ' m l £ l . 

Following the arguments of Sections 2.5, 2.6, 2.7 with obvious changes, we get 

| | ^ j > ) ~ ^ m M m ) | | * c o n s t . ( ^ l i l 6 P + £ ) m (3.1) 
Irl Ρ 

and therefore the essential spectral radius of A ^ is < e . In particular, the same 

estimate holds for the spectral radii of A and 36. 

3.2. Proposition. Define 

v y 1 m 
_ Κ > ω (*(&))]· · -[r_^ _^ ( ^ ) ( t f · · "φ a(fi>))]. 

ιη i m Λ m ιΛ ιη 1 2 m ο m—l 1 ο 
Then, the power séries 

ra=l 
Irl Ρ 

converges for | z\ ~ ' 6 < 1, anrf zis zéros m ίΛώ domain are the inverses ofthe 

eigenvalues of Jt ^ with the same multiplicities» 

Before proving this resuit, which corresponds to Proposition 2.10, we note that it 

allows us complète the démonstration of Theorem 1.3. We have indeed 

d(Z)= π [ 4 0 ) ( * ) ] ( ~ 1 ) Â : 

k>0 K 

by Lemma 2.8. The proof of Corollary 2.11 again applies, and yields that the zéros of d(z) 

in (1.5) are precisely the inverses of the eigenvalues of JV, with the same multiplicities. 
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3.3. Remark. 

Before embarking in the démonstration of Proposition 3.2, we prove a necessary 

estimate. Let η = (πρ·· · > n f a m x ) be a multi-index, —- the corresponding derivative, 
dn 

and n\ = n^. · · · ^ i m ^ ' We assume that \n\ = + · - · + ^imX- Γ · Define then 

s l s 2 ι ,· · - Λ . ο m—l 1 ο ο' ' m—l 

ox m 1 2 m l m ο J 

(n) and assume that Ç,eX(v(i.u)) for k =1,2,3. Replace in E\ l the expression κ ο ς 1 ς 2 

[···]! t e -\ by its Taylor expansion around ^o(L,ô)), keeping derivatives of 
dxn x = z ^ î o ' u ) 

total order up to r. One finds thus that the error is bounded by 

c o n e t . ( ^ m ) l s l - l n l . ( / + e ) T O ( ^ T O ) | n | 

= const .(e P + £ 0'l£l) m 

Define now 

* n:|n|<r ¥ « 
i.e., 

* ft: ηKr t , · · · ,î o m—1 1 ο 
! 1 - ο ' ' m—l 

ox m 1 2 m 1 m *v o' y 

(3.2) 

Introducing limited Taylor expansions as explained above in each term of E+ , we simply 
ζ1 

obtain Ef . Therefore 
ζ3 

\Ε>. -Et | < const .(e F + e 0' l£l) m (3.3) 
ζ1 ζ3 

3.4. Proof of Proposition 3.2. 

We shall prove the proposition for Ji{= JCQ) rather than JC ̂  [This simplifies 
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notation, and the gênerai case is easily recovered by référence to Section 2.13.] 
I r I Ρ 

There is now a fînite number of eigenvalues λ • of JC such that | λ ·̂| > 0'1 ~1 e . 
Let m · be the multiplicity of λ > and (σ · ) , (S. #) be dual bases of the generalized 

* 
eigenspaces of JC and JC respectively for the eigenvalue λ* Then 

j fy J1( J τ 

+ Σ ^ · 7 ( ^ ) ( 7 ; . 7 ) (3.4) 

where C^\X(a) is the Taylor expansion to order r of S- at ι(α). Note that (3.1) 

gives 

JE σ . ( ( ^ Ν _ ) 

<cons t . (^ l i l e

F + e )^ . (3.5) 

Let χα dénote the characteristic function of X(a) and write d1^ for the derivative of 

order n = {ni>'">nfâmx) eva^u2i^e^ a* 6 We have 

Σ σ. (JC^C ) 
;·7 JT JT 

= Σ Σ Σ l ^ ^ V M 1 ^ ^ - ^ ^ ^ ) ;'7an:|n|<r η χ ^ ; 7 " 7 α 

= Σ Σ , „ ^ α ) " 1 " ^ ) ^ ( m ) ( ( - — ( α ) ) ^ ] (3-6) 
α η: \ η\ <r w 

where 9* is the projection corresponding to the part of the spectrum of JC in 

{λ: |λ| < ^Ι ί>6 Ρ } . 

We have 
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s s | r Î ( . ) ^ ( m ) « - - » ( « » " M 
an K ' 

= Σ Σ ^ /μ{άω ι )- . ·//(<*%) 
a η 

——\φ (χ)--·φ (ψ ---ψ χ)(ψ *··Φ t x—x(a)) Λ\ 

= Σ jμ{άωι)···μ{άωτη)τί . ( ^ ) · · · τ · · Κ ) 
V ' V - i o m - 1 1 0 

1 
η οχ m 1 2 m 

. . . ^ ζ - ζ ( ι< ί ,ω)) ) η ] | „ / / · - λ ν = £* (3.7) 

where we have used the notation (3.2) with ^ ( ^ , ώ ) = ,ω)). If we choose 

JE, - E > | < const.C^ l£l e P + £ ) m (3.8) 
ς1 ζ3 

in view of (3.3). Furthermore 

Ε , = Σ fKdu^-^du)^. (wJ-.-r- - Κ ) 
3 V ' V n - l o m _ 1 1 0 

0 (χ(ά;))···α> (*ώ • ••é z(ô;)) Σ ^τΦ . 
m 1 ζ m η.|η|<ι 

Here is the sum of the products 

V i 5 M M 
where ^ ^ dénotes the (s,t) matrix élément of ^^jÀj\{^)

u '*'Ψω )> anc^ ' ' >5| n | )> 

(ίρ· · · ,ij ^ | ) are arbitrary subjected to the condition that the indices 1,· · ·,dimX which 

occur have the same multipiicities, give by n. It is easily recognized that Σ Φ /π! is the 

development of [det(l— £>.--%^ '"Ψω ) ]~* to order r. [Use the fact that 

(det(l — Z))) = exp Tr Σ -y-, and take D to be in Jordan normal form.] Therefore 
£=1 * 

| -tr JTm | < c o n s t . ( ^ + 1 e P + e ) m (3.9) 
ζ3 

From (3.7), (3.8), (3.9) we get 
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\*zhdl(a)^{mh('-<a)fxa)-t! Xm\ 
an Λ ' 

< c o n 8 t . ( i / l î ' e P + e ) m . (3.10) 

There remains to estirnate 

a n:|n|<r ^ ; 

Thus 

The absolute value of the right-hand side can be estimated in terms of Taylor expansions 

(as in Remark 3.3). We get a bound 

const. ̂  Σ ^ Σ 1

Έ d(x(b)Xpb))111"In'||9 JC^W·\\ - 7{b))\)\\ 

<const. Σ Σ ^ ' ν ^ ^ ' - ί ί ^ ' ^ ί ^ Μ " 1 

t=l ηη· 
= const. m ( < H ~ Î e

P + e ) m 

Therefore 

Ι " π $ . ) * · * ( , , ή « · - « · > ) " χ . ) Ι 
an v 7 

< const. m ( ^ l î ' e P + E ) m . (3.11) 

From (3.4), (3.5), (3.6), (3.10), (3.11) we conclude that 
| Σ τ η ( λ ) ™ - ί Γ Jém\ < const. m ( ^ l ï l e P + e ) m . 
j 3 J 

Therefore 

Jf \ CD Til 

converges for | z| 0' ' £ I ε^ + ε < 1, proving Proposition 3.2. 
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