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The generalized three c i r c l e - and other convexity theorems with  

application to the construction of. envelopes of holomorphy 

H. J. Borchers 

Institut fur Theoretische Physik, Universitât Gôttingen 

Summary: If C*1 and £ t£m are natural domains 

and if G C G i and H C EL are domains then we will c on -o 1 ο 1 
struct the envelope of holomorphy of G Q X H J (J Χ H Q 

On the way we will prove convexity theorems for the logarithms 

of the moduli of holomorphic functions. The connection between 

the convexity theorems and the construction of envelopes of ho l o 

morphy will be established by technics of Hubert -spaces of ho lo 

morphic functions. 
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Résumé: Si G j C C et H C ( sont des domaines 

naturels d 'holomorphie et si G et H sont des domaines 
* ο ο 

respectivement contenus dans et H^, on construit l ' e n 

veloppe d 'holomorphie de G xH^ (J χ H . On démontre 

simultanément des théorèmes de. convexité pour les logarithmes 

des modules de fonctions holomorphes. La relation entre les 

théorèmes de convexité et la construction des enveloppes d ' h o l o 

morphie est établie au moyen de techniques d ' e spaces de Hubert 

de fonctions holomorphes. 
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I. Introduction 

In some examples of constructive field theory the euclidean version of 

this theory has been used, and in particular the measure theoretic version 

of it. These examples have revived the interest in this field, in particular 

in the question whether every Wightman field theory in the euclidean region 

can be represented by a measure or whether this is a particularity of special 

models . Lately J. Yngvason and the author [*1] gave necessary and sufficient 

condition that a Wightman field theory has such a representation. These con

ditions are given in terms of growth estimates of the Wightman functions at 

Schwinger points, these are points where the time co-ordinates are purely 

imaginary and the space components are real . One gets the Wightman func

tions at these points by analytic continuation starting from the real (Minkowski) 

region. 

The real region is also the physical space where the axioms of field theory-

are valid. Therefore the proof of estimates in the complex has to start from 

the reals where one can get estimates from the assumptions of the theory. 

Afterwards methods of analytic completion have to be used in order to carry 

these estimates into the complex . 

The basic estimates follow usually f rom positivity conditions of the theory 

which are consequences of the probability interpretation of quantum mechanics . 

These positivity conditions do allow the use Cauchy-Schwarz inequality and in 

many c ases one obtains estimates on domains of the form GQ x (J χ 

where G^C C i ^ and H q £ £ . Since the same estimate holds 

in the envelope of holomorphy one would like to know the answer for this 

prçb lem. 

In all examples which have been solved so far the answer has the form 

(J G * H where G r esp . H v are interpolating domains of the 

pair G , G^ resp . , . I t is the aim of this paper to prove that 

the answer to the above problem is always of this form provided the pairs 

G Λ G , and H . H . have some properties which will be defined in the ο 1 ο ' 1 
next section. 

In the next sec t ion we give a characterization of these pairs and define an 

interpolating family of domains for such pairs . Furthermore we show that 

these definitions have some universal propert ies . F r o m these properties 
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we derive in section 3 a generalization of the Hadamrd three c i r c l e theorem 

and other convexity results for holomorphic functions. In section 4 we will 

treat Huber t - spaces of analytic functions, which we need in section 5 as a 

tool for converting the convexity theorems into theorems of envelopes of 

holomorphy. 

II. Interpolating famil ies of domains of holomorphy 

We start our investigations with some notations and remarks 

II. 1. Notations: 

Let Q be a domain in (f then we denote by 

a) A ( G ) the set of functions which are holomorphic in G . A (G) is fur 

nished with the topology of uniform convergence on compact subsets of G . 

With this topology A (G) is a nuclear local ly convex topological vector 

space. 

b) P ( G ) the set of functions which are pluri-subharmonic on G . 

c) Let F C. P ( G ) be a family of pluri-subharmonic functions, such that 

the elements of F are uniformly bounded on every compact set of G , then 

there exists a pluri -subharmonic majorant ρ (ζ , F) £ Ρ (G) 

The function ρ (ζ) - sup j f ( z ) ; f € F ] will not be upper semi - cont i 

nuous is general , therefore we put 

p ( z , F ) = l im sup p (z ) 
z1 ζ 

(see e . g . [ 3 ] ) . 

d).Let Tft C C*1 be any set then we denote by M the c losure of M and 

by M ° the interior points of M . 

With these notations we introduce the following concepts: 

II. 2 . Definitions: 
1) Assume G c G - C 1 such that G is a domain of holomorphy. 

ο ι ι y 
We call G Q , G^ I an Hadamard pair and write G ^ C G^ if the 

following conditions are fulfilled: 
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b) For every connected component Γ of we have G Q F] Γ ^0 

c) To every point ζ £ G Λ G and every neighbourhood U of ζ 
ο 1 ο J O ο 

exists a plurisubharmonic function ρ £ P ( G ^ ) with the properties 

(i) p(z) 4 1 on G 

(ii) P (z ) « 0 for ζ £ G 
ο 

(iii) there exists a point z j € U (the neighbourhood of Z Q ) with 

p ( z i ) > 0 

2) Let G be a domain of holomorphy and G^ C G^ , denote by 

F £ P ( G j ) the set of pluri-subharmonic functions fulfilling the 

condition c (i) and c ( i i ) of definition 1) then this family contains a 

pluri-subharmonic majorant which we denote by P m (z , G , G^ ) 
M 

3) Let G j C C be a. domain of holomorphy and let G Q t 
Furthermore let P m ( z ) be the pluri-subharmonic majorant Fhi( z> ^ o ' ^ l ^ 
then follows (since f (ζ) =» 0 is pluri-subharmonic) from a) and c) that G = J ζ έ G, ; ρ (ζ) = 0 } ° . We define for 0 < λ ^ 1 ο L 1 m J 

All the (J are domains of holomorphy [ 2 ] and they form an interpola

ting family of domains because of the maximum principle. 

It is our aim to study this interpolating family in some detail. We want to 

show that this definition has some uni versai propert ies , and that for this 

family an ananalogon of the Hadamard three c i r c le theorem is fulfilled. We 

start with some preparations. 

II. 3. Lemma: 
Let G* C G N

1 + 1 C G 1 , i s 1 , 2 , . . . be domains of holomorphy. 
i 1+1 i w i In addition let G

q C G ^ C G q be such that G R G , i = 1, 2 , . . . and 
M i i 

G C G . If G* are the interpolating domains of G a and G ο 1 λ o l 
then follows 

< ' <l <- °* · 
If furthermore (J G 1 = G and |J G 1 = G holds, then 

Z O O , 1 1 
I \ 
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follows for every X £ j~ 0, l j 

U G* = G . 

Proof: 

Let P ^ / 2 ) be the pluri -subharmonic majorant belonging to the pair 
G o ' G \ (Def. I I .2 .2 ) then we know that (z) is defined on G * 

F r o m G i G^ and the maximality of (z) follows 

P m ( z ) * P m 1 ( z ) < p l m ( z ) ° n G \ 

This implies by definition of G^ the relation 

For the second statement we remark that ( Ζ ) is a decreasing sequence. 

Thus 
f (z) = l im ρ 1 (ζ) > ρ (ζ) m m 

1 -*oo 

is a pluri -subharmonic function in the region where it is defined. F r o m [) G =G 

follows that f(z) is defined on G and that f(z) έ 1 holds because it is 
i 

true for all p ^ (z) . F r o m (J G A = G follows furthermore the m γ ο ο 
equation f(z) = ο for ζ £ . Hence we get by maximality of P m (z) 

the inequality 
f ( z ) ^ ρ (z) m 

which implies together with the above inequality the relation f(z) = 

In terms of domains this means 

In o rder to derive further consequences of the definition of the family of 

interpolating domains we need some preparations. The last l emma suggest 

that it is sufficient to look at bounded domains, So the first step would be to 

show that we can approximate G q and G^ by bounded domains. But before 

doing this we want to show that G is a Runge domain in G, . (We say G 
ο 1 ο 

is a Runge domain in G^ if A iGj ) is dense in A ( G Q ) )· 

II. 4. Lemma: 
Η 

Let G q C G j then fol lows that G q is a Runge domain in G^ . 

But the converse is not true in general . 
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Proof: 

Γ ( log R ) " 1 log j z| , 1 4 1Z| C R 

From this follows that 

l im p m ( z , D R ) = 0 

which implies by Lemma II. 3 that , is not an Hadamard pair. 

In order to prove the first part, we have to show that the A (G^) -hull of 

every compact set in G q l i es in G ^ . Let d (z ) be a distance in £ K 

depending only on \Z\\ and Κ C G q be a compact set of G q then fol lows: 

Let now ^ ( Z ) é " Q ( £ ) be such that 
ς 

a) If > 0 for (ALZ) * ~ 

b) (f - 0 for d 12 ^ ^ 1 
c) j* <^(2) d/l = Ί where cfA denotes the Lebesgue measure on and 

Denote furthermore as usual 

for all w ^ C \ ί J 

Now, the function p
m ^ z ' ^χ ^ *f ~ p ^ z ^ is pluri-subharmonic 

on G ^ . F r o m construction follows p(z) = ο for ζ <£ G^z and p(z ) > ο 

for z £ G, \ G 1 . Since Κ is a compact set in G x it follows that the 
% S ° C 

P ( G / X ) hull of Κ stays in G . But the P ( G / X ) and the A (G , 3 - ) hull 1 ο 1 s 1 
coincide (see e . g . [ δ ] Theorem 4 .3 .4 ) which implies that the A(G^V) hull of 

Κ is compact in G^ . On the other hand it is well known that G^/z is a 

Runge domain in G^ , which implies that A f G ^ is dense in A ( G S / a ) and 

Let us first show the second statement. Assume G„ = (L and G is 
1 ο 

the unit -c irc le then it is c lear that G is a Runge domain in (£ 4 . Let now 
° H 

be the c i rc le of radius R > 1 then D 1 c D since the conditions 
R _χ 

of definition II. 2 are obviously fulfilled by the function l ogR log|z| , Using 
the Hadamard three c i r c l e theorem, which also holds for subharmonic functions 
one concludes 
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hence the A(Gj) hull of Κ is compact in G q , which proves the l e m m a . 

After this preparation we show: 

II. 5. Lemma: 
μ i 

Let G C G j , then we can find increasing sequences of domains , G^ 

i = 1 , 2 , . . . with the propert ies : 

a) G^ C G j and G^ is relatively compact in G * 

b) G 1 C G 1 + 1 C G such that [ j G 1 = G and G 1 is relatively c o m -' ο ο ο . ο ο ο J 

pact in G 
ο 

c) G * C G i + 1 C G
1 such that (J GJ = G and G* is relatively 

compact in G^ 

d) G^ and G* are the interior points of their c losure and these c losures 

are all A ( G j ) convex. 

Proof : 

According to well known theorems we can find an increasing sequence of 

domains G * fulfilling the condition c) and d) of the lemma (take for instance 

analytic poly-hedrons, see e. g. [5] th.II. 6. 6. ) . Without l o ss of generality we 
might assume G * f) G Q = p c ψ Qf # Let now Κ be a compact set in 

and Κ its A(G ) hull, then follows Κ C G since G is a Runge domain ι . . ο . ο i i 
in G j (Lemma II. 4) and also Κ C G^ since G^ is a Runge domain in 

G j by construction. Hence Κ C P.L . Now ( p L ) is relatively compact in Π*" 
and also A ( G ) convex. Hence we can find a domain G 1 such that ι ο 

such that its c losure is A(G^) -convex and it is the interior of its c l osure . 

Since (J p L = G Λ Q = G follows that all conditions of the l emma are γ ο ι ο 
fulfilled. 

II. 6. Remark: 

Since the c losure of G 1 is A ( G J convex it follows immediately that 
i Η ι ° 1 

G C G. This lemma together with lemma II. 3 does allow to reduce all ο 1 
further investigations to bounded domains which are relatively compact in G^ 

and also A(G^) convex, this means to such domains G for which the bounded 

analytic functions are dense in A (G) . 
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Our next aim will be the investigation and characterization of the interpola
ting family of such domains. 

II. 7. Lemma: 

Let G Q C Glc€ * H
Q £ H

1 C L and let resp . Η λ be their inter
polating fami l ies . Assume 

is such that 

£ < ( 0 c Wo and 

then follows 

Proof : 

Let Ρ ^ ^ ' ^ ο ' maximal pluri-subharmonic function belonging 

to Η and H., then follows that ρ ( C ( z ) , H , HL) is pluri-subharmonic ο 1 m ο ο l 
on G j and bounded by 1. Since £ ( G q ) <C H q it follows that P m ( f ( 2 ) ; H

Q * H j ) 

vanishes on G q . This implies 

P m ( Î ( 2 » - - Η ο · H i > * P m
( z - G o - G i » 

and hence we get for ζ £ G^ . the inequality Ρ ( L ( 2 ) ; Η , Η J 4 Ρ ( z . G ^ G J d 
Λ * m Q ο ι m ο ι 

which impl ies £ ( Z ) é Η^ . 

First we will investigate absolutely convex domains. The reason for this is 

that we need the following result in the next section. Recall a set G 

is called absolutely convex if it is convex in the usual sense and if it contains 

with Z a lso *X *z with | ζ. <\ 

II. 8. L e m m a : 
Let G Q C C be bounded absolutely convex domains then we have 

For û é ( f t denote by (Q j) - 2 0-i 2 ; ; and by 
m . ( Q ) = sup ^|(a ,Z ) ( j 2. £ ^ i3\, i = ο , 1 then we have 

Ci * { z é ( J . Ι(α,ζ)ΐ< wieU) m ^ ( û ) f o r a i i α + o j 

In addition the function P m ( 2 » ^ » Gj ) i s continuous on G 1 . 

If we define for 2 £ 9 G Q (the boundary of G q ) the function 
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f sup ί μ ' Μ > V , /" ' * £ C- 1 
r c z ) = 4 ' 

? £ 2 <ί0 η QA 

t e . dC0 η 9 fi. 
we have also 

and 0 ζ fl C Τ (2 ) Ν 

Proof : 
Since G q is absolutely convex it follows that every point in the complement 

of G is separated from G by a l inear functional. Since G is bounded 

it follows that this functional is bounded on G. which implies G r QA 

1 v ο 1 
Let now f (z) be a bounded non-negative pluri-subharmonic function on 

G j and 2 0 Φ 0 with 2 0 € then g(w) = f (w*Z ) is sub-harmonic in 
Define n..(z 0) = sup {|wM · W Z o é f i ^ , i = 0,1 and mc ^ 0 >f)= sup [ g ( w ) ; 

|w| < n̂  ( z^) ^ then we get by the Hadamard three c i r c le theorem: 
sup { 9 cw)jtwii ^ W V * o > } ^ λ « le (2d,f) +. 1 w 0 ( Ύ 0 p 

If we take in particular f ( z ) = ρ ( ζ , G , G- ) then follows m (ζ , f) = ο , 
m o l ο ο m (ζ , f ) = 1 and hence 1 ο 

sup { | ^ ί ν . 2 0 ; £ ( QA)+ (v i é Y £ W ηΐ . ΐζ*) . ] · ^ λ 

F r o m this we get by maximality of P m ( z, G q , G^ ) w £ G j 

exactly if \W\ 4. ΥΙ*~\ί0) (2Q) . Using the fact that G q and G j are abso 

lutely convex then we get from this the first characterization of G^ # 

If we choose ζ £ 9 G then we have η ( ζ ) = 1 and n 1 ( ζ ) = r ( z ) ο ο ο ο l o o 
and we get the second characterization. 

Let now il ζ II be a norm on £ K . I t follows f rom the convexity that II ζ li 
is a continuous function on d G. and 9 G . Hence r ( z ) which is the 

ι ο 
quotient of these function is continuous. F r o m the second definition of G A 

and from P m ( z * G^, G^) = sup * 2 £ G^ | follows the continuity of P m . 

As a next step let us drop the assumption tha.t G q and G^ are bounded, 

but, assume further on that they are absolutely convex. 

II. 9. Lemma: 

Let G R G q .£ ^ be absolutely convex domains. Let L be the 
μ 1 

maximal l inear subspace contained in G^ , then G Q C G^ if and only if 
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Since is also absolutely convex it is isomorphic to some (L . Hence 

we can write £K- £ X X , m + in = n, Cc ~- ( j 0 and (Ĵ  - (C^V Q* 

with , G^ bounded and absolutely convex. If are their interpolating 

domains then we abtain fi ^ (f^X C . 

Proof: 

Since G^ is absolutely convex follows from the b i -po lar - theorem that G^ 

is a cylinder this means G 1 + C G^ . Since is finite dimensional 

we can write Q4 - (f* 1 * ^ with £ * 1 isomorphic to L . Therefore 

if L 1 C G then follows G c G, and the structure of f rom the p r e -
1 ο ο 1 * ^ 

vious l emma. If we assume on the other hand G C G, then follows from the 
ο 1 

argument given in the proof of Lemma II. 4 that L . C G . 
1 ο 

In the next step we are turning to more general domains. 

II, 10. Lemma: 

Let G C £K b e a domain of holomorphy and let G^C G^ C G be such that 

a) G ^ is relatively compact in G^ and G^ is relatively compact in G . 

b) Both domains coincide with the interior of their c l osures . 

c) G and G, are A ( G ) convex. 
ο 1 

d) Each component of G^ contains a component of G Q . 
H 

Then we have G £ G . . 
ο 1 

If we define for every f £ A (G) 

M(f) = sup {| fez) ; 2 é QA \ and r» l f ) = sup { t f^* 1 ; 1 & C\0\ 

then we obtain 
4-X ί ? 0 

Proof: 

Since G ^ and G^ are compact sets in G it follows that M(f) and m(f) 

are finite numbers. Since G q is A ( G ) convex there exists for every Z0€ G\ G Q 

a function f e A ( G ) with ί fc2o) I > **\ L ξ) . 

Hence we have G C G.. 
ο ι 

Every §L7.\é.Ai(>) maps G q into the c i r c l e |w|<: m(f ) and G^ 

into the c i r c le Iwi < M ( f ) . Hence we get from Lemma II. 7, the inequality 
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for •ζ fefij 

If we define for every f with M(f) + m(f) the pluri-subharmonic function 

pp(l) = log 1- · log 

and by q(z) the pluri-subharmonic majorant of all p^(z) then we get from 

the above argument 

q<*> * P>n s . , ο 
In order to show that the two functions are equal we make use of an argument 

due to H.Bremermann [ 4 ] showing that the functions λ log f(z)^ ^>o are total 

in P(G) if G is a domain of holomorphy. If we denote by the c i r c l e of 

radius r in ^ then the envelope of holomorphy of G χ D U G χ D , 
ο ι ι ι / e 

is given by 

and \w I < e f 

If F ( z , w ) £ A(H) then it can be written as 

The radius of convergence r(z) is given by 

log X = lim sup l l o g I f W C 2 ) l 

denotes the upper semi-continuous majorant then we have 

and P m ( z * ^ 0 ' ^ ) * s the pluri -subharmonic majorant of all the log 

Since G, is A(G) convex we obtain a dense set of function F ( z , w ) = 2 f (z)w 1 η 
£ A(H) by choosing f R (z ) £ A (G) . 

Since G^xO^c Η and Gl χ C Η follows 

l im sup log ( C ) ^ 0 a n d 

l i m sup log M ( Ç n } 4 Λ 

and consequently we get from previous inequality 
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which means 

log ^ i l f o r 2 £ G 
Λ 

Since this holds for all F we get 

Since the majorant of the log coincides with ρ . 
m This shows the lemma. 

The last lemma gives us for the special situation some more information. 
We obtain 

11.11. Corol lary : 

Under the assumptions of Lemma IL 10. we get for 

a) £ λ - ( Ci χ ) 2 1 1 1 ( 1 0λ
 i s A(G) convex 

b) Q i s relatively compact in G.̂  and 

c) Q is relatively compact in Q 
M o λ 

d) If we extend ρ ^ ( ζ , G^) to G^ by putting it equal to one on 9 Q , 

then ρ (ζ , G , G. ) is continuous on G „ . *m ο 1 1 

Proof : 

Let us first show statement b ) . 

Since G^ is relatively compact in G^ follows that for every f 6 A(G) we 

have m(f) φ M(f) except for the constant function. Therefore for f not con

stant the function 

> « , η · m a x f o flog ΐίΐΐ . l o g i M - 1 
1 ) l ^ l f ) wvCp J 

is well defined, pluri-subharmonic and continuous, ρ ( z , G , G - ) is the 
m ο l 

pluri-subharmonic majorant of the p(z , f ) on G^. Since G j is A(G)-convex 

there exists for every 2 0 ^ 3 61̂  a function f with p ( Z 0 l ^ ) > 4 - £ 

Since f is continuous there exists a neighbourhood *U2 of Z D such that 

p(z , f ) > 1- t for 2 <ε IJ . Since $ Q is compact there exists a 
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finite covering , 1 = 1 . . . η of 9 such that max | ρ ( Z 4 ^ ) j > 1 - £ 

in (J U . Choosing £ < we see that Q} is relatively compact 
in G „ . We also see that ρ ( z , G , G J is continuous at the boundary of G 1 #  1 *m ο 1 J I 

Since p(z , f ) is continuous follows that the set ^Z * ρ (ζ t Ç) 4* } ] is 

c losed. Hence follows that 

Γ λ r f 7 i P ' * . f f o r a 1 1 \è 

is a c losed compact A(G) convex set. Let X > 0 be fixed and £ > 0 

then we can find to every point Z 0 £ 3 again a function f(z) with 

p ( 2 0 f ^ > λ - £ · Therefore we find by compactness of and the 

same arguments as above 

f o r λ' c \ 

Since Q = Π follows f rom this 

Q « i s relatively compact in G ̂  f o r A ^ /I 

but f rom this follows that ρ (ζ , G , G „ ) is a continuous function on G. and 
*m J_ ο 1 1 

by the above argument also in G^. This proves d) . The other statements of 

Corol lary are easy consequences of this. 

IL 1 2 . Coro l lary : 

Under the assumption of Lemma II. 10 we get for 0 έλ< ^ j i - l 

b) If we denote H Q = G ^ ^ and = G^ ^ then we have 

Proof : 

Statement a) is obtained by applying Lemma II. 10. to the results of Corol lary 

II. 1 1 · The proof of b) will be obtained in three steps. 

First step: 

Let λ Λ = 0 ι "4s λ , then we find: 
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Proof : 

l Pr* U t 6 Ô ( fi, ) 

z c Η, = ^ 

Since the functions on the right hand-side are taking both the value λ α on 

the boundary of follows that f(z) is continuous. Furthermore we know 

that f(z) is pluri-subharmonic with the possible exception of the points in 

3 H j . But we want to show that it is also pluri -subharmonic in these points. 

Let 2 0 £ c) H 1 ^ £ C such that 20+ZWC for ΙΓΙ 4 4 . 

(Such ν exist since Η - £ i s relatively compact in G..). By the first 

inequality and the definition of f(z) we have ν ( ζ 1 QQ QA) , 

Hence we get 

This shows f(z) is pluri -subharmonic in G 1 and consequently f(z) ^ β Η (Ζ» ( G0 ) 

which implies \% p ^ (2 , C 0 t ) 4 (2 , 6 0 l 6 < ) on Hj and hence 

Second step: 

Let ^ A and ^ » Λ and define 

f ^ f o r 2 S Λ 

then we obtain 

We have ^ 1^ U , β β | fij é P ^ U , G e , ) in ^ 

-Since the right hand-side is the pluri -subharmonic majorant. 

Define the function f(z) on by 
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Proof : 

Define again a function f(z) by Î 

for 

f or 

2 £ H 0 - G A 4 

7 ί G. \ ïï. 

We obtain again by the continuity of the two functions ρ that also f(z) 
m 

is a continuous function and takes the values λ., on 9 Hq · * n o r ( * e r to 

show that f (z ) i s pluri -subharmonic we only have to consider points of () WQ. 

We remark again that f(z) ^ p ^ ( z , G Q , G^) and therefore we obtain as b e 

fore f(z) i s p lur i - subharmonic . Therefore we find f(z) = P m ( z * * G^) 

which is equivalent to the statement we are looking for . 

Last step: 

By the s e c o n d step we have for A4 4= λ 

F r o m this f o l l ows that Q. i s a m e m b e r of the interpolating family of the 

pair G ^ ^ , G^. So we can use step one for the tr ipel G ^ ^ 2 ' ^1 

obtain 

Using the definition of and of 9^^/ ^ ) w e °btain the desired result. 

Next we want to generalize the result of the last coro l lary to arbitrary 

Hadamard p a i r s of domains* As a preparation we prove first the following 

By maximality of P m ( z * H * G^) we obtain 
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II· 13. Lemma: 

Let G T ζ t b e a domain of holomorphy and G CL G ι · Let 
1 Η ι/ ο 1 

0^/1 < Λ then we obtain G CL G^ and G ^ C G · 

Proof : « 
The first statement is trivial since G C G , . Since we know the existence 

ο 1 of the function ρ ( ζ , G , G J follows that the conditions b) and c) of Défini-*m ο 1 

tion II. 2. are fulfilled. It remains to show condition a) i . e . we have to show 

that G ^ j = ^ ^ λ ΐ ^ *^ll ° holds . Assume the contrary, then exists a point 

£ ) j Λ GjJ ° which does not belong to G ^ . Since z^ is an interior 

point of an open set exists a neighbourhood U of this point which belongs to 

the same open set. The points of U which do not belong to G^ ^ form a re la 

tively c losed set without interior points. Therefore we can find W € £^ 

such that 2 0 + d^w C U and such that the set 

has Lebesgue measure zero . Since P m ( z > G q J G^) ^ r(A ^ o r 2 € 

follows 

This proves the l emma. 

Now we are prepared for the main result of this section 

Π· 14. Theorem: 

Cn Η 
be a domain of holomorphy and assume G Q C G J . 

If we choose 

0 é- λ , 

then we have C G * 2 * If we denote H Q = and H 1 = G , 

then we find the relation 

for 0£ f* < ' , 
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Proof : 

III. The generalized three c i r c l e - and other convexity theorems 

In this section we*want to show that the definition of the interpolating domains 

lead to a ser ies of estimates for holomorphic functions. They are of the type of 

the Hadamard three c i rc le theorem and its generalization to Reinhardt domains. 

All these results are consequences of the maximality of the function P m ( z * ^ 0 ' ^ V 

which has as geometric version the Theorem II. 14. 

We start with the correspondence of the t h r e e - c i r c l e theorem 

III. 1 . Theorem: 

Let G j C I be a domain of holomorphy and let G^d G^ and let 

G^be their interpolating family of domains. 

F o r PC2) € T ^ C & J denote by 

Wi (λ /Ρ ) « sup { PCD ; Ζ € ΰ λ } 

Ihen follows that Vr\lA .ρ·)- i s a convex function of X . 

The usual estimate for holomorphic functions are obtained by taking 
p(z) * l og|f (z )| . 

Proof : 

If m(A ) 35 o o then this is true also f o r all X > λ . . Hence there exists 

λ 0 with m ( ) « co f or λ > Λ© and m ( Χ ) < <*> f o r λ ^ λ 0 .. Let 

now \ Λ < < and assume m ( λ ^) < m ( \ ^ ) . Under these con 

ditions is 
-4 

a pluri -subharmonic function with f ( z ) é 1 for ζ € G } 0 and f ( z ) 4 ο 
2 

for ζ £ G ^ and we get 

The first statemant follows directly f rom Lemma II. 13. The second state

ment follows f rom Corol lary II. 12 and the approximation results Lemma II. 3 

and II. 5. 
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F o r λ 4 £ A - we obtain by Theorem II. 14 

and hence by difinition of f(z) 

sup f CZ ) - — ç 

which proves that m( \ ) is a convex function of \ . Since m( \ ) increases 

with X follows that m( λ ) is convex in λ in all situations. 

This theorem allows some converse 

III. 2. Lemma 

Let G j C € be a domain of holomorphy and assume G Q C G^ with 
G Q ^ b G j . Let p(z) € P ( G 1 ) be such that p(z) 4 1 for ζ £ G1 and p(z) ί ο 
f o r ζ £ G Q . Define for ο < \ < 1 

Ηχ - { 2 e G, j < λ} 

and for f € PfGj) 

Y n i J ^ f ) « sup { f t * ) j ? £ Hj] β 

Assume for every f £ P(Gj ) the expression m( λ , f) i s a convex function 

of λ , then follows * G^ . 

Proof : 
Since ρ ( ζ , G , G J 4 1 for ζ £ G„ and = ο for ζ £ G follows by m ο 1 1 ο 

assumption 

»·«» 
and consequently C . But using Theorem III. 1 we get 

sup pCl) < λ 

and hence G C Η , which proves the l emma. 

Our next aim is to discuss convexity theorems on direct products of domains. 
We start with some preparation concerning absolutely convex domains. 
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IIL 3. L e m m a : 

Let G c G- C L and H c H
1 c (L be boimded absolutely ο 1 Ο 1 

convex domains. Assume L and L are injective complex l inear mappings 

of £ h r e sp . into £ and denote for * ^ Y £ £ the sum 2 X;. if; - (^Jf ) 

then we have with the abbreviation 

Vn(A/u) = sup [ ( ( L n 2 } Lyy, vi/) I · ζ £ fi and J 

the function log m(\ ,u) i s convex on £θ , v| 

Proof : 

Assume ( \ ,fn ) and , ^ ) are two points in [θ , l ] ^ then it is sufficient 

to prove the inequality 

If we put \ o = min , ) } ) , \ 4 = max ( X , X* ) and s imilar expressions for JL\ 

then we can restr ict ourselves to the rectangle A* ^ A 4 A* and yK0 ^ ^ έ ^ . 

Using Theorem II. 14 we may identify ( X q, with (0 ( 0) and ( λ y jU χ) 

with (1 , 1) . This reduces the proof of the l emma to the two cases 

4 A 

W i l l ) ' ^ K O ^ v n i o ^ ) ^ . 

and 

Since the domains in question are absolutely convex we have a characterization 

of G Λ and I L , given in Lemma II. 8. With the notation of that l emma we have 

f or i é 3 ( i 0 and ^ 6 . 9 W0 

f Ζ £ for $<r*cz ) 
4 

and £ V € Η ^ for £ * ^ J · 

F r o m this we get: 

T Y l ( | , 4 ) = sup { | ( L n Z ; iy^W)\rà) t\w) . 2fi3fi 0 ; W £ 3 « 0 ] ' # 

Writing now 

| ( L n 2 , L w w ) | r W " V ) . | a ^ , U v ) l i [ l ( L n i | L W , W ) | r a w v ) ] 1
 0 r 
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we obtain, by taking the supremum of each factor , the two inequalities 

<9V 

If we combine this l e m m a with the result of Lemma II. 7 . , then we obtain 
the basis for the general convexity theorem 

III. 4. Corol lary : 
Η M 

Assume G c G , C (L and H C H, C vL where G, and EL 
O 1 Ο 1 1 1 

are domains of ho lomorpby. Let F s ( f j , . . . f^) € A(Gj ) and Q ' (gyg^j) 

£ A(H ) N be such that the functions f. and g. are bounded. If we define 
1 1 J 

and w £ 

then we have: log m ( ^ ) i s a convex function on £ 0, 1J 

Proof : 

Using the same argument as in the proof of the last l emma, which was 

based on Theorem IL 1 4 , we need only to prove the two inequalities 

In order to prove these inequalities we remark f irst : Let Μ . , M 0 be 

boimded sets in f and ι (M.) their absolutely convex hulls then one gets 

supfKx,^) j Χ ε Μ 4 ι Ϊ € ^ « s u p f l i ^ l l j Γ ( Μ 4 ) , ^ Ρ ί ^ . 

The second remark we have to make is the following: If Γ ( f ( Q0)) l ies 

in some complex l inear subspace c£ of £ , then Γ ( F ( G4 ) ) l ies in the 

same linear subspace, because for any element Û € £ l the equation 

(& , Foe) ) * ο on G has an analytic extension to G . . 

If we put G - r ( F ( 6 i ô ) ) a n d G - Γ ( Ρ ( ( * Λ ) and denote by Gx 

the interpolating family of G and G- then we find by Lemma II. 7. 
y ° 

F ( u ^ ) C Q*/x · Since the same arguments hold for the domains H we can 

use Lemma IIL 3. and obtain: 
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F r o m this we get by the first remark 

We are now prepared for proving the main results of this section. The 

first one is a characterization of interpolating domains of direct products 

and the second result is a general convexity theorem for the logarithms of 

the moduli of holomorphic functions. 

III. 5, Theorem: 

Let C QL C J?*1* j 1 M 4,3.,·*· (V b e such that G* are domains 
of holomorphy, then we get 

and the interpolating family i s given by 

Proof : 

It i s sufficient to prove this statement for Ν = 2 . The general result 

follows by iteration of the special one. 

F o r simplifying the notation we will work with the domains G C G. 
Η O l and H C H 1 # Let ρ (ζ , G , G- ) and ρ ( W , Η , H J be the p lur i -ο 1 m ο 1 ^m ο 1 K 

subharmonic majorants belonging to the two pa irs . Each one defines also 

a pluri-subharmonic function on χ which does not depend on the other 

variable. Therefore 

p(2tw) = m a x { Ρ ^ , ' δ , , & V / (W, We , H „ ) } 
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is a pluri-subharmonic fxinction on G^ x H ^ . F r o m construction of this 

function follows p ( z , W ) ζ 1 on χ H j and ρ ( ζ , W ) = ο on G q χ H Q # 

If ( 2 0 , W0 ) £ χ Hj \ G q χ Η we have p( 2 C , W0 ) > ο . These properties 

imply G χ H £ G- χ EL . ^ J ο ο 1 1 
F o r proving the second statement assume first that G Q C G^C G are re la 

tively compact in G and G^ and G j are both A(G) convex and the same for 
H C EL C H . Then follows that G χ H C G, χ H C G χ H are relatively ο 1 ο ο 1 1 
compact with A(G χ Η) convex c l osures . F o r this case we can use Lemma II. 10 

for the determination of the interpolating domains (G χ H)^ . Since the space 

A(G χ H) is a complete nuclear vector space fol lows A(G χ H) = A(G) M A(H) 
1Γ 

(the complete ^ - tensor-product of the two spaces A(G) , A(H)l # This means 
i V Ρ 

every function f(z , w) can be approximated by sums ]J? f,%t^) ^ Î 

converging uniformly on every compact set , in particular on G^ χ H^. Denoting πι(λ ,2 ) = sup { I Σ f ; t i ) Q; I, * € V w e obtain f rom Corol lary III. 4 

Μλ,τΗ ν η ί ^ ΐ ΐ - ν η ( ^ Ζ ) , 

Since the çums are dense in A(G χ Η) we obtain 

I- f ii%w)\i ™ΐυ^\ m K f ^ for 2 lu / f i (J x )rH A and ^ 4 ( H ) 

This implies by Lemma IL 10. the relation 

Using on the other hand the special functions 1 (2 ) · g ( w ) we get by the 

characterization of G^ and the relation G^ χ ;> (G χ Η) . So we have 

G χ EL 58 (G χ HL 
Λ λ A 

first for this special situation, but using the approximations of domains given 

in Lemma II. 3. and II. 5. we see that the result is true also for the general 

case . 
Now we can prove the general convexity property for holomorphic functions. 

III. 6. Theorem: _ 

Let G 0 C GA C L , i = 1, . α .  Ν be domains of holomorphy and 

let g\ be the corresponding interpolating famil ies . 
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Denote for F(z f . . . f z N ) € a(gJ χ G 2  χ · · . χ G )̂ and λ 6 [ 0 , 1 ] N 

m(\ fF) = sup £| F(z 1 z N )| ; z. € Ĝ  } 
i 

then follows log m(X,F) is a convex function on [ 0 , 1 ] N · 

Proof : λ 1 and λ>2 are two points in [0,1 ] N i t is sufficient to show the 

inequality 

m(~ * - f Ρ) ^ m(X 1 ,F ) 2 m ( \ 2 , F ) 2 . 

1 2 i If the l - th component of λ_ and ]V coincide then the domain G is 
ι 

a common factor in al l considerations, so that we have to deal in reality only 

with a problem in N-1 variables. Therefore we may assume without loss of 

1 2 
generality that al l components of λ and \ are different · 

1 2 ' 1 2 If we put = (min(\ i , λ/)) and λ = ( m a x ^ , then by 

Theorem II ·14· the situation can be reduced to = ( θ , 0 , · · · θ ) ; 

λ-ι = 0 | 1 | · · · 0 · Renaming the indices we get 

and 

λ 1 = ( 0 , 0 , . . . 0 , 1 , 1 , . . . 1 ) ; λ 2 = ( 1 , 1 , . . . 1 , 0 , 0 , . . . 0 ) 

1 

where we have m Κ zeros and N-K ones and zeros and ones interchanged 

for λ 2 · 
Introducing now 

G = G1 x . . . x GK , G = g] χ . . . χ g5 
ο ο ο 9 1 1 1 

Η = G K + 1 x . . . x G N , Η = G Ï + 1 X . . . X G ? ο ο ο 1 1 1 1 

then by Theorem I I I . 6 . we get 

1 iC G = G χ. . . χ G etc-
λ. Λ. λ. 

so that we only have to prove the inequality 

m(£ f£ fF) <; m ( l f 0 f F ) 2 m(0 ,1 ,F ) 2 
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for two pairs of domains. 

Now we approximate these domains from inside by an increasing family. 

If we denote by Ύη,** C λ( /* t f ) ^ e maximum of | f j on G1^ χ IT^, we get 

by Corollary III. 4. and the same density argument, as in the proof of the 

previous theorem, the relation 
λ, 

for all f e A ( G J χ H ^ . Taking the limit i <*> we obtain the desired 

result. 

IV. Interpolating domains and Hilbert spaces of holomorphic fxmctions 

It is our aim to convert the general convexity theorem of the last section 

into statements of finding envelopes of holomorphy. In order to clarify the 
Η Η 

situation let us assume G q C G^ and H q C and we have to compute 

the envelope of holomorphy of G Q Χ U G^ Χ H q . We know that both domains 

G ^ χ Hj and G^ χ are Runge domains in G^ χ H^. Therefore we can appro

ximate every function given on the union of the two small domains by function 
in A (G- x H J as well on G χ H. as on G, χ H . If we succeed to find an 1 1 ο 1 1 ο 
approximation on the union of both small domains simultaneously then the. 

convexity theorem gives us an extension of the given function into a bigger 

domain. That such approximations exist, at least for sufficiently many domains, 

we will show by means of Hilbert spaces of analytic fxmctions. (For an intro

duction to the theory of Hilbert spaces of analytic fxmctions see e. g. [l] ) . 

IV. 1. Notations 

In the following we denote by G always a domain of holomorphy. 

a) Let yu be a measure on G , then we say is a regular measure 

if the set 

6 ' 
is a c losed subspace of £Z(Qtp ) . We denote this subspace by A Î f y » ) , 
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b) If is a regular measure on G and if contains not only 

the function o, then the kernelfunction is defined by means of an ortho-

normal basis [f^j through the formula 

This function is independent of the bas i s , defined on G x G , and analytic 

in ζ and anti-analytic in W # 

c) If is a regular measure in G then we call completely regular if 

$ 1 G» ^ ) i s a dense subspace of A(G). 

IV.2. Lemma 
Let ρ be a regular measure on G. 

a) Let t c À (G) 9 then f (t , f ) defines a continuous l inear functional i'(t) 

on $ (G^i The vector i(t) i s defined by the formula 

I(T) = ( T E # K ( V / # Z ) ) . 

b) The map i defines a continuous antilinear mapping from A* (G) into 

(G,^U ) such that the image of a compact convex set in A ) (G) is a 

compact set in (G#^u ). 

c) The image of i is always dense in ^ l Gif* ) and i i s infective if and 

only if 4̂ i s completely regular . 

d) F o r every continuous Hubert s e m i - n o r m ρ on A(G) exist a compact 

operator ξ p > 0 acting on (G$j*) such that for every f £%{G,^) 

we get the identity 

pit)2<f. £ f ) . 

e) Denote by % the c losure of ^ (G^u) in A(G), and let ρ ( · ) be a 

Hilbert seminorm on A(G) . The corresponding operator has an 

(unbounded) inverse if ρ restr icted to ^ is a norm on 

Proof : v 

a) Let f ε ή( (G,ju) be such that ( f ( β 1 , then it is member of some ortho-

normal bas i s . Consequently we get f or any compact subset of G 
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So we get in general 

s u p { | f ( T ) | . 2 ^ k j ^ C ( k ) if//. 

If t is a continuous l inear functional on A(G) then exists a compact set Κ 
in G with 

I (t,f)| é m sup [ I f(z)|; z£icj m > 0 and hence 

we get for f £ % (G,ju ) : 

l ( t , f ) U m C (K) I f il . Therefore exists by the Riesz represen

tation theorem a vector i(t) £ ÎfiG^/U) with ( t , f ) A = (i(t) , f ) ^ . 

If { f.J is a basis of $ ( G , ^ ) then we find 

η ώ ! 2 • 2i(t.yi2 which implies 

b) The. antilinearity of i is c l e a r . Let j be the natural injection of ^ (G,yU ) 

into A ( G ) , then j is continuous since we have 

sup{ If(z)| ; z c k\ £ Q (K) ft dT 11 t 

Since i is the transposed of j fol lows the continuity of i . 

Since i is continuous follows that it maps compact sets onto compact 

sets . 

c) The density of i ( A (G) ) is tr iv ial . The map is infective if i(t) = 0 

holds only for t = 0. But i(t) = 0 if and only if ( i (t) , f ) ^ = 0 = ( t , f ) A 

for all f £ ^ ( ( G ^ u ) . Therefore i(t) « Ό if and only if (t, g) = 0 for all 

g € ^ (the c losure of ^ in A (G) ) , Therefore i is injective if and only 

if -S A(G) . 

d) Let h(» ) be a continuous Hilbert s e m i - n o r m then exist m > 0 and a 

compactum KC G with 

h ( f U ± supilf«>l j z « k ] < W If" 
1 vn v 1 ) J γη 

where the last inequality holds, only for elements in $f ( G Y U ) . Since h is 

a Hilbert s e m i - n o r m exists a l inear operator on {G9ju ) with 

S h > 0 and h ( f ) 2 = (f, § h fT 4 If II 2 . 

The set ^ f € A ( G ) ; h(f) < 1̂  i s open and has therefore a compact polar 

denoted by K . Here we have used that A ( G ) is a Montel space. By the b i -
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po lar theorem w e get for f £ (Gyi ) ; 

• Cf,S. 0 e h ( 0 = s u p ( ( L ( t ) ( f ) , £(fc) L ( K ) ] 

FLTF } 

Let %\ = J } J t ^ ^ then follows for f & ( 1 - E £ ) (G,yu) 

If If % F ff^FI/ = ^ u p { ( U T ) ( F ) . £ ( f c ) € Ί ( Β - ) ^ 

Since i(K) is compact in (G,yu) follows ) $ (G^u) is finite d i 

mensional and this implies ς?/χ is a compact operator . 
— Κ 

e) If ρ ( · ) i s a n o r m on then we have for f £ 3( (G, JU ) 

p ( F ) 2 = ( f ; § f) * 0 for f * 0 

and hence & i s invertible. 
* Ρ 

Now we want t o apply the results of the last l emma to pairs of domains. 

We want to make f o r the rest of this section the following 

IV, 3. Assumpt ions and notations 

W e choose G C G . C G C / ^ s u c h that 
O 1 

a) G i s a domain o f holomorphy 

b) G^ i s relat ively compact in G j and 

G j i s re lat ively compact in G 

c) v { g o } ° and Ο , - l Ô j J 0 

d) G and G. a r e A(G) convex 
ο 1 

e) dv denotes the Lebesgue measure on C 

f) We wr i te for short ( G r dv) and tyQ = $ ( G q , dv) 

IV. 4. L e m m a : 

A s s u m e IV. 3 , then we can find numbers <o I ^ 1 and an or tho -

normal bas i s ^ fJ^ of ty4 , such that £ (3 ^ i s an orthonormal basis 

of 0 * 
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Proof : 

with 

Now we get: 

This shows ĵ Çf. f. ^ is an orthonormal system in $ 0 . Since G q is A ( G ) 

convex follows that the set of functions which are bounded on G are dense 

4n %t but these functions can be approximated by the [ ^T,-1 ^ and there 

fore they form a basis in ^ . F r o m the definition of p(g) follows immediately 

|£pl]4 1 which implies 1. 
As we will see in the next sect ion, this l emma leads together with the con-

W 
vexity theorem of the last section to the following result: Let G ^ G 1  Η ο 1 
and H Q C then the envelope of holomorphy of G ^ x H j U G j X H q is 

exactly ( i G χ Η, , , We will need this result in the next l emma. But we 

need it only in a special f o rm which is covered by the known semi-tube theorem. 

IV. 5. Lemma: 
Let <2f; be the numbers and £ f ^ the orthonormal basis described 

in the last l emma. Define 
_ X14-X) 7 ρ 

then the sum converges on G χ G^ and defines a kernel function on G^ . 

Since is compact in G^ follows that every f £ A(G^) is bounded on 

G q . Hence p(f) = { J f(z) 2 dv j ' % is a Hubert s emi -norm on A f G ^ . 

Hence by Lemma IV. 2. d exist a compact operator Ç on 

δ . 
2 

Since (f, f) = ρ (f) = ο holds only for f = ο follows that ξ is invertible, 
O fr 

this means all eigenvalues of ξ are posit ive. This implies we can find an 
orthonormal basis [f^ J of ^ 
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The function Kcç(W{2) - - 2 ^ fi'CVi/J £ ( 2 ) is f o r Re. Ç ^ ο 

defined on G, x G , since  ΟΓ- > 1. F o r Re <f έ 1 it is defined on G χ G . 
1 11 _ *· _ _ ο ο 

The interpolating family of G ^ χ G q and G^ χ G^ is G^ χ by Theorem 

III. 5 ( G ^ denotes here the complex conjugate domain of G ^ ) . Since this func

tion is analytic in (<£ , ν > "2 ) fol lows that it is also analytic in the envelope of 

holomorphy of these two domains. This can be computed by the theorem to be 

proven in the next section or the semi-tube theorem. Using the semi-tube result, 

we have to compute the maximal plu ri - subha rmoni c function which is zero on 
G χ G and bounded by 1 o n G , x G , , But this i s exactly the function which ο ο * 1 1 ' 
characterizes the interpolating domains. Hence 

is also holomorphic in 

and ( w ) € χ σ λ · 

This shows ( W , "2 ) i s defined on G N χ G , . 
Λ / Λ 

In order to show that is a kernel function we must proof the positivity 
condition Σ \ ^ ^ I Ζ Λ ' °Ά ^ * S e e ^ S B i z Y ^ ^ -
We get 

This proves the l emma. 
Since we have a kernel function on G ^ we also have a Hilbert space of 

holomorphic functions. But, we can not expect this to coincide with (G^ , dv / ( 

The reason for this is the fact that the plu ri - sub h a rmoni c function K^(z, z) 
does not define the domains G. , this means , in the general situation there 
will be no functional relation between K „ ( z , z ) and ρ ( ζ , G , G„ ) . But never -

1 * m ο 1 
theless we can use these kernel functions to prove the following 

IV. 6. L e m m a : 

Let {<SlJ and ( f ] . as in L e m m a IV. 3. then for every > ο we have 

a) 2 Q r f " < <*> 

B) f or every ζ C G A with λ 4 1 we find f o r S > ο | ^ Γ ( ζ ) } <£ Ι 

and there exists a constant  ΜΙλ,£.) with Ζ < Ξ Γ * " | | > . ( 2 ) { 4 Η 4 o=> 

for all ζ € G Λ . 
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Proof: 

. i ? * (fwU* = J Κ 12,2) civ 

Since according to Corol lary II. 11. G is relatively compact in G . 
Ο * 

follows that ( z , z) is bounded on G q and thus the integral is finite, 

b) F r o m the existence of the kernel function fol lows 

for -ζ <£ . 

By a) we have hence we get 

f o r ζ έ with λ * 1 . 

But for A > λ' > λ the set of vec tors Jf± (ζ) | J is a 
bounded set in A Since ( z # z ) i s bounded in . Hence 

\ ] 1 8 a bounded s e f c ™ ^ * o r z 6 ^ χ * 

With this lemma we can prove the main convergence theorem of this 

section. 

IV. 7. Theorem: 
Assume IV. 3. and let { <3T; j be the set of numbers and j f^z) \ 

be the orthonormal basis descr ibed in Lemma IV. 4. 

a) Let S(z) - ^ a. f^(z) be a sequence such that 

1 1 1 X 1 Ï5g^ " ^ 

and let ^ = max ( ο, ρ ) , 

a) Since all Co,- ^ 1 follows that the sum is decreasing with increasing ^ 
Hence we can restrict ourselves to the case ο < ju * 2. Putting = 2 λ 

we have ο < λ < 1 and we write 
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then S(z) converges in % and it converges uniformly in every { 5 1 

with λ < 1- . 

b) Assume on the other hand ^ ^ ο and F(z) £ A(G ) then F(z) has 

a representation 
F(z) = I a . f . i z ) 

with 
, . log I a* I , . 

By a) follows that this sequence converges uniformly on every Q χΐ with 

Remark: 

Since we do not know enough about the functions f^(z), we cannot c laim 

( fÂ } o) that the ser ies in a) diverges for 2 4 . But b) tel ls us that 

there exists at least some sequences fulfilling a) which diverge outside of G n 

(Because there exists functions in A(G^ ^ ) which have G^ ^ as their exact 

domain of definition. ) 

Proof : 

a) F o r every £ > ο we have by assumption 

?°S l a i < < JU+£ f or almost all i , 

This implies 
AA± £ 

|a^| < C j except for a finite number of t e r m s . 

Hence we get: 

I Σα ; f a l l ( 2 l o ; i l f ;n> l ( 1 I f; «»l . 
By the previous l emma this ser ies converges in G 1 c and uniformly 

L- /** - t 
in G 1 ^ · Since £ was arbitrary follows the result. 

b) Let F(z) e 6»̂  then by compactness of G y in for <f λ 

follows F(z) i s bounded in Q^i . Hence it is an element of the Hubert 

space defined by the kernel function K^i . So F(z ) has a development 
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which converges on G y in the sense of that Hubert space. Hence we 
have |b I e 1 0 . This implies η 1 Δ 

for almost all η 

o r 
l i m s u p Μ ί ϋ η 1

 4 Ι - λ ' . 

Since this holds for all ^ ^ we obtain 

Urn sup l - J . 

V. Construction of envelopes of holomorphy 

Combining now the technics of the last section with the convexity theorems 

of section III we obtain a ser ies of results , which contain the tube theorem, 

the theorem on Reinhardt domains and the semi-tube theorem as special cases . 

The two first results are based on L e m m a IV. 4. only and they contain the in

formation needed for the proof of L e m m a IV. 5. 

V . 1. Theorem: 
Let G 1 C f n and H,, c be domains of holomorphy and assume 

G C G- and H C H- È then the envelope of holomorphy of G χ H U G x H ο 1 Ο 1 Ο 1 1 c 
has the following representation 

A 
h u l l ( G x L [J G 1 x H ) = U G . χ Η- . 

Ο 1 ^ 1 Ο A 1 - 4 . 
λ * 0 

Proof : 
First let us show that the right hand side represents a domain of holomorphy. 

The function 

p ( z , v ) s p m ( z , G Q , G j ) + p m (vi / # H q , Hj ) 

is defined on G^ χ H^ and is pluri -subharmonic . Hence the set 
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defines a domain of holomorphy. But, by definition of the interpolating 

families this domain coincides with \J G χ H 1 . . 

F o r the other part we have to show that every function F ( z , w) defined 

and holomorphic on G χ KL U G. χ Η can be extended analytically into 
ο ι ι ο 

[J G , x L N · To this end we make use of Lemma II. 5. which states that 
we can approximate the G' s and the H* s f rom inside by relatively compact 

À 
domains which fulfill the conditions of Lemma IV. 4. Let G , G i , H , EL 

° * 1 * ° 1  

s 1 , 2 , . . , be these domains then F(z , W) is bounded on G χ H and β4 ν oC ο ι 
G, χ H . Let f. (ζ)" be the basis and <cT; be the sequence described in 

l o i 1 

Lemma IV. 4. then we can find for F(2 , w) the developments 

where the (W) are holomorphic in H^. F r o m the identity on G Q Χ 

follows ^ j ^ C V ) m<$f . This implies the second sum con 

verges m By choice of the domains follows that the 

sum converges absolutely in G Q  Χ  H J (J G^ x H and hence by 

the convexity Theorem ΙΠ. 6. in G χ H j " 1 · Since G = G 

by Lemma II. 3. follows that F( , ) has an extension into G χ 

A simple generalization of this result is the 

V. 2 . Theorem on generalized Reinhard domains 

Let G-1 C d?^1 , i = 1, . ·., Ν be domains of holomorphy and assume 
i » i Ν Γ Τ Ν 

GQ C G j · Denote for Λ ^ \09 1J the domain 

G. s  θ ! χ G? χ . . . χ G^ . 

Let S Ç £0, 1J be a c losed set and Co S its convex hull then we get 

h u i i V ^ - (J fi. 

Proof : 

F r o m the last theorem we find together with Theorem III, 5. the result 
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h u l l 
A 

This shows that the envelope of holomorphy we are looking for contains the 

union of the right hand side. So it remains to show that the right hand side is 

a domain of holomorphy. 

To this end remark that [Ό, l] ^ becomes a semi -ordered space by intro
ducing the relation 

i î { * ( 2 0 ; for i = 1 , 2 , . . . Ν 

F r o m definition of the G, follows with this se mi -order ing G C G . 

iff Ai ζ λ % . F o r SC CO, l j define S as follows 

-S = { λ ï 3' V* S with 2L * A ' ] 

then we always get 

J U S " A « s " 
If S is convex then this is obviously also true for S . If S is convex then 

it can be written as intersection of sets in fo$ l j which are bounded by 

boundery points of l ] and a hyperplane. But there appear only such 
r -? Ν 

hyperplanes which have a normal vector η lying in [0, l j . 
Since the intersection of domains of holomorphy defines again a domain of 

holomorphy, we have reduced the problem to the situation where S is given 

by 

and c < Τ η. . If we put for short writing ρ*(ζ.) - ρ ( ζ . , G* , G.1 ) and ^ ι ι m i ο ι 
define 

p ( z r z r ... z N ) = 2 ^ P 1 ^ ) 

1 Ν 
then this represents a pluri-subharmonic function on G j χ . . . χ G^ . Therefore 

j ( z r z^) ; ρ ( ζ χ , z N ) 4 c J 

defines a domain of holomorphy. But looking at the definition of G^ we find 

that this domain coincides with \J (a , 

Tliis proves the theorem. i . 6 ^ 
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Next we want to give two generalizations of this theorem. The first one is 

a general ized semi-tube theorem. 

V . 3 . T h e o r e m : 
Let H c ( and G^ C L be domains of holomorphy and assume 

G C G^., Let Γ C'£n*m be defined as fol lows: 
Ο 1 

and 

Then I i s a domain of holomorphy exactly if is a p lur i - super -

harmonic function on H . 

Proof: 

A s s u m e f irst that λ it) is pluri -superharmonic function on Η . Then 

follows that 

p ( 2 , v ) - 1 - A ( 2 ) + P m ( W , G Q , Gj) 

i s a p lur i -subharmonic function on Η χ G^. But f rom the definition of G^ 

follows 

^ « ( ( ï ^ l c H i G j î p f a W U l ] . 

Since p d , w ) i s pluri-subharmonic fol lows that Π is a domain of h o l o 

morphy. 

F o r proving the converse statement we remark f irst , that the function λ («ζ) 

in the definition of Γ has to be lower,semi-continuous in order that Η b e 

comes a domain . If G ^ , G * i s an increasing approximation of G Q , G^ 

such that U G^ Β G Λ ftfifk we have shown that the theorem holds for 
T 

then it is t rue also for Π , since \J Ρ L s Ρ β 

> i i i 1 

If G ^ Λ G ^ i s an increasing approximation as described in L e m m a II. 5. 

then we put G 1 = G * and g] = G / in order that we can use the conver -
ο Si . \ 1 . 1 

gence T h e o r e m IV. 7. Γ i s supposed to be a domain of holomorphy then 
(with the notation of Theorem IV. 7. ) F ( 2 , W ) £ A ( Γ ) posessed a develop

ment 
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with a.(z) £ A (H) and 

l i m s u p i 2 f M i ! ' e l . λ M 
i -ο«χ> ë ^ i 

Denoting by p ( z ,F ) the pluri-subharmonic limit of the left hand side and by 

p(z) the pluri-subharmonic majorant of all the p ( z , F ) then we have p(z) ^ 1- } ( z ) . 

But since F L is a domain of holomorphy folbws that there exists functions 

with PL as their natural domains. Hence we get p(z) = 1 - X ( z ) . This proves 

the theorem. 

We want to end this paper with a generalization of the first theorem of this 

section. There we have constructed the envelope of holomorphy of G χ H 1 (J G χ H 
H H ο ι ι c 

where G q C G j , H^ C H^ are ail domains of holomorphy. In many appli

cations we find a more general situation namely one has to construct the domain 

of holomorphy of G q χ H^ (J G^ x where all four domains are natural do 

mains but where the G' s and the H' s do not form Hadamard pa irs . F o r the 

treatment of this problem the last theorem plays an essential ro le . Before we 

can state the result , we need some notations. 

Let be a domain of holomorphy and G^C G 1 a domain, then the set 

F C P(Gj ) 

P - { (p(z) C P i G j ) ; p(z) £ 1 and p(z) έ 0 for z é G ^ ] 

is well defined. This contains a pluri -subharmonic majorant ρίζ) . 
If we define G s ) z £ G · ρ (z) £ of then we have G C G. and o c 1 * m i ο 1 
P m ( z ) = P m ( z * G q , G j ) . With *ζ we denote the interpolating family of the 

pair G Q S G R 

V. 4. Theorem: 
Let G^ C € and H^ C € be domains of holomorphy and assume 

G C G. and H C H„ are domains (not necessar i ly domains of holomorphy) ο 1 ο l 
then we obtain with the above notation 

h u l l G o x H l V G l X H Q - U ζ χ H r . A , 
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Proof: 

F r o m Theorem V . 4 . fol lows that G^ is characterized by a pluri -subharmonic 

function which impl ies that the Ο λ are itselves domains of holomorphy. Further

more we have by assumption 0 G^ ^ , so that we are not talking about 

empty se ts . 

Let us denote by D C £ the po ly - c i r c l e of radius r and let ζ £ (1 
r ο 

then exists r- such "that ζ + D C G, and r with ζ + D„ C G x . Since ^ 1 ο r i 1 ο ο r
0

 λ 

G. C GA fol lows r , \ r · There fore we have λ i 1 ^ ο 

z + D χ Η , U z + D r χ Η C Γ ο r 1 -λ ο Γ ι ο ι ο Α ' 
and therefore also 

h u l l ζ + D r χ ί , U z D χ H cV ο Γ
0 l - λ w ο r j ο ^ 1 

Since D r C D fol lows by theorem V. 3. that this hull is given by the maxi -
o 1 ~ 

mal pluri -subharmonic function ^ ( V ) which is bounded by 1 on FL ^ and 

zero on H q with D r = D r * ( w ) r^ ( 1 - λ ( W ) ) β This implies together with 

Theorem II. 14 and the definition of 

z + D χ Η, x χ z + D x H c Ρ ο r 1-A ο ο · ο ι 

Taking the union o v e r aU D x we see that 

But by symmetry we get G. χ H \J G χ EL C I and the result fol lows f rom 
1 ο O 1 

Theorem V. 1. 

Let us denote the envelope of holomorphy we are surching for by Π # 

Then we define 
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