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I. INTRODUCTION 

Chiral anomalies are objects discovered as such about fifteen years 

a g o ^ . Preceding the discovery of dilatation anomalies, they constitute one 

of the major conquests of the period of the seventies through which the 

analysis of perturbative expansions essentially came to a final acceptable 

stage. 

They were recognized as important, not only in connection with our 

views on symmetry breaking, but also, somewhat later, as major obstructions 

to the consistency of the perturbative treatment of fully quantized gauge 

theories. 

Over the last five years or so their mathematical structure has been 

substantially better understood, but there are indications that more work 

may be needed in view, for instance, of the idea, vigorously defended by 

2) 

L. Fadd^ev , among others, that an anomalous gauge theory may very well m m 

cut to possess a consistent interpretation, at the non perturbative level, 

of course. The example of the chiral Schwinger model analyzed by R. Jackiw 

and R. Rajaraman does indeed force us to keep in mind that, so far, anoma­

lies have only been shown to spoil the perturbative regime. 

To come back to the present, developments have taken place in several 

complementary directions: in view of the often severe computational diffi-
4) 

culties met in direct Feynman graph perturbative computations of anomalies 

several lines of attack have been devised to analyze their structure. 

At the most primitive level, the algebraic analysis of the Wess Zumino 

consistency conditions allows to reduce the computations to those of a finite 

number of numerical coefficients. This method often requires sharpening the 

algebraic formulation of the symmetry affected by anomalies. On the other 

hand, neither does it explain the role of chirality, nor does it explain the 

arithmetic regularity of the various coefficients involved, which has proved 

crucial in the analysis of anomaly cancellation mechanisms. 
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These more detailed, very important structural aspects can be reached by 

application of sophisticated versions of index theory which have however so 

far failed to incorporate ab initio the crucial concept of locality^ . 

It is to be hoped that, in the long range, the whole subject will find 

itself fully contained within a ,flocal,f index theory, but, at the moment, the 

algebraic theory and the index theory appeal to different cohomology theories 

and actually both approaches have provided results which the other one is not 

able to produce*^ . 

Since the coverage of the subject has fortunately been shared between 

Paul Oinsparg^ and myself, I will mostly describe here the algebraic aspects 

of chiral anomalies, exercising however due care about the topological deli­

cacies involved here and there. I will most of the time illustrate the 

structure and methods in the context of gauge anomalies and will eventually 

ciake contact with results obtained from index theory. I will then go into 

two sorts of generalizations: on the one hand, generalizing the algebraic 

set up yislds e.g. gravitational and mixed gauge anomalies, supersymmetric 

gauge anomalies, anomalies in supergravity theories (a model anomalies will 

be treated in P. GinspargTs lectures); on the other hand most constructions 

applied to the first - and eventually second - cohomologies which characterize 

anomalies easily extend to higher cohomologies. Although the latter have not 

sc far received firmly founded physical interpretations, they have appeared in 

the topological analysis and definitely belong to the theoretical framework. 

Section II is devoted to a description of the general set up as it 

applies to gauge anomalies. It owes much to an article by J. Manes, 

B. Zumino^ and myself, whose writing has now come to an end (referred as 

MSZ in the body of these notes). 

Section III deals with a number of algebraic set ups which characterize 

more general types of anomalies: gravitational and mixed gauge anomalies, 

supersymmetric gauge anomalies, anomalies in supergravity theories. It also 
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includes brief remarks on a models and a reminder on the full BRST algebra 
of quantized gauge theories. 

A mathematical appendix is devoted to a description of the general 
cohcmological constructions which underly the whole analysis. 

II. GAUGE ANOMALIES 
9) 

(Perturbative current algebra anomalies ): 

Let S(<|>) be a classical action involving "matter" fields transforming 
linearly under an internal compact Lie symmetry group G, of the renormaliz-
able type, T(<b) the corresponding vertex functional 

CO 
ru>) - S('J0 + r t i n r ( n ) (<J>) (1) 

If S is invariant under the action of G it is in particular invariant 
under the action of Lie G. This is expressed by a Ward identity 

W - (a>) S(<p) - 0 0) € Lie G (2) cl. 

where W ^ (OJ) is a functional differential operator linear in 0). This 
set up covers the situation where the internal symmetry G is softly broken. 
One can then show that the renormalized perturbative series representing 
r((J>) can be defined in such a way that 

W(to) r(<p) - 0 (3) 

where W(OJ) fulfills the commutation relations 

[W(a>),W(a)f)] = W([oo,a)f]) w,tof € Lie G (4) 

Let be the gauge group associated with G (maps from space time to G 

in the simplest case). Then it is easy to extend S(<£) into S(<j>,a), where 
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a is an external classical gauge field transforming under Cj in the well 

known way, and (w) into V ^ ( , ÜJ e Lie ̂  , in such a way that 

V , (w) S(<(),a) = 0 (5) 
C JL • —* 

This is easily carried out by "minimal coupling". 

The question is then whether T(§) can be extended into r(<J>,a) and 

%P - (to) into VCta) in such a way that ci. — — 

? 
tf(tü) r(c¡),a) = 0 

aj,a)T € Lie ̂  (6) 
№ ) , V(a3 f)] = VP([03,a3f]) 

It is found that this is in general not the case, precisely when the matter 
fields contain chiral spinors. Eatihtr. cue has an anomalous Ward identity 

r(*,a) - / M 0%,a) (7) 

where OL(o),a) is a differential form linear in co, a local polynomial in 
a and its derivatives, and J denotes space time integration. 
This describes the situation for d = 4-dimensional perturbatively renorm-
alizable theories. The locality property of OL is due to the locality 
properties of perturbative expansions; -zhe fact it has canonical dimension 
4 comes from power counting. CL is partly characterized by the Wess Zuminc 
consistency conditions which follow from the commutation relations Eg.(6): 

Vf(cj3) JttCü/,a) - 1 % f ) / tt(a),a) - / «([o},^1]) - 0 . (8) 

By the algebraic Poincaré leranâ ' applied to the local functional SL(ú),a), 

one has 

^ « ( a ) ' ^ ) - W ) a(a),a) -C(([w,a)f]) - 0 mod d (9) 
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where "mod d,f means "modulo" the exterior differential of a form local in 
03 , 03f,a> and their derivatives. 

The Wess Zumino consistency condition characterizes JdL(a3,a) as an 
element of H1 (Lie ̂  , r*°C(a)) (cf. Appendix) where r*OC(a) denotes the 
space of local functionals of a, because a change of renormalization pres­
criptions, which does not introduce a dependence on $ and alters T((j),a) 
by a local counterterm r^ 0 C(a), alters <X(aj,a) by an amount (̂co) r^ 0 C(a). 
In the case of d =» 4 renormalizable theories the elimination of the linearly 
transforming "matter" fields requires a bit more than che Wess Zumino consis-

loc 
tency conditions when G contains U(l) factors; once V (a,<tO is 
reduced to r̂ "°C(a) there only remains to compute HL(Lie ̂ , r* O C(a)). The 
result, which will be described later turns out to be completely expressible 
in terms of the differential form a, and its exterior derivative, not sepa­
rately on its coefficients and their derivatives. Besides the complete 
results for dimension d - 4 summarized here, there is now one complete result 
known, for arbitrary d, namely the general computation of H*(Lie <J, r^°C(a)), 
recently carried out by M. Dubois Violette, M. Talon. CM. Viallet^, to 
which one may apply the various general constructions described in the appendix. 

n + 
For instance, given an n cocycle mod d, Q^O-^a) of Lie ̂  with values in loc, . + + 

T (a.) , we may construct the corresponding Wess Zumino cocycle' 

f Qp (gj'd^,8*!) ( (10) 

§t 
where a_ is the gauge transform of a : 

ga - g"lag + g"ldg (11) 

f * from now on 0) denotes the generator of H (Lie£p, cf. Appendix, eq.(A9). 
cf. Appendix eq.(A13). 
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and &p is a cycle in the base manifold, of dimension p, the degree of 

Q n as a differential form. P 

In particular, for n=l, p=d, the dimension of the base manifold we 

get the Wess Zumino action 

T^Cg.a) - j a ( g ^ d t g t , S t a ) (12) 

T 1(e,g)xM d 

which fulfills the Ward identity 

6 T^Cg.a) = f <X(oj,a) (12) 

M d 

where <5 is defined by 

5a = - dm - [a,03] 
(14) 

6g = cog 

(cf. Eqs (A27),(A10)); 
Note that a non trivial cocycle with values in F Oa) becomes trivial -

• 10 0' • • 

up to non uniformity - in F "(g9a) where a new variable g € ^ , behaving 

non linearly under ^ , has been introduced. This is one classical procedure 

to "kill cchomology". The other known procedure, the so called Greer. 

Schwartz procedure requires the introduction of a 2-form with suitable trans­

formation properties and will be mentioned in the next section. 

The non uniformity of F ^ J is clearly parametrized by T T 7 ( fc| ) , the 

first homotopy group of the gauge group and, upon proper normalization, can 
13) 

be gotten rid of by exponentiation in most cases of interest (e.g. compact 

space-time, see MSZ for further details). 

We shall now describe in some details the results of M. Dubois Violette, 

M. Talon, C M . Viallet 1 1^ (referred to as DTV), namely exhibit the cons­

truction of canonical representatives Q^(o),_a) for H*(Lie ^, r ^ ° C C a ) ) . 
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Some technical preparation is in order: Let 

F = da + I [a,a] (15) 

be the curvature of £. 

Let be a symmetric polynomial on Lie G of degree n, invariant under 

the adjoint action of G. 

One has the following transgression formulae inherited from Chern, Weil. 

Cartan: 

J (F(a)...F(a)) - J (F(a ).•.F(a )) n — — n —o o 
1 

= r. (d + 5) / J (d.A F(A )...F(A )) 

= (d + 6) Q (16) n 

where a is a fixed background connection (/ 0 if connections live on a 

non,trivial bundle, cf. MSZ), and 

Afc » t a + (1-t) (a+u>) (17) —t —o — 

is a family interpolating between â  and a.+0). is an element of total 
degree 2n-M bigraded by the form degree p and the degree in 0),g 
(p+g » 2n-l): 

g-2n-l 
Q E Qf , „ 0 8 ) 

g=0 2 n~ !~ g 

Expanding Eq.(16) in powers of co we get the hierarchy of identities 

J(F(a)) - J (F(a )) = d Q° n ~ n —o zn-l 

0 = 5 Q° 1 + d Q1 9 

2n-l 2n-2 
= 6 0 ° , + d 0° , 

y2n-l-g y2n-l-g-l 
0 = 6 Q 2 n _ 1 (19) 

o 
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If is irreducible, namely is not the product of several invariant poly-

2n+1 
nomials, Q q is an irreducible antisymmetric invariant polynomial in 03. 
Conversely, one can show that these invariant antisymmetric polynomials 
generate H (Lie G) when J spans a system of generators of invariant 

i 
symmetric polynomials- The Q̂ 's appear as building blocks for H (Lie ̂  , -.loc, N N i (a)): 
Th (D.T.V.): A system of representative cocycles for H*(Lie£,r l o c(a)) is 

given by expanding in powers of 03 all expressions of the type: 

gi=min(2ni+l) 
n I Qfi n (J (F(a)) - J (F(a ))), (20) ^i g.=0 2n rl- 8 i "i ~ mi ^ 

integrating them over cycles of the base manifold, considering as distinct 
those for which the expressions 

g£=min2n^+2 
n I QfJ , a n (J (F(a)) - J (F(a ))) (21) n. g i-0 2^-l-8i ^ *i ~ »i -o 

nj<n2<.•,<nk 

are independent, with the notation 
Q 2 ? 1 + 2 = Jn +1<F(a)) - J„ + 1 ^ ( 0 ) • ( 2 2 ) 

-l n̂ +l — n̂ +l —o 

The system of generators of H*(Lie ̂ , r^"OC(a)) has first been written down 

by J. Thierry-Mieg*^ . That these expressions are 5 cocycles mod d is a 

consequence of eq.(19). This was partly conjectured by J. Dixon, as reported 

in ref. 10). On the other hand, the independence statement proved by D.T.V. 

requires heavy use of homological algebra which we cannot report on in any 

detail here. 

For practical purpose this analysis shows that anomalies are all of the 

form n (eq.19), and in one to one correspondence with non necessarily zn—Z 
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irreducible invariants Ĵ , for even dimensional space time, but it also 

provides amusing examples in odd dimensional space time when G contains 

at least two U(l) factors 1 1 )' 1 4 ). 

III. MORE GENERAL DIFFERENTIAL ALGEBRAS^ 

It must be clear from the preceding section what anomalies are in other 

similar situations which are of essentially two types: 

- the anomaly is still associated with the cohomology of a Lie algebra; 

the anomaly is associated with a differential algebra which is not neces­

sarily - known to be or to contain - the cohomology algebra of a Lie 

algebra. 

Of course the first type is a particular case of the second. It covers the 

following situations of interest: 

- gravitational and mixed gauge anomalies '' ' ; this is both useful and 

educative because the problem is often set up in such a way that it is not 

apparent whether one is dealing with the cohomology of a Lie algebra, a 

situation which still prevails in a number of cases touching supergravity 

theories; 

supersymmetric gauge anomalies*^: the interesting feature here is that 

the non polynomial structure of the anomaly is rather obscure from the 

point of view of differential geometry. The reduction of the anomaly to 

the Wess Zumino gauge, on the other hand, poses a problem of the second 
. 13) ,32). type ; 

anomalies in a models (see in particular P. GinspargTs lectures^'). 

In this case there remains to compute the relevant cohomology with values 

local functionals of the a model fields. 
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In the second class one finds for instance: 

- the full BRST cohomology relevant to the perturbative renormalization of 
gauge theories; HX(BRST, r*° C ) was computed by BRS under restrictions 
provided by power counting. H. Kluberg Stern, J.B. Zuber, B„W. Lee, 

20) 
S.D. Joglekar, John Dixon performed a number of additional steps but 
this problem may have to be taken up again in order to investigate the 
structure of the Ward identity characterizing a fully quantized anomalous 

2),21) gauge tneory ; 

- supergravity theories: in terms of various sets of component fields res­
tricted by gauge choices, these theories are characterized by differential 

22) 
algebras which are not obvious extensions of Lie algebra cohomology 
algebras. In most cases there remains to check that, extending the gra­
vitational case, local supersymmetry does not modify the classification of 

23) 
anomalies; e.g. the Green Schwartz cancellation mechanism can be 
performed in a way compatible with supersymmetry 
This list is certainly act exhaustive; a number of other differential 

25) 
algebras are in sight e.ĝ  the algebra associated with differential forms , 
the algebras associated with constrained dynamical systems 

In the following, we shall gather some results pertaining to a few 
examples of recent interest we have listed above. 
TTT i • • i J • J i- 4),8b),16) 

An external gravitational field on space time M may be represented by 

a vielbein form 
e a = e a dxp a = 1... d » dim M (23) 

^ y a 1... d = dim M 

and a spin connection 

9* - 9* dxy (24) b by 
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which is a Lie(SOd) valued cue form. At the classical level, the action 

describing the coupling of matter with external gravity is invariant under 

SO(d) gauge transformations and diffeomorphisms of M. At the quantum level 

the question is whether this is true for the vacuum functional F(e,9). The 

action of 90(d) gauge transformations is clear but that of the diffeomorphisms 

of M is not uniquely defined: a sensible definition requires the intro-
o 

duction of a fixed background spin connection 9. 

The structure equations of the corresponding differential algebra are^ : 

o 
Se = - Qe -
66 - - D(8)fl - irR(9) + D('9)i (9-9) 

1 i° 1 0 

Z c, ± c -t 
5C = - j . (25) 

where Q and t, are the cohomology generators corresponding to S0(d) gauge 

transformations and diffeomorphisnts of M, D(9) 38 d.+ [9,.], 

R(9) = d8 + ~ [9,9], i~ denotes saturation of a differential form by the 
z 

vector field £ and 

= i^D(9) - D(9)i? (26) 

is the covariant Lie derivative operator acting on forms. These are the 
o 

structure equations for the cohomoiogy algebra of a Lie algebra e(9) with 
loc ° values in T (e,9). The commutation relations defining £(9) are: 

[W(n), W(Q F)] - W([Q,^]) 
° o [W(5), W(n)] = W(^Q) = W(i?Dfl) 

[W(C), W ( C f ) ] - W ( [ £ , C f ] ) - W(i^,R(9)) (27) 

o 
If M is parallelizable one may of course choose 8 = 0 . 

o 1 
Given two background connections 9, 9, one has an isomorphism 
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o l 

e(9) « e(9) * e (28) 

given by 

o i def 
W(8) - W(fl) - W(fl) 

5(C) - W(C) + W<i?(9-9)) . (29) 

A change of generators in the differential algebra (Eq.25): 

ñ - S2 - i?(9-9) (30) 

allows to cast the structure equations into the fonn 

6e = - fie - (i?D(9) - D(9)i?) e 

69 - - D(9)Í2 - icR(9) 
s 

<5fi - - \ [ñ,Ú] + i- i?irR(9) 

55 - -ir ( 3 D 

O 

from which 9 has dropped out but which is no more obviously the set of 

structure equations of a Lie algebra; as one often says, it is related to a 

fffield dependent" Lie algebra in which W(£) is interpreted as generating 

,fparallel transport". This may be physically appealing but is mathematically 
^ 1 o c 

obscure. The cohomology K (e, F ( ) has not yet been computed, but 

it is a relatively easy exercise1^ to construct some representatives of 

H*(e, F l c C(£)): it turns out that 

&(e+Q) - (d+6)(e+ñ) + j [e+ñ, 6+ñ] 

- e~^ R(9) (32) 

It follows that 

J n(&
n) - J (R(9)n) - (d+5) CL , (33) 
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where 

Q2n-1 = Q I J n< e-9 +«»^t" 1 ) ( 3 4 ) 

0 

with 

^ - &(6 + t e _ 1?(0-e+Q)) (35) 

So, 
e"1? J (R(6)n) - J (R(9)n) 

n Tl 
1 -i o . o -i- o n-1 

= (d+5) n / J (e 5(6-9+fi), 31.(6 + t e 5(9-9+fi)) (36) 
0 n 

Now, in dimension < 2n-2 

(i r) k J (R(9)n) - J (R(9)n) - 0 (37) c, n n 

V- k > 1 . The terms Q« , * g > 1 > of the expansion of Q 0 . thus — zn-i-g - zn—i 
yields representatives for H*(c, r*°C(0)) upon integration over cycles 

16) ^ 1 c of the correct dimension. One may thus conjecture that H (e, V °C(0)) 
~ H*(Lie ̂ , F^OC(8_)) where Lie<£ c £ is the relevant gauge group (corresponding 
to S0(d) x G in the mixed gravitational gauge case). 

In the language of ref. 8a) the derivation î  is a homotopy which inter­
twines d+6. and where 6^ * 5 | . 

The first cohomology has been more extensively studied, since it is of 
immediate physical interest. In particular other particular representatives 
have been found by W. Bardeen and B. Zumino2^ for H^e, r^0C(e.9)) from 
which the Q component has been eliminated via a Wess Zumino counterterm. 

We now turn to: 

17)28N 

III.2 §UE£ESX55Striejgauge_anomalies_in flat_d=4 jiimensional_su£ers£ace ; 

The previous examples have lead to results rather compactly expressed in 
terms of differential forms, most of which can be obtained by topological 

1 
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39) * arguments, via the index theorems, through the isomorphisms H (Lie . ) 

- HpR i n v 9 • ) a s explained in the appendix. Once the role of locality 

gets incorporated into the index type analysis, the latter offers of course 

more accurate results in each specific case since it provides an identifi­

cation of the relevant invariant polynomials. 

The supersymmetric case to be described now is one in which the geometry 

is still in a complete state of obscurity and in which the algebraic set up 

yields an answer through an equally obscure route. 

Whereas the connection form a_ naturally appears in the classical case, 

the corresponding gauge superfield V appears by solving constraints to be 

imposed upon the super-connection forms Cp, <f which respectively transform 

under the chiral and antichiral gauge groups. The search for a manifestly 

supersymmetric solution of the consistency conditions is ascertained to be a 

difficult task in view of the theorem that, if the structure group is semi-
— 29) 

simple, the anomaly cannot be polynomial in the components of (p, <p 
It is known to be parametrized in terms of invariant polynomials of degree 3, 

30) 
Ĵ , by a theorem of 0. Piguet and K. Sibold (the P.S. theorem). 

On the other hand, remarkably enough, it has been shown by L. Bonora, 

P. Pasti, M. Tonin (B.P.T.)^ that a representative, polynomial in the 

components of cp, <p , can be found for the first cohomology of the graded Lie 

algebra generated by gauge transformations, space time translations and rigid 

supersymmetry transformations: the algebra used to find gravitational ano­

malies applies, xtfith £ restricted to vector fields generating space time 

translations and rigid supersymmetry transformations. In the present case 

however the vanishing of e 1- J^(R(8)n) (cf. eq.(35)), in the useful 

dimensions,does not apply in rigid superspace. However, remarkably enough, 

the use of the constraints on cp. cp , allow to throw the l.h.s. of Eq.(33) 

into the r.h.s. under th* d+6 symbol! There foliov polynomial expressions 
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involving an explicitly non vanishing supersymmetry anomaly. By a theorem 
31) 

of 0. Piguet, M. Schweda, K. Sibold , tha latter is trivial. However it 

turns out to be the coboundary of a non polynomial Wess Zumino type local 

functional and its elimination provides the manifestly supersymmetric, non 

polynomial form of the anomaly precedingly announced, which can also be 

directly obtained by superspace analysis?^ We refer the reader to the 

original articles, since the final formulae are neither appetizing nor 

methodologically illuminating. 

Clearly, more work has to be done in order to reach some decent under­

standing of this structure, which should reasonably emerge from a clear 

description of the geometry. 

Another interesting exercise is to find the anomaly directly in the Wess 
18) 

Zumino gauge. This has been done by H. Itoyama, V.P. Nair, H.C. Ren who 

find both a gauge and a supersymmetry component, with vanishing translation 

component. The interest of the exercise lies in the fact that the corres­

ponding differential algebra (cf. ref. 32, eqs 6.2, 6.3) is the prototype of 

one for which it is not known whether it is an extension of the cohomology 

algebra of some - in this case graded - Lie algebra. 
III.3 a_models7)'19) 

Anomalies in a models are treated in detail in P. Ginsparg lectures^. 

They have been investigated by topological methods first by G. Moore and 

P. Nelson, then, together with A. Manohar. This work has now been somewhat 

deepened and generalized by L. Alvarez Gaume and P. Ginsparg. 

The Lie algebra defining the anomalies is generated by the isoraetries 

of the target space and the gauge transformations of the corresponding 

bundle of frames. It is a relatively simple matter to find representative 

1-cocycles by substituting into the usual formulae the expressions of the 
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gauge field in terms of the a field. But there is at the moment no complete 
result concerning the non triviality of these expressions (there is no proof 
either that these are the only possible anomalies). At the moment, anomalies 
associated with topological obstructions are known to be non trivial in the 
local sense. In the particular case where the target space is a homogeneous 
space G/E sufficient triviality conditions on the known candidates have 
been found by L. Alvarez Gaume and P. Ginsparg, namely that the H repre­
sentation of the chiral fermion fields originates from the reduction to H 
of a representation of G. 

More complete results would be welcome in particular because of the role 
19) 

played by a models in supergravity theories 

III.4 B^RAS^T;_cohomologv9^,33^ 

At the classical level, the action for a fully quantized renormalizable 

gauge theory reads 

r G l* - J G£inv(a,(?)) + b ^ ( a , W + u s <5 + Q(b)) (38) 

where a is the gauge field, <J> the matter field, b the Stueckelberg 
field, 0) the Faddeev-Popov ($TT) cohomology generator, OJ the $TT multi­
plier, (j a gauge function. On has 

«r c 1 , - U (39) 

with 

sa = -(do) + [a,a)]) so) 35 - j [a),oo] 

S<j) = t(to)<{> 

soo » -b sb = 0 (40) 

where t(.) is the representation of Lie <̂  on the matter field. 
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In order to allow the invariance property (eq.39) to go through the 

construction of the perturbative series describing quantum corrections, one 

introduces sources A, $, ft linearly coupled to sa, s$, so) 

rsource = j A s a + $ ^ + Q s a ) ( 4 1 ) 

So that 

r ° = f d + r S O u r c e (42) 

fulfills 

J \5a OA ' 5o 6* 6ua 6ft " 5(3 / 1 J ; 

This is the Legenclre trans fort-; of the linear Ward identity which Z , the 

connected Green's functional fulfills. 

Assuming that 

r = F° + I t,n T ( n ) (44) 

has been proved tc fulfill eq.(43) up to and including order n-1, the 

question is whether eq.(43) can be fulfilled at order n: 

f (§ll§ll i l l i l Z . . §ll §ll §iZ §ll . §ll §f!_ 5T^6r^ 6r n \ 
j \<Sa 6A £A 5a " 6i> 6* " 6$ 6<p 6w 5ft ~ 6ft 6w " 5S / 

+ S l 1 - ^ - 0 . (45) 
. 5a OA <5(p 5<P 

This is an equation for the n^1 terra in the local effective action 

r f f - r ° f f + S t i V ^ S = § T„ r (46) eff eff eff 4 

obtained,for instance (in the BPHZ framework), by truncating the p-space 
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Taylor expansions of the coefficients- of T in such a way that only dimension 
4 monomials survive, from which renormalized Feynman graphs are constructed. 
One may also appeal to a regularization procedure and carry out renormaliz-
ation by the separation of divergent parts. Equation (45) may be rewritten as 

f F n + R n - 0 (47) 

where 
„n , "I1 §Tl 5 r n " P . 6Tl 6r n ~ p

 + §Tl 5 r n " p (48) 
K J • \ 6a 6A 6<f> .5* &i Su p-1 

is fully determined by lower order terns assumed to fulfill the Ward identity 
and 

J 6a 6A ~ 6A 6a T 5<J> 6$ " 6* ' S$ ' 6a> 6Q 6Q 5oj " 6ai 
(49) 

which fulfills identically 

(A°)Z - 0 (50) 

by virtue of 

.,„0, _ r 6r° 5r° x 6r° 5F° , 6r° 5F° , 61"° n , - n 

^ > = J 6a~ 6A~ + 6 T T & T 6?T " ° W = ° ( 5 1 ) 

Now, it foLlows from the action principle that 

£° r n + R n - A n (52) 

where A n is a local expression. 
We will see in a short while that the recursion hypothesis implies 

3° R n » 0 (53) 

It follows that 

^° A n = 0 (54) 
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Thus, if the first local cohomology of ~5° is trivial^ one has 

A n - Д Г? (55) loc 

so that,replacing Г П by 

Г П - Д Г ? = f n (56) loc 

which amounts to altering T Г П - Г П
Г £ by the local counterterm Д , 

ц eff loc 
one fulfills the Ward identity at order n : 

-4° f n + R n = 0 . (57) 

The first local cohomology of was computed by B.R.S, * and 

shown to boil down to the Adler Bardeen obstruction. Extension of this to 
the definition of invariant local operators паз been performed by 
S.D. Joglekar and B.W. Lee, H. Kluberg Stem and J,B. Zuber and a general 
analysis undertaken by J. Dixon2^ and pursued by J. Thierry Mieg*^, 
L. Baulieu and others, but at the moment there is no complete result on the 
local cohomology of <?q. 

33) 

We end up this section proving eq.(54) from the recursion hypothesis 

A(T°) - 0 
4° Tl « о 

f r 2 + I 4 r 1 = 0 

Л° Г п _ 1 + I [^Гп_2 + -5 2Г п _ 3 + ... +>S n"T n] - 0 (58) 

with the definitions 
Л(Р) - (§lL§_ <srp 6 

J бф 6V 6Y 6ф 

- а(Гр) p > 1 (59) 
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where for any functional F, 

a ( F ) = J 5̂ 7 6? " 6f Hp ( 6 0 ) 

and 

i|; - (a,<J>,a)) 

¥ - (Af*fJ2) (61) 

42) 
One has here a graded symplectic structure : 

B - / 8i)AW <62> 

a(F) is a vector field defined by 

B(a(F)) - 5F (53: 

For two functionals F, G, one has: 

a(F)G - (-) d g F d g G a(G)F 
Def [F,G~! . (64) ĝraded Poisson bracket 

with 

*([F'G]graded> = [°<F),a(G) l g r a d e d <«) 

Thus the graded Poisson bracket fulfills the graded Jacobi identity. Ultii 

these notations 

R n = [rP, r n _ P] = I I [rP,rq] (66) 
p-1 (pq),p+q=n 

p^0,n p<q 

Now A° acts as a graded derivation on the graded Poisson algebra: 

^°[F,G] = 4 ° o(F)G = [^°.a(F)3 e dG + (-) d e g F cr(F)>50G (67) 

- atf>°F)G + (-) d e g F a(F) ̂ °G 

- ^°F,G] • (-) d 6 g F [F,A°G], (67) 
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(The main step of this derivation is to check that [-$°,a(F).] = a(̂ )°F) ). 

So, 

A° R n -• 1 E [^°rP,rq]+ + [rP,>i0rq] j 
j 

. - | z £* p lr P 2,r q] - i s [r p ,/S q ir q 2] 

- - } e [crPl,rP2],rqJ - { z [rp,rrqi,rq2]] 

= - i E [[rp,rq],rr] (68) 

where the summations range respectively over: 

p,q : p+q = n p^ 0,n ; 

Pi,P2,q : Pi+P2+q = n q̂ O, pi^O, p27̂ 0 

p.qî qz : p+qi+q2 = n pA), qi^o, q2rO 
p, q, r : p+q+r = n p^O, q̂ O, r̂ O . 

The final expression vanishes since each triple p,q,r satisfying the correct 
34) 

conditions occurs in three terms which cancel by the Jacobi identity 
This concludes the proof which, in the present form, I dedicate to V, Glaser. 

As a last remark, let us point out that eq.(43) is also fulfilled by 
êff a n <* P r o v ^ e s ^ n particular a deformation of the classical invariance 
defined by eq.(40). 

III. 5 §H25ES£5Yi^Z-.£!}S0£ies 

We shall limit ourselves to N=1 supergravity, possibly coupled to 

Yang Mills and chiral matter. In a superspace formalism, the geometrical 

set up is reasonably clear, namely one has invariance uncer superdiffeomor­

phisms, Lorentz supergauge transformations, gauge tiansformations. The 

variables are superdifferential forms subject to invariant constraints"*'̂ . 
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However, solving constraints- and imposing Wess Zumino - like gauge 

conditions leads to various systems of component fields and auxiliary fields. 
22) 

The corresponding differential algebras expressing the invariance of the 

action have been written down explicitly by K. Stelle and P.C. West in the 

case of the minimal, auxiliary field system, by L. Baulieu and M. Bellon in 

the case of the Sohnius-West system. The structure equations look like a 
32) 

fairly opaque amplification of those describing the Wess Zumino gauge 

This renders the solution of the anomaly problem rather difficult to 

.treat thoroughly. In the case of the Sohnius West system the absence of U(l) 
22) 

anomalies has however been carried out by L. Baulieu and M. Bellon 

The question of the cancellation of anomalies in the zero slope limir. 

of string theories has led M.B. Green and J.H. Schwarz to the discovery of 
. . . » • loc 

a new mechanism which allows to trivialze anomalies in T (gauge fields) 

by going to 1 ^ ° °(gauge fields, antisymmetric tensor fields*^) similar to the 

Wess Zumino trick. However, in order to complete this program, it is neces-
?4) 

sary to show it can be carried out without violating local supersymmetry" 
Clearly this requires working within the framework of a well defined diffe-

40) 
rential algebra . There are several indications that supersymmetry, be it 

30) 
local, is cohomologically trivial as it is in the pure gauge case , 2-

7 6) 

dimensional supergravity" , (see also ref. 22)). This matter deserves to 

be pursued. 

*) . 
present in supergravity theories. 
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IV. CONCLUSION AND OUTLOOK 

In these notes we have attempted to insist on the structural definition 
of perturbative anomalies as they show up in a number of geometrical contexts 
arising from and usually extending symmetries to be implemented at the 
classical level. The mathematical framework has considerably cleared up, but 
many of the differential algebras which arise deserve further study. Some of 
these anomalies are connected with the topological anomalies so far investi­
gated (see P. Ginsparg*s lectures) through the canonical constructions 
summarized in the following appendix. Whereas the local structure of pertur­
bative theories is essential here, its connection with the topological 
properties of various field spaces seem at the moment rather miraculous. The 
miracle is presumably related to the structure of the local formulae which 
sxprvss the various index theorems. Both the local cohomologies envisaged 

here and the topological cohomologies which are the objects considered by 
. 39) 

the index theorems are awaiting some common cohomological denominator 
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APPENDIX 

COHOMOLOGY OF LIE ALGEBRAS, LIE GROUPS 3 7^ 

Let G be a Lie group, Lie G its Lie algebra, V a representation 

space for G, and, consequently> Lie G. 

C n(Lie G, V ) , the vector space of n cochains of Lie G with values 

in V is the vector space of multilinear alternate n forms on Lie G, 

with values in V. Evaluated at X ,...,X , £ Lie G such an n-cochain ? 
o n-I n 

is an element of V : f (X ,...,X , ) . 
n o n-1 
CO 

On C (Lie G, V) = e C (Lie G, V ) , one defines the coboundary operator 
n=o 

<5: C (Lie G, V) C (Lie G, V ) , such that o 2 = 0, by 

•* n t + 
(<5f )(X ...X ) - Z < - ) A t('X.) f (X ...X X ) n o n . 1 o i n 1=0 

+ Z f ([X..X.], X ...X....X....XJ (Al) 
o<i<j<n i j o i j n 

where t(X^) denotes the representation of Lie G in V. 

As is usual one then defines 

Z n(Lie G, V) - [ f / 6 f = 0 }, (A2) 
1 n n J 

B n(Lie G, V) - ( f / f - 6f p f t * C*" 1 } ( A 3) 

n n n-l n-l J 

and, since obviously B (Lie G, V) c Z (Lie G, V ) , 

H n(Lie G, V) = Z n(Lie G, V) / B n(Lie G, V) . (A4) 

The elements of Z n are called cocycles, those of B n are called co-

boundaries, and those of H n are called cohomology classes. Sometimes 
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5 is appended as a subscript or after V, within parentheses e.g. 

Ẑ (Lie G, V), or Zn(Lie G, V; 5). 

The easiest way to check that 6 = 0 is to observe that the anti-

symmetry of f in its n arguments allows to substitute them through the 

Maurer Cartan form ш = g^dg thus obtaining a left invariant differential 

form on G with values in V : f (со, •. .0)) . Conversely, f (X . . .X ) is 
n J n о n 

recovered by evaluating f (со,...со) at the set of left invariant vector 
n 

fields X ...X and substituting XV through the corresponding element X. 
О n X X 

of Lie G. One then finds 

(5f )(co,...co) - [d+t(w)]f (со,.. .со) (A5) n n 
and 

[d+t(w)]2 - 0 (A6) 

follows from the structural equation 

dw + j [o),o)] » 0 (A7) 

The substitution X. со transforms Cn(Lie G, into (G,V), the 
i mv. *' • 

space of invariant differential forms on G, with values in V, 
C*(Lie G, V) is then isomorphic to П? (G,V) = © fi? (G,V), 

mv. mv. 
If V, besides being a vector space has a graded commutative algebra 

structure, £2. (G,V) becomes also a graded commutative algebra mv. 
П* (G) ® V, and so does C*(Lie G, V) = C*(Lie G) ® V. C*(Lie G) is mv. 

graded 
nothing else than the exterior algebra of Lie G, the dual of Lie G (as a 

vector space). As an algebra, it is generated in dimension 1 - the product 

being the exterior product. In terms of a basis e of Lie G and a dual 
g *"~"\m̂s* 8 3 15) basis e of Lie G (e (e ) = 5 ), the structure equations read 

see however the remark after equation (A12). 
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6e - - j [e,e] (A8) 

where e is the "Lie algebra valued generator of Lie G" 

e - I e a e a . (A9) 

e is named by physicists the geometrical Faddeev Popov ghost of Lie S. It 

is a purely algebraic concept. Note that the covariant differential d+t(a)) 

can be transformed into the ordinary differential d by the transformation 

f -* f « g.f (A10) 

where g.f. denotes the action of g in V, so that 

d f - (d+t(a)))f (All) 

Finally, the complete structure equations of C (Lie G, V) sre ̂ iven by 

eq.(A8) together with 

6 u = 9(e) u resp. 5 f = 0 (A12) 

where u resp. u denotes a set of generators of V and 9 the corres­

ponding representation of Lie G. 

Thus every' f C (Lie G, V) can be represented as a polynomial in e and 
u, and of is computed from the equations (A9), (Ai2). 
The differential form version of cohomology is denoted 
H? (G,V) - (G) 0 V mv. ' T)R,inv. w 

where DR is an abbreviation for de Rham. 

An isomorphic representation"^3^^ is given by integrating n-fons over n-

simplexes in G: Let T be a simplex in G, with vertices g ...g t, r n o n-I 
and let 

f (T ) = / f (03,...03) (A13) n n J T n n 
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Then, by Stokes theorem 

1=0 

where 3T1,, is the oriented ith n-face of T In terms of the corrss-n+1 n+1 
ponding vertices 

(^n ) ( Tn +1 (gn'--Sn +l ) ) = * fn(T(gn...g....gn)) (AI5) n n + l o n+l . n n o 1 n 
1=0 

Note that under a smooth deformation of T with fixed vertices,a cocycle 
n 

f (T ) changes by a coboundary n n 

f (T ) - f (T7) = / d f (a) ...0) ) (AI6) n n n n J T n T T 
(T)xTn(x) 

where u) = g 1 d g where g interpolates between T and T f, 0<T<!-T CT &T T ^ n n - -

Using the cocycle condition in the form 

(d t +d T)f n(g- 1d xg T + g^d^,...) - 0 (A!7) 

yields 
n f(T) - f(T') = I 5 (T (g ...g ...g )) ,A'S) n n n n . n—1 n o i n 

l-O 

with 

Tn(T)(g0...g....gn.1)x(T) ( A l g ) 

The corresponding version of cohomology is denoted ^top^ ,^ > a n c* tl^e 

corresponding cocycles are usually referred to as Wess-Zumino cocycles and 

sometimes named (not everywhere defined, possibly non uniform) discrete group 
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cocycles. This is because "discrete11 group cohomology is defined via V 

valued cochains C^. (G,V) which are functions of n-1 group elements, 
aiscr. o r j 

with the coboundary operation 

( 6 f n ) ( 8 o - W f n ( S 0 . . . 8 r . . g n + 1 ) . (A20) 
1 = 0 

These so-called homogeneous cochains^" are furthermore supposed to be invariant 

in the sense chat 

W ' V = Y f n < * " l g 0 , . . . Y ~ V • ' ( A 2 1 ) 

Invariance implies the possible non triviality of cohomology defined by 

eq-(A2Q) (which is otherwise trivial). 

If it so happens that every n+1-tuple of points in G are the vertices 

of some simplex T (g . ..g ), unique up to homotooy, then one is allowed to 
n o n 

write 

f <r (gn...g )) - f (g ..g ) (A22) n n o n n a 1 s c r. o n 

and one Jiay identify the Wess Zumino elements of H n . (G,V) with those 
J top,mv. 

of H^. (G,V) since the Wess Zumino cocycles do fulfill the invariance 

property- It is however safer to consider Wess Zumino cocycles as elements 

of H n fG,V). 

top ' 

Although no general analysis of the non uniformity of the Wess Zumino 

cocycles is known to the author, it can be reduced via the exponential 
13) mas : 

We shall not go here into the < escription of discrete group cohomology via 
inhomogeneous cochains, which, also more widespread in the current lite­
rature, is less suitable for tie present purpose. 
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a e V, f e Z* . (G,V) n top,mv. 

exp f = exp i a(f ) (A23) a n n 

whenever, upon proper normalization the change in homotopy class of 

results into the addition of an integer. Of course, then, cohomology defi­

nitions have to be written in multiplicative,rather than additive, notation. 

It is finally worthwhile describing the procedure which allows to 
37a) 

convert a discrete grouu cocycle into a de Rham cocycle : 
Let f (g . ..g .) be a smooth discrete group cocycle. Then construct 

0)(f) = A*d ...d f(g...g) (A24) n n ĝ  n o n 

where li I S the p:.ill back of the diagonal application G -> G x ... G : 

g (g, . . . &) . 
It is a simple matter tc show that 

cu ̂  (5f ) » d CJ (f) (A25) n+1 n n 

In particular, appl3'ing this construction to a Wess Zumino cocycle 

f (g ...g ) = / fn(a),...w) (A26) 
T^(g_..-g_) 
n o n 

yields 

A (d ...d J f(u),...oo) = f(aj,...io) mod. exact form. (A27) 
g l gn T (g g ) n o n 
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