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behaviour of the renormalized perturbation expansion in euclidean 
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"Perturbation theory" , in the context of quantum field theory, 
usually refers the use of a power series expansion of some object of 
interest in powers g n of some parameter g of the theory. Consider, for 
example, the pressure p(g) in a model, (d is the dimension of 
space-time.) 

p(g) - lim lim (l/|A|)log Z(A,U) (1) 
d U"*° 

A-»R 
where Z(A,U) is the partition function 

Z(A,U) = JexpQddx{-(g+6g)^(x)+5C(g(f)2(x)+6m%2(x)+5E}]diJ ^ 9 ) . 
(2) 

Here dp is the gaussian measure of mean zero and covariance C U. C U is a 
regularized version of the operator l, like for example 

. c u - ( - ^ D - S ^ . (3) 

When d«*2,3 and the counterterms 5g,5C,5m2 and BE are carefully 
chosen polynomials in g (whose coefficients are functions of U,A) each 
term in the formal power series expansion of 1/|A|logZ(A,U) in powers 

d oo of g converges as U-*o and A-»R . In addition p(g) exists as a C 
function at least for g small and positive and the formal power series 
is its asymptotic expansion. 

P(g) - 1 a/*"*) 1 1 (4) n>l n 

The superscript r is not a power. It stands for "renormalized". 
When d«4 the situation is not so nice. Each term in the formal 

power series still converges provided Sg,S£,6ma and 8E are themselves 
carefully chosen formal power series in g. This is what is meant by the 
statement is renormalizeable". 5E is normally chosen so that p(g) 
is exactly zero. Hence we should consider objects like the euclidean 
green's functions rather than p(g). That is not important. What is 
important is that it is quite possible that there does not exist a 
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quantum field theory having the $ ^ formal power series as asymptotic 
expansions. In fact that is the current conventional wisdom. 

Formal power series like these have played an extremely important 
role in quantum field theory, both in numerical calculations and in 
rigorous analysis. In this seminar we shall look at the large n 
behaviour of the a

n
r' s- The technique we shall use is a Laplace 

expansion and is known as the Lipatov method [Li,BGZ]. The rigorous 
application of this method to models has been carried out for 
lattice models by Spencer [Sp], for d*=2 by Breen [B] and for d»3 in 
[MR,FR] . For work on d-4 see [P,MNRS]. 

To demonstrate this technique we shall first consider an 
artificial model that lives in a world, W, containing only finitely 
many points: 

f exp[-g 2 9(x)*l exp[-l/22 *(y)C(y,z)"%(z)l yr d<*>(x) 
J L xeW J L y,ZeW JXEW 

Z(g) - (5) 

[ exp|"-l/22 ^(y)C(y fz)" 19(z) l IT d<*>(x) 

Z(g) has the formal power series expansion Z(g) ̂  ̂  a n(-g) n with 

[[ 1 9(x)*lnexp|"-l/22 9(y)C (y .z)" 1 9(z) l n d*(x) 
1 i LxeW -J L y.zeW JxeW 

a n . — (6) 
[ exp[- l /2S ^ ( y W y . z r M z ) ! n <Mx) 
J L y,ze*W JxsW 

We will calculate in particular the limit as n-no of (a n/n!) 1 / / n. This is 
precisely the radius of convergence of the Borel transform of the above 
series. To perform this calculation make the change of variables «p(x) •» 
1/2 , , n *(x). 

an f [ S t (x)*]%xp[-n/2S Hr(y)C(y,z)"%(z)l n df(x) ] 1 / n  

1 / n n n JLXeW J L y,zeW JxeW 
( a n / n l ) 1 / n - - 2  

[ exp|-n/2^ t(y)C(y,z) *t(z) 1 IT <Mx) 
L J L y,z£W -IxeW J 
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T 2nl 1 / n 

n |exp-S(t)Rn 

n! 2 ||exp-SF(t)||n 

whe re 
S(t) - (1/2)2 Y t y M y . z T V z ) - log 2 t(x) 4 (7) 

y,z£W xeW 
and _ 

S (t) - (1/2)2 *(y)C(y,z) y(z). 
* y,zeW 

Stirling's formula and the fact that lim ifII «||fl now implies 

lim (a n/n!) 1 / n - exp{-inf S(y) + 2} s R p 

This conclusion with the appropriate choice of C applies to the 
, model when d*=2,3: d 

THEOREM L [B,MR,FR] Let B(t) be the Borel transform of the pressure in 
the ft4, model with d=2,3. B(t) is analytic in the disc |t| < R c with 
C«(-A+l)_1. Furthermore B(t) has a singularity at t=-R . 

This singularity is harmless. It implies that the perturbation series 
for p(g) diverges. But that has been known for years and had been 
anticipated for even more years. The singularity is not an obstruction 
to Borel summability and indeed the perturbation series is still Borel 
summable. On the other hand the conclusion of this theorem is probably 
false when d=4. There is a result [MNRS] which says that if you take an 
appropriate B(t) for the model and throw away by hand what we call 
the "useless parts of the counterterms" (this does not affect the 
finiteness of the theory but it destroys the locality of the 
interaction) the result is analytic in {|t|<R }. But there is good 
reason to believe [P] that the useless parts of the counterterms are 
responsible for the presence of a "renormalon" singularity in B(t) on 
the positive t-axis. This would mean that it is impossible for a Borel 
summable theory to exist and would complement results suggesting 
that it is impossible to constuct as a limit of lattice 
approximations [A,F]. 

We shall now outline what is involved in proving the above 
theorem. In particular we shall now restrict to d»2,3 but we shall 
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return to d=4 later. The manipulations involved in relating the 
pressure (1) to an object susceptible to a direct application of the 
argument (6)-(8) are best explained in terms of Feynman graphs. The 
integral 

J |j^dax 9 (X) J dMc(9) (9) 

is an integral of a polynomial against a gaussian measure and can be 
evaluated exactly in terms of C. It is a sum of (4n-l)!! terms each of 
which is the value of a Feynman diagram. One example of a Feynman 
diagram which contributes to (9) when n»4 is 

which has the value 
f 4 d 3 

TT d x. C(x ,x )C(x ,x )C(x ,x )C(x ,x ) C(x ,x )C(x ,x ) 
JA M 1 1 1 1 2 1 * 2 3 3 * * * do ) 

where C(x.y) is the kernel of C viewed as an integral operator. Of 
course the integral in (10) may or may not converge depending on C. In 
the case of * ̂  it converges for d»l and diverges for all d>l. This is 
where renormalization comes in i.e. the introduction of a cutoff 
covariance C U, the introduction of counterterms Sg etc. and the removal 
of the cutoff. For example it is possible to choose the counterterms in 
such a way that they simply forbid the presence of Feynman diagrams 
containing tadpoles Q . This is called Wick ordering and renders 
finite each term in the perturbation series when d—2. When d«3 this 
does not suffice. To render the theory finite it is also necessary to 
forbid the occurence of the subgraphs 

(which can be arranged by a suitable choice of 5E) and to replace each 
occurence of the "blob" subgraph B« by the "renormalized blob" 
• — (J) (which can be arranged by a suitable choice of 8m 2). 
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r n 
Theorem L is proven by replacing the series B(t) -v Sa^ (-t) /n! by 

another which has the same large n behaviour. In fact this is done 
several times ending with a series whose coefficients can be analyzed 
using arguments like those in (6)-(8). In particular in (6) we have an 

t h 
integral of the n power of a polynomial against a Gaussian measure. 
Because of renormalization and the logarithm in (1), a r is not of this 

n 
form. To "correct" this, one can 

(i) (not needed in d=2) observe that simply dropping all graphs 
containing blob subgraphs cannot affect the validity of Theorem L. This 
is done by proving an upper bound on (a) the effect that the 
introduction of renormalized blobs into a blob-free graph can have on 
the value of the graph and (b) the number of ways it is possible to 
introduce blobs into a graph. Using these upper bounds it is possible 
to show that a blob-free graph gives a more important contribution than 
all graphs gotten by inserting blobs into it. 

(ii) replace the covariance (-A+1) 1 in all remaining graphs of 
order n by an ultraviolet cutoff covariance C^n^ whose cutoff grows 
with the order n at an appropriate rate. Again this can be done without 
affecting the validity of Theorem L. This is proven using bounds that 
say in effect that when a graph does not contain any divergent 
subgraphs the contributions to the value of the graph coming from high 
momenta are relatively unimportant. 

(iii) (again not needed in d«*2) put back the blob subgraphs that 
were deleted in the first step. This time the blobs are not 
renormalized. This is o.k. since we now have an ultraviolet cutoff. 

(iv) introduce an order dependent volume cutoff. With one choice 
of boundary conditions the introduction of a volume cutoff increases 
the value of Feynman graphs. With a different choice it decreases them. 

(v) drop the logarithm. The logarithm of the formal power series 
1 + Zn>lbn<-*>n i S Z n > l V - * ) n W l t h 

a - b + 2 (-l)m"1B(mfn)/m 
n n 2<m<n 
B(m,n) = ^ b ... b 

i +. . . i «n i i i m i m 
The b^ term dominates the B(m,n) terms because b.. grows very rapidly 
with j (roughly (j !)). 
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By turning the rough ideas of (i) to (v) into detailed bounds one 
can replace the series in (4) by a series £b n(-g) n where each b^, like 
(9) (but with the covariance C, volume A and even the function that is 
raised to the n̂ *1 power depending on n), can be analyzed by using a 
steepest descent argument. 

That brings us to d»4. * is a strictly renormalizable model 
A 

while * 2 3 a r e s u P e r r e n o r m a l i z a b l e • Hence, by definition, the 
counterterms 5m2(U,g) etc. are polynomials in g in the latter case 
while they are formal power series in the former. From our point of 
view the fundamental difference between with d<4 and d»4 is not 

th 
simply one of complexity. It is the following. In both cases the n 
order of perturbation theory is given by the sum of (4n-l)!l Feynman 
graphs. When d<4 there is a constant K such that all Feynman graphs of 
order n are bounded by K n. But when d«4 nesting of renormalization 
subtractions can result in some graphs having values of the order of 
n!. This happens to a relatively small fraction of the graphs so that 
the Borel transform still has a nonzero radius of convergence [dCR]. 
But these renormalon factorials are probably still dominant in 
controlling the radius of convergence. 

The phenomenon that is responsible for the birth of renormalon 
nl's may be seen in the following example. Imagine that < ^ 
appears as a subgraph in some graph ̂ ^^^^^^ . Upon renormalization we 

- [dxdy C(x,y)*[f(x,y) - f(x,x)] (11) 

where f represents the rest of the graph. Now decompose the covariance 
C » S i > o C ^ with being the part of C having energy about M* and M 
is just some constant bigger than one. For example we could choose 
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A/M A/M 
C U )(x,y) (x,y) 

-A + l 
4 -M (x-y) 

* M e 

Then (11) decomposes into a huge multiple sum. For the purposes of 
illustration we shall just consider 

2 [dxdy C ( j )(x,y) 2[f ( 1 )(x,y) - f ( i )(x,x)]. (13) 
j J 

We are just considering the case in which the two lines of the subgraph 
have the same scale j and all the lines of f ending at x or y have the 
same scale i. Furthermore, at first we shall hold i fixed and consider 
the sum over j. 

Case j>i: We first consider separately the two terms in the integral 
(13). Since j>i we have that exp[-M2^(x-y)2] < exp[-M2i(x-y)2] so that 
it pays to use the distance decay in the C^'s rather than that in 
f ^ to perform the integral over y. This integral gives 

jd*y exp[-M2J(x-y)2] <vM"* j. (14) 

For the integral over x we must use the decay (of scale i) from 
and so this integral gives M . Finally the explicit factors of M 2^ in 
the two C^'s give M* J and the result is 

[dxdy C ( j )(x,y) 2f ( i )(x,y) <v ( M 2 J ) 2 M " ^ M" 4 iF - i T ^ F (15) 

[dxdy C ( j )(x,y) 2f ( i )(x,x) ^ (M 2 J ) 2 M~^M" 4 iF - M~**F (16) 

Here F represents genericly all the remaining contributions to our 
integrals from f. It may depend on i and may even represent many 
different values. The conclusion is that if we keep the subgraph and 
its counterterm separate the sum over j diverges in both cases. However 
if we combine the two 
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jdxdy C ( j )(x,y) 2[f ( i )(x,y) - f ( i )(x,x)]. 
(17) 

= Jdxdy C ( j )(x,y) 2(x-y)a yf < i : >(x (y'). 

This time the integral of |x-y|exp[-M2J(x-y)2] over y gives M - 5 ^ and 
the gradient a applied to some inside f ^ gives an extra M 1 and 
we get 

2 [dxdy C ( j )(x,y) 2[f ( i )(x,y) - f(i)(x,x)] j=i+l J 
« co (18) 

- I ( M 2 J ) V 5 J M V 4 i F « J M ^ V ^ F - M - * V 

j=i+l j«i + l 
So the renormalization cancellation has caused the sum to converge. 

Case j<i: This time we would prefer if possible to use covariances C ^ 
from f ^ to perform the integrals over x and y. For the subgraph this 
is possible for x and y. For the counterterm it is possible only for x. 
Hence 
1 i 
2 [dxdy C ( j )(x,y) 2f ( i )(x,y) - I ( M 2 J ) 2 M - " V ^ F 
j«0 J j*0 (19) 

i 
- M " - * 1 I M - * C l - j > F M ^ F 

i i 
I [dxdy C ( j )(x,y) 2f ( i )(x,x) ( M 2 J ) 2 M - ^ M - ^ F 
j«0 J j»0 (20) 

- (i+l)M"^F. 

The i-dependence hidden inside F may reduce the M 4 1 to M ~ 2 1 . Even so 
when the sum over i is ultimately performed the subgraph and the 
counterterm converge individually and we see that we gain nothing by 
performing a cancellation between (19) and (20). (In a sense the 
difference between the two cases j>i and j<i is that in the former case 
the subgraph "looks pointlike" because of the very strong decay of C ^ 
and hence we get a good cancellation between the subgraph and the 
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purely local counterterm.) In fact we see that (20),the "useless" part 
of the counterterm, i.e. the part of the counterterm that is not used 
for a renormalization cancellation (but which must be there 
none-the-less to preserve the locality of the interaction) gives a 
larger contribution than either (18) or (19). 

A fundamental difference between superrenormalizeable and strictly 
renormalizeable models is that in the former we always have a "bounded 
density" of counterterms. In other words there is a bounded power of 

-2i 
(i + 1) per decay factor M . In the latter this is not so. It is 
possible to have, in a graph of n vertices, roughly n powers of (i+1) 

-2i 
and only one M . This gives rise to a renormalon factorial by 

00 

I ( i + i ) V 2 I - K V 
i«0 

(21) 

There is a reorganized version of the perturbation expansion that 
allows one to separate renormalon effects from instanton effects. One 
takes the ordinary perturbation theory expansion, decomposes 
covariances into their energy scales (12) and resums the "useless" 
parts of the counterterms. The result is an expansion similar to 
ordinary perturbation theory except that 

(a) a subdiagram is renormalized only if it is superficially 
divergent and its internal lines are of higher scale than its external 
lines (as in the case j>i above). 

(b) each vertex is equipped with a "running" coupling constant. 
This means that, for example, the factor of g that is normally 
associated with the vertex is replaced by a factor ĝ  that depends on 
the energy scales of the lines ending at that vertex. This ĝ  is g plus 
contributions from the resummed useless counterterms and is essentially 
the coupling constant of scale i of the renormalization group. 

In [MNRS] it is shown that if one replaces the "running coupling 
constant" by the real coupling constant g in the above expansion, i.e. 
one simply drops the useless counterterms, the Borel transform of the 
result is indeed analytic in the disc predicted by the Lipatov method. 

One can get a rough idea of the effect of the running coupling 
constant as follows. The dominant contributions to g^ come from parquet 
graphs. These are graphs formed by taking the graph G^Y^){ , 
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replacing in all possible ways one vertex by another G and repeating 
o 

any number of times. For example all possible parquet graphs of order 4 
are y 
o o o x c x f i < D > T P " - Q o -
The contribution to g i of the sum of all such graphs is a geometric 
series 

Si * g[l + gP2i + ... + (gP 2i) n + . . . ] . (22) 
Here p is a numerical constant that is well known to renormalization 

2 
group people. Under our conventions its value is 9 / (2n 2 ) . We remark in 
passing that this series sums to g/U-gp^i) so that if g is negative g.. 
decays like 1/i for large i. This is the asymptotic freedom of the 
negative coupling model. Taking the Borel transform of (22) gives 

B{g,}(t) * t + t*p i/2 + ... + t(tp i)n/(n+l)! + ... . (23) 

- [e 2 - l]/pai 

Hence we have the introduction of exponentially growing factors 
exp[tp^i] into an expansion which, without the running coupling 
constants, has only exponentially decaying factors. (Recall (18).) The 
renormalon singularity occurs when the Borel parameter t gets big 
enough that the growth rate equals the decay rate i.e. when 
t»2/p - 4 n 2 / 9 . The "extra" factor of 2 is there because symmetry under 
interchange of x and y improves the M* ^ of (18) to M 2 ^ By way of 
comparison the instanton singularity occurs at t«-(3/2)(4it2/9) in . 

Of course we have left out many details. It is not too hard to 
show that the 6-point euclidean green's function (for example) in 
is analytic at least to the position of the expected first renormalon 
singularity [FR2]. On the other hand it appears rather difficult to 
show that all the infinitely many terms containing the singularity do 
not cancel out. At the present time about the best that we can say is 
that it appears feasible to prove the existence of a renormalon 
singularity in a vector model when the number N of components of 
the vector is very large. In this case there is a small parameter, 1/N, 
which suppresses all but a finite number of the singularity bearing 
terms. In addition the Lipatov singularity moves very far from the 
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origin and does not need to be treated carefully. 
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