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ON THE MOMENT MAPPING 
Victor GUILLEMIN 

§1 This talk will be concerned with the action of Lie groups 
on symplectic manifolds. I will begin by describing two pieces 
of symplectic machinery which are extremely important in this 
subject. Host of this talk will be devoted to some conventional 
and not-so-conventional applications of this machinery. 

Let {X,ur} be a symplectic manifold and let P be the ring 
of smooth, real-valued functions on X. Equipped with the usual 
Poisson bracket, P is an (infinte-dimensional) Lie algebra. Let 
I be the Lie algebra of symplectic vector fields. There is a 
natural morphism of Lie algebras 

0: P -> Z 

defined by 

(1.1) 6(f) = Ç#<=>1 U #) 0) = df. 

Wow let G be a compact, connected Lie group and let g be 
its Lie alaebra. Given a symplectic action 

T : G x X -> X 

one can differentiate x to get a morphism of Lie algebras 

(1.2) T : g ~y Z 

One says that x is a Hamiltonian action of G on X if there 
exists a morphism of Lie algebras, 

(1. 3) rj): g -> P 

sucn tnat 
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(1.4) e o <j> = T* . 

Suppose such a <J> exists. If one chooses a basis, ^i'#w*'^n 
of g then with respect to this basis one gets a mapping 

(1.5) $ : X—> 3Rn 

the i-th coordinate of $ being the function <M£^). The mapping 
(1.5) is called (after Souriau) the moment mapping. 

Example. Let X = classical phase space = T*IR3 , and let q̂ , 
1 <_ i £ 3, and P̂ , 1 < i < 3, be the usual position and momentum 

coordinates. Let 

G = E(3) = IRJ >q S0(3) . 

For the standard basis of e(3) the associated moment mapping is: 

c()i(P,q) = P i f i = 1,2,3 . 
*4(Prq) = q 2

p
3 - q 3

p2 
etc. 

i.e. the components of $ are the classical linear and angular 
momenta. 

It is useful to define the moment mapping without reference 
to a basis of g. For each x e X and K G 9 set 

(1.6) <<t>(x) ,5> = 4) (5) (x) . 

The left hand side of (1.6) defines $(x) as an element of g*; 
so one can think of the moment mapping as being intrinsically a 
map 
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(1.7) <f>: X -> g* 

The virtue of this intrinsic definition is that it is easy to 
show that <J> is equivariant with respect to the given action of 
G on X and the co-adjoint action on <j*. 

The moment map is one of the two pieces of symplectic machinery 
about which this talk will be concerned. The other, which we will 
now describe, is the notion of reduction. 

Consider the sequence of maps 

* evx 

(1.8) g —-> E —• T x 

The symplectic form on T gives one a canonical identification of 
T with T*, i.e. a canonical bijection 
x x . 
(1.9) T T* 
V X X 

Composing (1.8) with (1.9) one gets a map 

(1.10) 2 - T* 

Lemma The map (1.10) is the transpose of 

d* : T -> g* x x ~ 

Proof; Just differentiate (1.6) keeping (1.1) in mind. 

Corollary 1 A point, x e X, is a regular point of $ if and only 
if the action of G is locally free in a neighborhood of x. 
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Proof : By definition, X is regular if and only if d$ is 
x 

surjective. By the lemma this is the case if and only if (1.8) is 
injective. But this is the case if and only if the stabilizer 
group of x is discrete. Q E D 

In the same way one proves 

Corollary 2 The kernel of d<t> is the symplectic ortho-comple-
x ment in T of the tangent space to the orbit of G through x. x 

Now suppose zero is a regular value of $ . Let 

Z = {x e x, $(x) = 0} 

This set is a G-invariant submanifold of X and, by corollary 1, 
the action of G on X is locally free. To simplify let's assume 
this locally free action is free. Let 

X Q = Z/G . 

and let TT: Z -* X Q be the canonical projection. The triple 
(Z,XQ,Tr) can be viewed as a principal G-bundle. Let x : Z X 

be the inclusion map, and consider the closed two-form i *o) . 

Since a) is G-invariant, so is 1*00. Moreover, by corollary 2, 
i*o) is annihilated by vectors tangent to the fibers of 
IT: Z -> XQ. This shows that 1 -00 is "base-like": there is a closed 
two-form, a) g, on XQ such that 

(1.11) 1*03 = 7T*0)Q . 

It is easy to check that o> is symplectic. (This is another 
ronsequence of corollary 2.) So (XQ,OO^) is a symplectic manifold. 
:t is called the Marsden-Weinstein reduced space (See [12]) 
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associated with the action of G on X . 

Remark : If the action of G on Z is locally free, but not free, 
(XQ,O)0) can have singularities; nevertheless it is still a symplec
tic MV-manifold." 
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§2. In this section we will describe some applications of the 
machinery described above. 

Application 1 (Convexity theorems) There are a number of well-
known theorems in linear algebra having to do with convexity 
properties of sets of matrices (e.g. Rayleigh [15], Shur [16], 
Horn [8]). We will be concerned with a generalization of these 
tneorems due to Kostant: Let K be a compact semi-simple Lie 
group and G its Cartan subgroup, and let k and g be the Lie 
algebras of K and G. From the inclusion map i: g—vk one 
gets a map the other way 

i * : k* -> g* . 

Let X be a co-adjoint orbit of K in k* and let 

X -> g* 

be the restriction of i * to X . Since X is a K-space it is a 
fortiori a G-space. 

Tneorem (Kostant) a) Tiie set of fixed points, S , of G in X 
is a finite set. 

b) The image of $ is the convex hull of the image of S. 

See [11]. There is now a simple proof of this theorem, due to 
Heckman, [7], based on Morse-theoretic ideas. Heckman has also 
discovered an elegant generalization of this theorem in which G 
is replaced by an arbitrary closed subgroup of K. An even more 
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striking generalization was recently discovered by V. p;ac and 
D. Peterson. In their version, K is the "compact form" of an 
infinite dimensional semi-simple Lie group! 

A couple years ago Sternberg and I [4] and Atiyah [1] discov
ered that the Kostant theorem has a generalization in another 
direction. Namely let X be a compact connected symplectic 
manifold and G a commutative compact connected Lie group. Let 
T : G * X X be a Hamiltonian action of G on X and let 
4>: X -> g* be the associated moment mapping. 

Tneorem a) Let S be the fixed point set of the action of G on 
X. Then $(S) is a finite subset of g*. 

b) The image of $ is the convex hull of $(S). 

For instance if K is a compact semi-simple Lie group con
taining G as its Cartan subgroup and X is a co-adjoint orbit 
of K, one can give X a canonical symplectic structure, following 
Kirillov and Kostant, and then Kostant's theorem becomes a special 
case of tne result above. 

Remark: There are examples where S itself isn't finite as in 
as in Kostant's case. 

Sternberg and I have also proved a symplectic version of 
Heckman's theorem (for G non-commutative); however, as yet we 
don't know what the appropriate symplectic setting should be for 
tne Kac-Peterson result (other than that it should involve the 
action of a compact Lie group on an infinite-dimensional symplectic 
mani fold.) 
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Application 2 (Geometric invariant theory.) 
C 

Let X be a non-singular complex projective variety, G a 
C 

complex algebraic group and T: G X X X an algebraic action of 
G C on X. One of the goals of geometric invariant theory is to 
show that tne quotient 

X/G C 

is a "reasonable" space (e.g. an algebraic variety.) Unfortun
ately this quotient may not even be Hausdorff. However, Mumford 
snowed in [13] that one can find an invariant Zariski-open set, 
Xst, in X (the stable points of X ) such that 

(2.1) Xst/G C 

is a projective variety. Because of this result, the quesiton of 
whether a point of X is stable or not is of considerable import
ance. In [9] Kempf and Ness gave a very manageable criterion for 
settling this question; and Mumford has recently discovered that 
their criterion is essentially a statement about moment mappings: 

Q 

To be specific, let G be the maximal compact subgroup of G . 
One can find a Kaehler form on X which is G-invariant and for 
which the action of G is Hamiltonian. (Take an arbitrary Kaehler 
form and average with respect to G.) Let $: X •+ g* be the 
resulting moment map. 

C 
Theorem A point, p e X, is stable iff its G -orbit intersects the 
zero level set of $ . 

A corollary of this is that the Mumford quotient space, (2.1), 
is a reduced space in the sense of §1! Recently Frances Xirwan 
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and Linda Ness have used the moment mapping to explore the structure 
of tne non-stable points of X. For details of their work see [10] 
and [14], 

Application 3 (Collective motion.) Let X be a Hamiltonian 
G-space and let X •> g* be the moment mapping. Given a smooth 
real-valued function, f , on X one can pull it back to X by 
means of $ to obtain a function 

(2.2) f o $> 

on X. Functions of the form (2.2) are called collective functions, 
and the dynamical systems associated with them collective Hamiltonian 
systems. It has been known for a long time that a number of dynam
ical systems of considerable interest in physics are of this type, 
for instance the so-called "liquid-drop" model. Within the last 
decade it has been discovered that many other systems besides these 
are collective. Some spectacular examples are: i) motion of a 
particle on S n with respect to a quadratic potential, ii) the 
n-dimensional Lagrange top, iii) geodesic flow on n-dimensional 
ellipsoids and iv) the periodic Toda lattice. These systems turn 
out to be collective because of the phenomenon of "hidden symmetries." 
Tne group of symmetries, G, acts on the phase space of the system, 
but there is no corresponding action on the configuration space. 

The systems mentioned above are all completely integrable. 
For a systematic discussion of complete integrability from the 
collective point of view, see [5] or the talk by Sternberg in the 
proceedings of this conference. 
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Application 4 (Classical field theory.) 

We will consider a very simple (and very artificial) problem: 
electro-dynamics on compact two-manifolds. Let M be a compact 
two-manifold and B ™ M a principal U(1)-bundle (i.e. circle 
bundle) over M. Let X be the space of connections on B. X 
is an (infinite dimensional) manifold and can be made into a 
symplectic manifold as follows: For a e X the tangent space to 
X at a is the space of smooth one-forms on M. Given two such 
forms, and a^, define the symplectic pairing of with 
oy tne formula 

It is not hard to show that Q is a symplectic form on X. Nov/ 
let G be the group of bundle automorphisms of B. There is an 
obvious indentification: 

(2.3) G = maps of II into . 

It is not nard to show that the action of G on X is Hamiltonian. 
In fact the easiest way to show this is to exhibit explicitly the 
moment mapping: By (2.3) the Lie algebra, g , of G can be 
identified with the space of smooth real-valued functions on X. 
Therefore the dual, g * , is the space of currents of degree 2, and 
contains, as a subspace, the space of smooth 2-forms. 

Tne ore m The moment map, <t>: X -> g *, associated with the action of 
G on X is the map which to each a £ x associates curv( : x), 
the curvature form of a. . 
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Corollary The reduced space associated with the action of G on 
X is the space of flat connections modulo equivalence. 

There is a very simple topological description of this space. 
The exact sequence 

O + Z + I R + S 1 - ^ 

induces a long exact sequence on cohomology 

(2.4) 0 + H1(M,Z) > H1(M,IR) + H^MjS 1) + H2(M,Z) 

One can identify the space of flat connections, nodulo equivalence, 
with the set 

(M e K 1(M rS 1). f 6u = Ô } 

3y (2.4) this space is 

isomorphic with 

II1(M,IR)/H1(M,Z) , 

a torus of dimension equal to twice the genus of M. 
Atiyaii and Bott have shown that the discussion above can be 

generalized to U(N)-bundles. In this case the reduced space is 
still finite-dimensional but a lot more complicated. We refer to 
[2] for details. 
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§3 I want to devote the concluding portion of this tale to a 
theorem about the local structure of the moment mapping. Let G 
be a compact Lie group, X a symplectic manifold on which G 
acts in a Hamiltonian fashion and $: X -> g* the moment mapping. 
Finally let x be an arbitrary point of X. 

Theorem $ is determined up to isomorphism in a G-invariant 
neighoorhood of x by the following data. 

a) Tne value, a = <f>(x) , of <J> at X. 

b) The stabilizer group, G , of x. 
x 

c) The linear representation of G, on the tangent space 
x 

at x. 

Before sketching the proof of this theorem, I will, for moti

vation, review an elementary theorem in differential topology: Let 

M be a compact manifold and let 

(3.1) \ 1 : M + X 1 and l 2 : M ~* X 2 

be imbeddings. and \̂  are said to be equivalent if there 
exist neighborhoods, and U 2, containing 1̂ (11) and 1 2 (M) ' a n d 

a diffeomorphism 

(3.2) f: U± + U 2 

sucn that i2 = ^ 0 1 i * f°ll° wi n9 theorem can be regarded as a 
classification theorem for imbeddings, up to equivalence. Its 
proof is an easy consequence of the tubular neighborhood theorem. 

Theorem Tne imbeddings, (3.1) are equivalent if and only if the 

normal bundle of M in X, is isomorphic (as a vector bundle) tc 
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the normal bundle of M in . 

Suppose now that X is a symplectic manifold and i : M X 
an imbedding, i is said to be isotropic if i *oo = 0. This 
property can also be described as follows: Let T^ be the image 
of T in T , and let (T1 ) be its symplectic ortho-complement, m x m 
Then if the imbedding is isotropic (T') cfT , N for all m £ M and 

m m 
visa versa. Let 

n m m 

This space is called the symplectic normal space to M at m, 
and the vector bundle over M whose fiber at m is N is called 

m 
the symplectic normal bundle of M in X. 

Suppose that the manifolds, X, and X n in (3.1) are symplectic 
and the imbeddings, î  and î t are isotropic. We will say that 

and î  are equivalent as isotropic imbeddings if the map, f , 
in (3.2) is a symplectomorphism. In [19] Weinstein proved the 
following symplectic version of the theorem quoted above. 

Theorem The isotropic imbeddings, (3.1), are equivalent if and 
only if their symplectic normal bundles are isomorphic (as symplec
tic vector bundles). 

Weinstein also proved that if G is a compact Lie group, the 
G-equivariant version of this theorem is true. 

Let's come back to the moment mapping $: X ~> g* in the 
vicinity of the point, x € X. We want to show that $ is deter
mined locally by the value, a , of $ at x, the stabilizer group, 
G , and the linear representation of G on T . We will skip x x x ^ 
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the first step in the proof, which is a reduction to the case, 
<x ~ 0. Assuming a = 0 we claim: 

Lemma The G-orbit through x is isotropic. 

Proof : Since $ is equi variant the set, <î> "^(0), contains t>e 
G-orbit through x; so the tangent space to this orbit at x is 
contained in kernel d$ . On the other hand by corollary 2 of ?1, 

x kernel d$ is the symplectic ortho-complement of the tangent space x 
to the orbit. 

Q.E.D. 
The orbit of G through x is the homogeneous space, G/G , 

x 
and its symplectic normal bundle is the homogeneous G-bundle associ
ated with the linear isotropy representation of G^ on the symplectic 
normal space at x. Thus, in view of Weinstein's theorem, the 
local structure of X in the vicinity of the G-orbit through x is 
completely determined by this linear representation. 

For further details, as well as some applications of this 
result, see [6 ] . 
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