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ETUDE DES ITERACTIONS D'UNE APPLICATION LIEE

A UN MODELE DE VERRE DE SPIN.

Cette conférence devait &tre donnée par V. GLASER, mais la
maladie 1'en emp&cha. A. MARTIN le remplaga. Ce travail, effectué en col-
laboration avec P. COLLET, J.P. ECKMANN et A. MARTIN, est son dernier
travail. V. GLASER nous a quitté le 22 janvier 1984. Nous garderons de
lui le souvenir d'un physicien pur et d'un physicien-mathématicien de
trés haut niveau dont 1l'oeuvre restera marquante. Sa double appartenance
a fait qu'il a joué un rdle considérable dans la R.C.P. N° 25. Nous gar-
derons aussi de lui le souvenir d'un homme charmant et chaleureux, et

pour beaucoup d'entre nous d'un ami trés cher.
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ABSTRACT

We study the iterations of the mapping

wre(e)] = EENT=(O)7 (5(0))2,

with the constraints F(1) =1, F(s) =% ansn
a_ =20, and find that, except if F(s) = s,
N TF(s)] approaches either O or 1 for |[s| < 1

as k— w.
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I. INTRODUCTION AND SUMMARY OF THE RESULTS

In a simplified version of a spin glass model ") (CEGM), the probabi-
lity distribution of the spin-spin interaction is given by a discrete set of

coefficients a

oo

> a, -1 . > O (1)
h h Z )

n=o0 ’

and after the operation of the renormalization group, this distribution is

replaced by a new one. The operation is best described by writing the equation

which gives the new generating function of the probabilities, N'F, in terms of

the old one, F :

LN\[F(S)] = (F(’C)>;(F(O)) +-(F/o))L) (2)

with F(s)::T ansn. This mapping preserves conditions (1).

We want to study the iterations of (2) and find out what happens to

3
N[ Fe)] - WW'-/\/\[F(S);]]) fp feo
L BN
£ ftaes
and see whether ﬂ“kF(S) approaches a Llimit or has a chaotic behaviour. 1In

the sequel, we use the abbreviation

NK[F(s)] = F(k)(;) ,
F(k)/s) :2* @{‘L)S% .

Tet us summarize the results.

(3)

1) There are only two fixed points ol the mapping: F(s):=s, which is un-
dbable, and Fo)=1. A pseudofixed point is F(s)::"sm", i.eo,
F(s):zO for 0 < s < 1, and Fla) =1 for w=1, There is no pcriodic

point, i.e., the equation
(v \/
F‘ (<.) jnd F(<> ) S

has no new golutiona when k > 1,

/

2) Only three things hngpen to the iterations for k-—e :

i) ir P(s) =s, F(k (s) =5 ¥ k;



4)

5)

6)

7)
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ii) otherwise, either F(k)(s)-*o pointwise for O < s <« 1, and
in fact for ls[ < 1 in the complex plane, or F(k)(s)-ﬂ1
for lsf < 2.

We see thus that the attractors are "trivial". However, it will be

seen that the approach to these attractors is complicated.

F(k)(s)—+1 for k-« if and only if the following conditions are
simultaneously fulfilled

i) F(s)#s

ii) F(s) is analytic in lsl < 2
iii) 1£m F(s) exists and éig F‘(s) exists

iv) F(2)=2P1(2) = o.

Under conditions 3), F(k)(s) approaches unity in the following way
i) if F(2)—2F'(2) >0 strictly, ZIF(k)(s)—1[ converges for
ls| <2
ii) if F(2)—2F'(2) =0 ZIF(k)(s)—1l converges for lsl < 2, while
Z]F(k)(2)~-1lY converges for any ~ > 1. Furthermore, 1lim inf
k(F(k)(2)—-1) < 2,

If F(s)#s and if any one of the other conditions 3) is not satisfied,
then F(k)(s)—»o for |s| < 1.

Finally, let us indicate that similar results, using similar methods, can

be obtained for the mapping
U Y
j\[ [F (s ﬂ = (_\F[S)) ;(F(o)) + (F (o ))k
nelN mxz2 (4)
Fr<2 2, 4,30 ) a,=4

plK)

There is no unstable fixed point.

is analytic in ls' < n and D::F(n)-n(n—1)F'(n) > 0, In the limit

approaches 1 for k—e if F

case, D=0, we only know that F k does not approach zero. In the

other cases, F k)(s) approaches zero for Isl <1,

The mapping

N[F©®) = (F[‘5>>S’(FC°>> 4+ F(0) (5)



where again F(s)::Z ansn, a 207 an:=1, is such that F(k)(s)-*1

for k—o, Isl

In the sequel, we shall not discuss separately the problem of fixed
points (though direct proofs exist 1) because the absence of non—trivial

fixed points follows from the rest of the study.

II. NECESSARY CONDITIONS FOR F(k>(s)740 : ANALYTICITY

First note that from condition (1), we see that if F(s) is defined

in 0 £ s <1 it can be extended to [s,

Assume that F(so)/so <1 for O« So then from (2) we get
(#)
F ($. ( (s, )
Hence, if F(SO)/SO<T1 <k)(s )—*O as k — ®; but since, from the positi-
vity properties (1 'F( )l F(s for 'sl < s o We find also F(k)(s)-*O
for k-—wo, Isl < . However, since , k)(q), 1 in ,sl <1, Vitali's
theorem tells us that [P 5 (s)[ -0 for |s] < 1.

Hence, if F(k)(s) does not approach zero, we have F(s)/s =1 for

0 £ s <1, This implies the following necessary conditions :

‘F—(L)?i)\<17ﬁ%~&, (6)

(k)

Let us now look at the recursion relations for a; following from

the definitions (2) and (3). They are

(&) ~- (£) (&)+ 0 (ﬂ))’“ 7
e ﬁ?m, b W@

= (L .(L
ZQ;,)){WI():1> (8)

If

we get from (7)

NS Y ?a;k)a(?’ g
YR S|

w
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1o, (L
4

> 21 ’Mﬂ [I' ’}H] ) (10)

does not tend to zero for k—o, Then from (6), we get

2L

(k)

leaﬁk) < 1, and hence

b < ()
N .Ilgé )<<\ ;%;égwl /79 CZ?, S;/

Assume now that F

e)

o 1
T< %) (1)

and, by inserting in the bracket in (10) :

)
I [ /hH
EC DN e

Iterating this inequality, one gets, using T(p) <1,

(é) e "4L

&) /1; - (19)

(k)( a(k SYI

is analytic in ,sl < 2. PFurthermore, using the

(k)

Hence F

explicit bound (1?), we get a bound on F which is independent of k :

{F(M(S)/\/ [+ [s] + z.lsl/ll BT« (13)

THE CONDITION F(2)-2F!(2) = 0

Consider the quantity

(4 &/
D(&)[s)u ¥ )(s),-sF )/s), (14)

By differentiating (2), we get

| (&) | 2
D(Ju )(9,) _ M D(&)(S) B %(F&)(o)>‘<15)

—



- 123 -

Agsume that F(k)(s)740 for k—w, Then the F<k)'s are bounded by
(13). Take 1 < &, < 2, and assume D(k>(so) < 0, then from (15) we get
D(k+1)(so) < 0 and

ERNC gzﬁ@> 25 4

since F(k)(s ) >1 for s >1. Therefore, if D(O>(s)==F(s)—sF'(s) is

f-q

]]3 )/s,, /S (0)(%/){ 32; :

However, F(k)(s) is bounded by (13) and (2—,s,)F’(k)(s) is also

negative for one particular s 0! 1= S, < 2, then

bounded by (13). Tor k large enough, this is a contradiction. Hence a

necegsary condition for F k (s) not to approach 0 in 0 < s < 1 is

D(O)[s):. F(s)-s F&)>O/
Vs A< s<a

(16)

1t (16) holds, we can integrate (16) from 1 to s and get

F(s)
g <
Fils)< 1

This means that F(s) and F'(s) which are increasing functions of s have

1<S<Q/ (17)

limits for s=2 that we degignate as F(2) and F1(2). Hence we have shown

the

(k)(s) does not approach O in O < g < 1, then

E$Y2)35Fmo—af%f>/0. (o)

THEOREM : If P

From the positivity of the a”‘s, it is easy to see that (18) implies (16)0

D7) > o

By, (1)

Let uwe now assume

We cnn take the Limit of
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(&+)

D (V)= F(ﬂ%l) D(&)(i)) (19)

and

» b (o)
D(L)@: F(k oy F* 0 FlOD (1)(,20)

But D(k)(s) is a decreasing function of s so

NIES < P

< ofg e )< BBZ)

is convergent. So F(k)(2)-ﬁ1

i

o <1

and

(1) (2

We see that the infinite product g F

for k—e and, since

1 FPo PR 1o

2 -F¥(2)¢ F@’v<i 6<s<

(from convexity)

Foro 1,053 <2 -

Furthermore, ¥lsl < 2 the infinite product kﬁOF<k)(s) converges.

Therefore we have the

THEOREM : If F(2)-2F'(2) > 0, then F(N)(s)—»1 as N-wo, when
Isl < 2, and the infinite product NﬁOF(N (s) converges for

|s|] < 2.

This implies, of course, that N%O(F(N)(Q)—1) converges,

THE LIMIT CASE F(2) =2r'(2)

D(O)(7'>: O (21)

If
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we get from (19), D(k>(2)==0. The only easy result in this case is that
O§(2)=:O is a gufficient condition to guarantee that F(k)(s) does not
approach 0 in O < s < 1, Indeed, we still have F(k (s) < s for 1<s<?2,
and by convexity F(k)( ) 2 s for 0 < s < 1. Let us show that if F(O) >0,
one can in fact get a lower bound on F(k (O) for k 1large enough. Replacing

F and F' by their power expansion, one gets from (21)

Do m
Z(’h—rl) 2 014\) (22)
n=-2 -

and hence 4% a_ < a , Combining with X a =1, one gets
2 n (o} o] n

Sa, )
41>@"zr+ ) =

where [x]+==x for x 20, O for x < 0. Hence
&

(lc+l)> < ()+Q (&)[: ___S_EI.EL +. (24)

The graph corresponding to this inequality is presented in the following

Figure :

/ 16/25

(k+1)

0 2/3 /5 1
all
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It is easy to see that after a finite number of iterations, one gets

&) Is
Clc) ;;2/ zzgl L4 (25)

One can generalize this technique to get more refined lower bounds, but we

shall prefer to use a completely different method.

The trouble with Bq. (15), in the case D(2) =0, is that it reduces
to 0 =0, Differentiating (15) leads to an equation on the second derivatives
of F(k)(Q) and F(k+1)(?) which do not necessarily exist. An interesting

quantity to consider is

7
A = FoeF L S(E’S)F” . (26)

It is easy to see that A is monotonously decreasing. Hence

AGDO L F(o) ¢ 4. (27)

We have also
Ay (2-s8 F'11) fr s> 4 . ()

The iteration of A 1is given by :
() oF Coy () W ),
+1 < y _ k
A (S> 2 A (S>— QS : (F-SF (29)

S

In Appendix I we prove the inequality

(F-sFY <2F A . (o

Therefoxre

(lal)

>> 2(5—1) F A (g) (31)

Tterating, we get
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(kl+)( > 2(5—-1) F'(k()g>A(s>/ (32)

and using inequalities (27) and (28) together with F(k)(s)/s > F(k)(2)/2,
we get, assuming F"(1) #0, i.e., excluding F(s) = s

(&
ﬂ + )( )< . (33)
Fl1)@-s36-13

Optimjzing with respect to s, we find with s=2-2/N,

@
ﬂ F)(>< CF’L> , N> 4. oo

In the limit of large N, we have
> =" (55)
— e 35

Co—> S

If we define e by

N
N
.F_( )(Q_>-_-, 1+ &, y (36)
" we can rewrite (34) as

N
Z_£L<2,0/'L.N-+C«wrt. (37)
&-o

~

This means that, in an average sense, ey Boes to zero. However, we cannot
exclude from (37) the existence of an infinite sequence of eN‘s not tending

to zero., The only safe thing we can say is

Lo Ny <2 - (0)

N o> oo

To prove that ey 8oes to zero, we will use the fact that successive

e's are correlated. Specifically, from

9 F'(H')[Q_): (F(")(l))i(F(")/0))2(@")(2)): 1/ (50)
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we get
A 2
é~+‘ - €f~/< —5- éﬂ . (40)

In Appendix II we exploit this inequality to obtain

En
En-p > 4 Peu (41)
and 2
N
I3 a2
[] (2°“>> ”I‘(érJ)L(“"M*Q) . (42)
4£=M q A
If we combine the inequality (34) with the set of inequalities (42),
we get
= 4; & > . a 2
C N‘f’ > ZI __3_’!4> X(N,—H) (AIZ.—A/‘-fl).,..(Aé’—A?’—I-i-I (43)

In Appendix II we also show that this set of inequalities is very
constraining and allows %to get an upper limit on v(x), the number of ei

larger or equal to x @
e W
'y 3 \2&-—%
n = + M (44)
y(2) < x,) S

for any integer n = 1.

Noticing that (1) =0, if F(s)?s% we get the Stieltjes integral

o~ 1 1
Z (gﬁ)z Mz—-_ fL‘,’ZE d V(%)] :j‘“ %O/fiy(x_)c%c . (49)
@=o Ja) o '

For any o > %' we can find an n such that from (44) we get a convergent
upper bound to the last integral in (45). In particular, to prove that

L.

= (e )2 is convergent, it is sufficient to take n=73%., Hence we have shown

k=0 k
the
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THEOREM : Z(ek)za converges for o > %.
On the other hand, we have the
THEOREM : If D(2)=F(2)-2F'(2) =0, Te, must diverge.

We begin the proof by summing the equations (15) to get

D(sd= == 2-< 5_ (F(N)[OD (46)
v=o T (S) (Q_ N+

M- [TF0.

converges, then nN(Q) tends to a limit I for

where

Assume that Tek

N—o, and ﬂ ( ) < L. We can also start after a finite number of iterations
so that F(N)(O) > 16/25, according to (25).

Then we get, summing the geometric series in (46)

D(sY> L (LY

a contradiction.

[ -] o}
The convergence of ¥ e;
o k

can now be used to prove the convergence of
k§0'1—F(k)(s)| or equivalently n F(k)( ) for ls, < 2.

From (39) we have

| — (F(”)(O))L= 2 (éN - eN-HX + QNL'

Hence
N
(e !
O — (F )[0)>£> -— l 60 *D—-é“_‘_l -+ 2 62' ¢ (49)
e O
=0

The right-hand side is bounded for arbitrary N and is therefore convergent.
. k 2 .
It is also obvious from the monctonicity of F that ? (1 (F( >( )) ) is

convergent for 0 < g < 1,
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For 1 £ s < 2 we have to use a more complicated argument. I we

write F(k)(s)=1+@k(s) we get from the mapping equation

Fi (9> Z g(s) - 52t (- Qo)) .

Introducing ) &
o= (I) Ek(g)) (51)

we notice that xk—*O for k—-o, and we get

x, < 2L (: (é)ow[/ —(Fﬂ%))j . ()

Thus we get a bound on € (s) and can establish the inequality

éizg(s% -l ('-* ”"/f’)))("‘(a) ")

< s=1 Z, (,_.@r ))) (5%)

2-¢

Therefore the infinite product kn F( )(s) converges for 0 < s <« 2 and this

can be extended, using positivity, to l I < 2.

. @ (%)
We have already said that when D(2):=O, the product kHOF (2) must
diverge. One could ask how fast. This depends on details of t;e initial '

F(s).

If F"(2) and PFP™(2) exist (as limtts from s < 2), one can obtain

the equation

ﬂl

W) " )
3F [2)+2F("+‘) [2):‘?-' ﬁ)[}fm(?_)-fif: (2) D
By exploiting this equation, we prove in Appendix TIT Lhat

CN= LTI ™, ¢,50 .
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#(N)

can obtain their asymptotic behaviour :

Then, assuming that the s are sufficiently smooth functions of N, one

S—~1 9

(")( ~ 14 o
Fo(s) = v N>+ 4 D (56)

P

where the relative error on is uniformly in s of the order of 1/N.

This is again explained in Appendix IIT.

It F™(2) or F®(2) and F"(2) do not exist, the situation is more
complex. If PF" exists but Fm(s)ﬂ'(Q—s)-a, HN(Q)“JNz—a, if F""~(2~s)—a
HN(2)“'N1-G. However, this is far from covering all possibilities ! F" can
be singular at s=2 without behaving like a definite power of 2-s. This

is described in Appendix IV.

V. GENERALIZATION OF THE RESULTS TO OTHER MAPPINGS

First, for completeness, we treat the simple case

NEGeY= FO-FO , w0y
S

- (57)
F:EQ.,,S’(/ a,,>,°/ Zq*':i-
If JTkF==F(k)=:2 agk)sn, the recursion relation reduces to
@+ (&) €3
):: Qa -+ (S-’ ' (58)

oy 4,0 2

and by iterating this relation from k=0, we find
(‘:) .‘: /LLJ ‘:“ﬁ’ OO
a =Z Gy —> 4 ‘ (59)
° 2rz=o0 : ,

Hence

F(k)g)ad- ?’L b >0 0Ls LU

Now, consider the mapping

% 2
NF(I): (F@));(F[o)) + (F‘(o))‘h— ) %>/3 , (60)

Here things are very similar to the case n=2, except that there is no

unstable fixed point analogue to F(s):=s. The results are as follows
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i) if F(s) is analytic in !sl < n, and if F(n) and F'(n) exist,
and if F(n)—n(n—1)F'(n) > 0, the iterates F(k)(s) approach 1

for k-, ,s, < n.

ii) in the limit case F(n)::n(n—1)F'(n), F(k)(s) remaing finite and
F(k)(O) is lower bounded by 1-51/n—1) but we have not carried out

a detailed analysis to see if F k approaches unity.

iii) otherwise F(k)(s) approaches zero for Isl < 1.

The methods being essentially the same as in the case n=2, we feel

that we only have to give a few indications. PFirst, one shows that if

(

for k—», Taking the limit so'*1 one deduces that if F k does not

/(£ ~A _
FO< = 0 @

which is the analogue of (6). Then, using the recursion relations

I
(ert) L (& W '3\

0, = 2 G ay-a, + Jf;o (QO) (62)
7 ’;+¢i}“f¢;:¢i+4 "

(k)

this domain a bound independent of k. Next, one introduces the analogue of

(14) : &
)
(g) Y (63)

1"(30)/32/'“-'1 <1 for a given 0 < 8, < 1 necessarily F k)(s) goes to zero

approach zero

One proves the analyticity of F inside ls| < n and one obtains inside

@) @) /
D )= ¥ ()-t-0DsF
which satisfies the recursion relation

41 W
COTN a2 S AN O)

(64)

one proves that D has to be positive for 1 < s < n and one deduces

(x)
(x)

that if F does not go to zero, then
©)
D (2>>/ 0 ~ (65)
- N Pt
(1) &
and, then, if D k (2) #0, on= »nroves that ['7 F 22;)
£zo
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has an upper bound independent of N. This leads to the desired result. In
the limiting case, one cannot exactly carbon—-copy the reasonings because more
terms appear when one differentiates equations more than once. Our guess is

that nothing changes, but we leave it as an exercise for the reader.

CONCLUDING REMARKS

Returning to the case n=2, we see that if we forget the origin of
the problem and think of the equation as describing a dynamical system, we

see that there is no room for a chaotic behaviour, irrespective of the choice

of the initial F. 1In a naive way, one could say that the behaviour F(k)—*o

for 0 < s < 1 is infinitely more likely than F(k)-*1. However, we should
remember that in this initial problem a, represents the probability for the
-n -n-1

variable x to be in the interval 2 *, 2 « So if x has a bounded proba-
bility distribution near x=0, the analyticity of F(s) in |s| < 2 is
automatic. What is not automatic is D(2) = 0. F(k —0 corresponds to a

free system in the limit. F(k)—*1 is more difficult to interpret since a,

corresponds to a large slice % < Ix' < 1. This means that the interactions

are either strongly ferromagnetic or strongly antiferromagnetic.
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APPENDIX I
Proof of the inequality
(}:Z.g Fri)2ﬁ<<: ;L'F:'A> .
From F(2)==2F'(2) we get

cv ne
Qs = Z(O”’)Q'a‘* )
n=22

we have
Co N '
Ferl= Z au-0[2-5"]
n=22
Oo m M
F = > a,,[s +(11~:).1J
=< 0
> “w W ns *
A=3 a2t s 2]
h=2.
To prove

2 - Q ,
( ;2 b“:) <<f ;S- v{';2 WJZ— )
U.4v.,w. > 0, it is sufficient to prove
i?7i71
2
TR < V- W,

[ L o

If we call x=s/2 it is sulfficient to prove

P('X) =0 [I __(M_‘.‘)y,k_*. W xm+jC0\—l +)(’h]—- @—l)(l-‘ 'X'k>1>0

1?.410(%<4_ n>2 .

One has to study the roots of P(x), which, fortunately, has at most four

positive roots, since the polynomial has only five terms different from zero.

Lo

For n =2 6 one proves that I
!

P
1"—l‘

and, with the boundary conditiong,

./
Ly So o, P(1=0, P(D=0,

one succeeds to prove that I ia positive. The cames n=2,7%,4,% nre more

delicate, but the positiviby can still be cstablished.
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APPENDIX IT

F Y2 ¢ (FYey+ o)

we get, with

F(N)(?—) - | +€ (ATI.2)

(- T
[

Evi < €y +5 €y ) (A11.3)

and hence
I

Evii— En < S S En+i - (AIT.4)
Indeed, either eN+12< ey and the latter inequality is obvious, or €Nt > €y
and then ey jex > eg. From (AII.4) we get

oL < = . (ATT.5)

<N Ep+1 2
By merely adding (AII.S) for successive N's, we get

l < E,
— -— AII.6
En-P €W o (o)

and hence the 1nequa11ty (41) follows. Now, we want to get a lower bound on

ﬂ F(k)(Q) i.€ey oOnN kZNlog(1+ek). We use

X
L?(l+x)>7:? 'faux>o, (AIL.7)
2

and

N N+l
£2 @(&)> J‘ f(é)d“é’ Lﬁ { (("‘)\(O ) (AIL.8)

and get, from (AII.6) or (41) :

e,,(m)
Z. (’k H'é“) >§ >Q.QK (A1T.9)

N-P+i =, "9 L+ v /e
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Hence, using €. < 1 in the denominator of the argument of the logarithm, we

N
) - P
2) _l.. c Py ] (AII.10)
N~ ( > g e (P -

get
- s o . e
Combining this inequality with (34), which says that 11 F (2) grows at most
o

like N2, we get (43), which we repeat here in a slightly weakened form

" 2
L
C> —7'—>(élv, €y é”) EN'(NJ—'M') ot "(A/K‘MM—/)
2 .
’ L N+ Wy-Np+ o+ MMy )
N> Np > - >N 4.
The bracket is a monotonously increasing funétion of the Ni+1—Ni

considered as independent variables (including N =:N1—O). Suppose now that w{x)

2 . ! . .
numbers e are larger than x. It is always possible to pick n of them,

351,eﬁ2,...,e§n, in such a way that

N,}[f%@] » N;,ﬂ*“@ >/[)')€‘()] V/}’}

where [x)=integral part of x. Hence

s (3 PE] E Vs

/
Hence I L
y(x)]< %_’h‘-l (_@_)l(h-Q
h ‘ . ‘
and _:ZL__——-
i B 2(n-1)

M= (9
))('X—>< n —i +AaC . (ATI.11)
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APPENDIX IIT

There is no need to prove in detail the equation
N+) w+ fj ///
S #0024 Th Ry 2 B
with, naturally, PV (2)=28(M1(2),

It is straightforward algebra. This equation shows that if F"(Q) and

F™(2) are finite, we get

(N) m(z) an (l> (A111.2)

and, from (34)

I
(”) I[Q-> < C N (AITT1.3)
(N)w

by using the following trick : from the Cauchy inequality we have

Wiy g ) el w2,

A similar bound holds for P (2) but the latter one can be greatly improved

! / )
F( ) FO ) +-9F (2 L+ Ca-T] 2

Optimizing with respect to s, we get

PN D

On the other hand, we have, in the case F(2) =2F'(2)

(- 1)> L(F() (uarz.5)

This inequality can be proved by cubstltutlng the expansions

') = 2 ’h(/h—f)l Q« P
Flo) = Z(/h—-r)i Ay
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S "
F(2)-1 = ;@'-—’)L Xy, Y,

and using the Schwarz inequality.

So from (AITI.4), (AIII.5) and FN(O) > 16/25, we get

‘ ]u-u (2 ) > [ ¢ (AIT1.6)
‘ 2
My (22) (.

and since nN~*w for N—ow

,,41(1)>/+C £)

W‘Tz)(

¢ arbitrarily small for N big enough, and hence

m: ,m > Ql > O . (ATTI.7)

Therefore

N
C; NO._ (D F_(k)(2—>< C;_/Vl: (ATI1.8)

At this point it is tempting to assume that HN(Z) behaves like N2

and to assume that ey = eN(Z) has a smooth behaviour in N :

2 C
(D= g+ Nzt (AIII.9)

Substituting into the recursion equation for F(N)(2) [Eq. (39i], we get

| — (F(“)( )) —, t O(NS) (AIII.10)

Substituting this in turn into inequality (52) we get, for s < 2

8
ev(s) L 52t &,

and, in fact, since (eN(s)) =:O(1/N4), we find
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CTuls) 2 .zg_::'s. -ﬁ'lg"" . (ATII.11)

It is clear that this asymptotic behaviour holds for fixed s < 2. However,
we can also investigate the neighbourhood of s=2 for N 1large. We remark
that e (s) and e (2) will be of the same order of magnitude for s > 2—-%

because ! N (2) <'1 Therefore we use a scaling variable

2 = (2-S)N (AIII.12)
£y (TS/)::' .fzggfi) Sfi————)

and assume

(ATTII.13)

and substitute into the recursion equation, using (AIII.10). We get a Riccati

equation for ¢ :
(A
224)’[,3):. (i*l)CP(i)‘f"C} &)”9 . (AIII.14)

This equation 2) has a unique regular solution at z=0 :

2 (AIII.15)

CP(;) 4+} )

This solution has all the right properties ¢(0)=:2, hence
2
= 1+(2/8)+0(1/8%), ¢r(0) =% ,

F(N)I(Q_>= 73 4’((0):(7% = 3'_ + O(T\‘l/)}
F70) = _f'? +0(1)

We can find an interpolating formula for (AIII.11) and (AIII.15)

F(N)(Q) -

e (S)—- __8_, 1 . (AIII1.16)
¥ N N(@2-s) +4
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APPENDIX IV

The cases F"(2)= o, F"(2)=w, Here nN(2) does not behave like

N2. Consider first F"(s) »o for s—2. We have the representation (46)

‘F—SF(S 2-5 g (F'(")(a))%

a——

IR (AIV.1)

S hse L) @)

) M, M, (2)
’_7,, (S ) (_ZS_->N> WN (2) R (ATV. 2)

(< (Fr)< L

it is not difficult to get

N :
(
/
F-<¥ { > q Z . (QD ) (AIV.3)
-3 s=2-A b=e Tt
F'SF’ < C V;A—I l (AIV.4)
L. T ) ’
2-s 9=7-“;l, 2+ p=o (2)

and if F" ~ C/(2—s)a
/ -«
f:; < F'~ C (?Z"S:)

and, using the above inequalities, one gets

o

ol )~
C, N’- < nﬂ (2) < CJ_ N . (A1V.5)

Ir P (2) is finite, F"™(s)—> o the situation is more complicated. We

shall only give a very succint account.

From the recursion relation
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l(ou—c

() +s F ")
(Y)) / ) m(n "6' ) )
— 2F ()ISF["[S)—FSF' (9) F-SF)/AIvos)

we get, by summation

(D) ’(V)]

> P [F-
o TLE BT " v

hiey

_31:."_‘_ <F lll~

as well as the inequality

N
Z F-”(“ )_‘__g F("(N)< ”Nﬂ(s)(-zs—) [SF”-I-S Flg . (A1v.8)

If we assume Fm(s)“’C/(2—s) , we can use (AIV.8) together with
F"(N)( ) < 1/2-s to get a bound on

F'Mr) = '(")( )+f F’ (N)( Nele’,

After optimization, one gets

! oL n ..,(/Z>
FJ “ )(;)<C JEN'I(Z) N +cC ",%,7-7 7 (amv.9)

Frece) <et+co T

where € can be chosen arbitrarily small,

Inserting in the right-hand side of (AIV.?), up to a certain N,

using F-sF! < 1, and adjusting s, one can manage to get

o N ¢
N < Zo ﬁ:EL) . (AIV.10)

The converse is obtained by using (AIV.9) together with

F”,(N)(l) LF_(N)(z) ~Q > ‘Zl‘_‘ (‘F Gu)(o)>?-‘

This leads to the inequality
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r’m:(z) | -
n, () B > o=t ol/. 4
v ¥ ()4 N ()

which can be shown to imply

2 -6
r—]L'(EZ.T)It:> C bJ > | (AIV.11)

which, in turn, can be reinjected into (AIV.10) to get

M, (< c'NFT (a1v.12)

WK
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