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Réf. TH. 2 0 8 5 - C E R N 

A BOUND ON THE TOTAL NUMBER OF BOUND STATES 

IN A POTENTIAL 

A . M a r t i n 

CERN - Geneva 

A B S T R A C T 

We prove that the total number of bound states in a potential is 

less than 

^yj|v-(x)d 3xj|v-(x)| 2d 3x 

in units where 2mfh = 1 ; V is the attractive part of the potential. 

No assumption on the symmetry of the potential is needed. In the Appendix, 

a proof of the Hardy-Littlewood-Sobolev inequality with optimal constants 

is sketched. 

Ref.TH.2085-CERN 
17 October 1975 
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1 . INTRODUCTION, 

Recently, new conditions for the absence of bound states in a potential 

have been obtained [ 1 ] . In addition, a bound on the total number of bound states 

in a spherically symmetric potential has been obtained in GGMT : 

Ν <Ξ I[1 + (1) 

with 
3 

ι = - i 4 f|v-(x)|*d3x 
3/3 π J 

(2) 

2 

(we take 2m/fi = 1 ) · 

However, the bound (l) is not satisfactory in two respects. First it 

contains a logarithmic factor which, as we shall see, is probably spurious. 

Second, spherical symmetry of the potential is assumed. This is very unpleasant, 

because it is now widely recognized that Nature likes at least as much broken 

symmetry as symmetry ; therefore, even in the lowest energy configuration, a 

particle may experience a non-spherically symmetric potential. 

If we decide not to assume spherical symmetry, what kind of bounds are 

at our disposal, if we exclude those trivially obtained by majorization of an 

arbitrary potential by a spherically symmetric one ? (Such a bound would have 

the defect of not being invariant under translations.) The oldest and most 

remarkable bound has been obtained by Schwinger [ 2 ] . It is 
Ν < - l ^ fd3x d 3x ' |v-(x) | |v-(x')| e x p - 2 g | x - x 1 

0 1 ( 4 π ) 2 J |x-x'|2 
(3) 

2 

N^ is the number of bound states with energy less than - a . In particular, 

the total number of bound states for a short-range potential with no positive 

energy bound states is 
N < - _ 4 r d 3 x d 3 x , |v-(x)||v-(x')| 

( 4TT) 2 J | Χ - Χ · | 2 

(4) 
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which implies, by the Hardy-Littlewood-Sobolev theorem [3] 

- 3 2- 4 
N < ( I ) 3 t J l i Κ ( χ ) | 2 ] 3 (5) 

In the Appendix we give a proof of inequality (5) with a somewhat 

larger constant. We obtain the constant in (5) from a variation argument, which 

would be completely rigorous if we could prove strict uniqueness of the solution 

of the variation equation (we have local uniqueness). 

The defect of (4) and (5) is that they give a poor upper bound in the 

strong coupling limit. Indeed if we replace V by λν , we have, in the 

limit λ - ® [ 4 ] , 

1 1 
N ~ λ 2 - ~ (d3x |ν"(χ)| 2 

6TT J 

(6) 

2 

while (4) and (5) give a λ behaviour. In reference [4] corrective terms to ( 5 ) , 

for finite λ , can be found but they depend on smoothness properties of the 

potential. In fact, in GGMT, it was proposed that N £ I , where I is defined 

by Eq. ( 2 ) , might be a bound. It was even argued that there could not be any 

bound with better numerical constants. Unfortunately, this conjecture was only 

checked for I < 3 · 

Here we shall establish a bound which has the correct dependence with 

respect to the coupling constant. However, so far, we have not been able to obtain 

a bound depending only on I . In the last section, we treat the special case of 

spherically symmetric potentials where additional results, following from GGMT, 
can be obtained.^In a recent preprint, Barry Simon has also obtained a bound 

2 
behaving like λ [ 5 ] . 

2. THE GENERAL BOUND. 

The shall follow very closely the elegant method of Schwinger [ 2 ] . 

We take a potential XV(x) , in order to see the explicit dependence on the 

coupling. We can replace v(x) by -\Γ(χ) , its attractive part. 
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This will necessarily increase the number of bound states. Then it is possible to 

symmetrize the kernel of the Schrtfdinger equation in integral form for a bound 
2 

state of energy -o? : 

$(x) = λ [ Κ (χ,χ·)§ Ο 1 ) <13χ' (7) 

where 

§(χ) = /v"Cx)t(x) , 
V 

ψ being the wave function, 

Ι (χ,χ.) = > - ( x ) exp-alx-x'jy v- ( x t ) 

Χ - X f J 
(8) 

The operator ïĈ  is £Ositive, as can be seen from its expression in momentum space 

κ (Ρ,Ρ·) - J A »V*M*-?) 
k +a 

(9) 

w is the Fourier transform of Vv~ · 

Schvinger notices that the number of bound states of energy less than 
2 

*-<y inside the potential λ V , is equal to the number of characteristic 
values ^ η < λ °£ Β(1· (7) · In particular, if we define $ number of 

2 
bound states with energy less than a in the potential λ V and 

η (λ) = Σ τ- = Σ < § ]κ |§ > , 
λ <λ η λ <λ η η 

(10) 

where the Φ *s are the eigenstates of Κ with characteristic values λ , η Ό α η9 

we have 

Ν (λ)* λ η (λ) cr 7 or ' (11) 

An upper bound of η^(λ) could be obtained by summing over all n fs , 

i.e., by taking the trace of · Unfortunately, this trace is divergent, 

as can be seen from (8). 
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This is the reason why Schwinger uses the iterated kernel instead of ; then, 

unavoidably, the bound on the number of states is quadratic in λ · We want to 

avoid this and to do so we use an approximate kernel with a finite trace. A 

possible choice is 

Κ - Κ μ > a · 
α μ 

(12) 

For μ -* » f Κ goes to zero in norm. On the other hand, the operator 
μ 

Κ - f as can be seen from its momentum space expression, 

k +cr k +μ 

is also positive. 

We can rewrite η (λ) as 

η (λ) = Σ <Φ Ικ -Κ |$ >+ Σ <Φ |κ |$ > 
" λ <λ η * μ η λ <λ η μ η 

η η 

s Σ < $ | ι -κ Ι$ > + Σ r-<$ |r Ι* > 
λ <λ η α μ η λ < λ λ η η μ η 

η η 

and using the positivity of T. - K l l f I , and Κ , we can extend the summation 
β or Ρ» μ of 

to infinity and get 

η (λ)< Tr(K - Κ ) + λ Tr(K I ) α ν y _ α μ 7 v α μ 7 (13) 

which is our main result. 

One can evaluate ( 1 3 ) quite easily : 

η,(λ) < 

^ J d 3 x v - ( x ) 

+ _JL^  Γ d 3 x Λ·ν-(χ) E X P - ^ | j x - x , l v - ( x ' ) 
( 4TT) 2 J | Χ - Χ · | 2 

(14) 
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By using Schwarz1 or Yung's inequality, one can majorize the second 

term in (14) to get 

( 1 5 ) 

After taking the limit a — Q , we minimize, with respec to μ , and get the 

bound : 

3/2 / 
N < λη ο(λ) < ^ r VJv-(x)d 3xJ |v-(x)| 2d 3x . (16) 

3 
2 

This bound has the correct λ dépendance, but requires more local 

regularity than the Schvinger bound. For instance, it diverges if the 

potential has a local singularity of the type |x-x J"" 2 . Numerically the 

bound is not too bad. In fact, one cannot improve the constant by more than 

a factor 2.9 . 3 
Indeed, assume (as is the case) Ν c λ for large λ · Then 

Ο 
( 1 7 ) 

and we get 

c <^Vjd 3xV-(x)Jd 3x( V-(x)) 2 , 

to be compared with the asymptotic estimate (6) . Taking V~ to be a constant 

over a finite region of space, we see that the two bounds differ by a factor 

π . For small values of λ we lose the factor 3 appearing in ( 1 7 ) because 

it may be that the potential has no bound states up to a critical value λ 

and many immediately above. This is the case in the example mentioned in 

GGMT of a series of isolated potential wells far from one another. We know 

that an optimal condition for the absence of bound state is : 
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^ - - ^ J d 3x | v(x)| < 1 
V 3 T T 

which is saturated by 

V - - C(l+r 2)" 2 

If we compare the two conditions, we get 

( 1 8 ) 

Infactt by a limited optimi2ation with respect to X ve can replace 
1 w 1 . 1 1 4 . r«r\ 

TT 

3. THE SPHERICALLY SYMMETRIC CASE 

This is just an addendum to GGMT. In GGMT it was established for 

spherically symmetric potentials that , the number of bound states with 

angular momentum i , counted without the (2Λ+1) degeneracy factor, was 

such that 

( 2 X + 1 ) V # < - c X Pfr 2 p"V P(r)dr 
A ( 2 A + 1 ) 2 ^ 1 ) P J ' 

( 1 9 ) 

with 

c . (Ρ - 1) Ρ- ΊΓ(2 Ρ) 
P " Ρ ΡΓ 2( Ρ) 

A bound on the total number of bound states can be obtained by taking 



- 29 -

Ν < Σ(2Χ+ΐ)νχ 

L 

00 

+L+1 72 J l ) 2 ̂  ' - T ) C P ' J '"1 (V-(r) ) ρ ' d r 

with ρ 1 > ρ . The old bound of Simon [β] can be considered as a limited case 
3 3 

with ρ s 1, ρ* = ® · One can also take ρ = — - e , p f = ̂  + e · Replacing sums 

by integrals for brevity, we get 

. i £(21*1 r 2 « C 3 / 2 + e λ 3 / 2 « | ( Γ 2 ν ) « V 3 / 2 r 2 d r 

and minimizing with respect to 2L+1 

Ν < ~ VcTI c77 λ 3 / 2 

η, 2e 3/2-e 3/2+e 

X 7 J Cr 2v)- eV 3/ 2r 2dr J (r2v) e V ^ 2 r 2 d r (20) 
3 
2* 

Again we recover the λ dépendance, but in addition we have a bound 

for potentials which have singularities in r , T] positive arbitrarily 

small. This suggests that inequality (16) , for non-spherically symmetric 

potentials, is not final. 

This result is analogous to the one obtained by Bary SIMON in ref [5] 
which is 

« < c, ^ [ i i v | i 3 / 2 . e + l l v | | 3 / 2 t / / 2 . 
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APPENDIX 

A PROOF OF INEQUALITY (5) 

The problem is to prove 

Γ - ι 4/3 
rv(x)v(x')d 3xd 3x' < c f ( v ( x ) ) 3 / 2 d 3 x (A.1) 

and to find the best possible constant C . This inequality is well known 

by a small group of specialists, but it is irritating to find no simple 

proof in the literature, and the existing proofs do not give numerical 

factors· 

We remark first that according to Luttinger and Friedberg [ 7 ] 

J V(x)V(x') d 3 x d 3 x l < J V*Çx)vV) d 3 x d 3 x , (A.2) 

where V (x) is the spherical decreasing rearrangement of V(x) · Since 

the right-hand-side of (Α·1) is invariant under rearrangement, we can 

always assume that V is spherically symmetric. Then we can carry angular 

integrations : 

% d^x d 3x f V(r)v(r') 
J 4ïï 4ïï , 2 χ-χ' 

= \ \ r 2drr^ 2drtv(r)v(r0 l 0 g l^ r , l 
r r» 

(A.3) 

Then using the HBlder inequality, we find that this is less than 
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Γ » 1 1 / 3 

£ j Jr 2drr' 2dr'(vCr)) 3/ 2(y(r')) 3 /' 2 

η 2 / 3 

ο / 4 / | r+r' |\3/2 
χ !r 2drr' 2dr»(v(r)) 3/ 4(v(r')) ( 1 ο ? Ι r ~ r ' 1J 

(Α.4) 

llext we apply Schwarz' inequality to the second bracket : 

( r + r » \ 3/2 Ί 2  

UISEEL' y 

" r ρ 3/2 , 3/2 AogP^ I \ 3 / 2 ^ 
< jr2dr(v(r)) r ^ d r ' ^ / \ 

X Jr. 2dr.(v(r.)) 3/ 2 r 2 d r ( ^ ) 3 / 2 ^ 

(A. 5 ) 

The integral 

ο \ r r' J 
is convergent and dimensionless. 

Hence 
Γ djc d 3x' V(x)vÇx') 
J 4ÏÏ 4ττ β 2 χ-χ· 

Γ / Ί 4 / 3 Γ / Ί 2 / 3 

ο 
(Α.6) 
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with 
rœ
 A 3/2 0 1 „ 3/2 

J x v * 1 - x ' J „ 2 V J x y 

ο ο 1 - x 

= Γ( 5/2)  ι + - ^ + - ^ + ... =-5.87 

Therefore 

-| V 3 
_ i r d 3 x d 3 x » v ( x)v ( x , ) < 1 t 6 3 [φ|ν (χ )| 3 / 2 

( 4π ) 2 J j x - x ' | 2 J 4 T T 

(A.7) 

A best value for the constant can be obtained by exact minimization. 

Let us assume provisionally that is given by the solution of the 

variation equation : 

(V(x))* = Cj - i k - v ( x ' ) 
jx-x'j 

(A.8) 

We can restrict ourselves to spherically symmetric solutions, with 

V(r) monotonous decreasing 

(V(r))*-C . f ^ l o g | ^ | v ( r . ) (A.9) 

We have found two families of solutions of this equation : 

( 1 ) V(r) = const r (A . 1 0 ) 

This solution is not acceptable. 

(2) V(r) = X(a 2+r 2)- 2 (A.11) 
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At the present time we have no strict proof that solutions of type (2) 

are the only possible solutions. However, we have been able to prove that 

if v(r)r does not tend to zero for r -* ® f it is a constant. If 

r 2 v(r) tends to zero, it necessarily decreases like r 2 . 

We leave aside question of uniqueness, and we proceed first to 

prove that there exists indeed a minimum for 

r ~ 4 / / 3 / 

* - J 4 π m x ; ; / J 4π 4π , t j 2 

/ Ι χ - χ Ί 

(Α . 1 2 ) 

We have seen that we can restrict ourselves to spherically symmetric, 

decreassing V(r) to find the infimum of Κ . Then, introducing p(r) = 

= r ( v/r) 2 we rewrite I as 

Λ arr r \>3\ 4 / / //i fdr dr f . r+r f 1 r \\2\λΓ t>?2 K = ( J — ( p ( r ) ) ) / \ \ — —Γ log |p(r)| | p ( r f ) | 

Changing variables to σ(ζ) = p(r) , ζ = log r , we get 

r ι 4/3 / 

K = J dz|a(z)|3 Λ J J dzdz'log ^ f e ^ l (σ(ζ) | 2 |σ(ζ « ) | 2 

Now we can use the theorem of Hardy, Littlewood and Polya on symme

tric rearrangements. Replacing σ(ζ) by its symmetric rearrangement 

around the origin, leaves the numerator of I invariant, but increases the 

denominator because 

1-exp ζ 

is symmetric, and decreasing for ζ > 0 . If one looks carefully at the 

proofs, one sees that the rearrangement by a non-zero amount the denominator, 



- 35 -

unless σ(ζ) is deduced from a symmetric decreasing function by a change of 

the origin. We conclude that to find the infimum of Κ f we can restrict 

ourselves to a class in which both rearrangement conditions are fulfilled : 

1) V(r) decreasing, i.e., exp (-ζ) σ(ζ) decreasing for - « < ζ < » ; 

2) σ(ζ) = σ(-ζ) and σ(ζ) decreasing for ζ > 0 . 

It then follows that exp(z) σ(ζ) is increasing. Hence, we consider 

functions σ(ζ) such that 

i) σ(ζ) = σ(-ζ) 

ϋ ) 0 S ~ 2: - σ(ζ) ζ > 0 . dz ν ' 

Further, we may assume, since we are looking for the infimum, Κ ^ C ; for 
2 - 2 

instance, using V = (1 +r ) , we find 

2 v 2 / 3 1 r - (—) =- — I — 
*· V 1.35 

(to be compared with l/u.63) and so we can take 

ο 2/3 C = Φ ' 
TT 

(A.13) 

Therefore we have 

^/ 3 

If 1ρ(Γ)| 3 1 * ( f ) 2 / 3 * * J ? ^ l o 3 | ë ^ | ( p ( r ) ) 3 / 2 ( p ( r . ) ) 3 / 2 x ( s u p p ) 

= (|)2/3xi Χ Γ f ( P ( r ) ) 3 f f log J« 
Ο ο 

„ 4/3 .· 3 
= (f) (supp)J f (p(r)) 

Ο 
(A.14) 
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Hence for all p's , such that 

2 2/3 
κ * (-) 

we have 

J f ( p ( r ) ) 3 < C ? ) 4 ( s u p p ) 3 (A . 1 5 ) 

Now since Κ has an infimum, there is a sequence P n such that 
K(P n) approaches this infiraum. We may assume sup P n = P n(r = 1 ) = σ

η ( ζ = θ) = 1 . 

Then 
da 

dz η (A.16) 

The <^ n
, s are therefore equicontinuous. From the Ascoli-Arzela 

theorem, there is a subsequence of °n

%s approaching a limit which we call 

σ · We have 
00 

σ β(0) - 1 . 

σ (z) is continuous and such that 
00 N ' 

fd.|<T.(«)|3.f f | p » | 3 < (f)" (A.17) 

It is also easy to see that 

; dzdz'logj £ | $ f = $ | 1σ(ζ)Ησ( Ζ·)| 2 

approaches a limit. Indeed the integral restricted to |z| < M | z f | < M 

approaches à limit, and the rest is bounded by 

C χ sup |a(z)*J |a(z e)| 3dz f 

|z|>M 
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but we have from the monotony of ρ 

Γ Ί 1//3 

jdz.|a(z')| 3 . 1 
H*)!< - 2i < C z 

The conclusion is that σ (z) indeed minimizes Κ . Then it follows 

easily that crœ(z) or P œC r) must satisfy the variation equation. 
2 

Let us prove that, if we exclude dilatations and impose that r V(r) 
2 2 

is invariant in the change r 1/r , the solution V(r) = l/O+r ) of 

(A.9) is locally unique. We use the fact that we know a particular family 

of solutions : 

p 
π Γ r fdr y

 - r + r * r 1  χ 

n f 2 2n = J r o g r-r» ^ 2 Λ' 2a(a +r ) a +r f 

(A.18) 

2 
and, differentiating with respect to a , 

f d \n π 1 fr'dr 1 r+r y
 r d v n

r 1  ν  2 

Κ
Λ 2 } 2a 2 2 J r l o g r-ry M a J ^ 2 t 2 ; ' da a +r a +r f 

(A . 1 9 ) 

Equation (A.19) shows that the kernel 

/• t N a . 2n r f _ r+r y 1  
Η (Γ,Γ·) = ( 1 + r ) T log ^ 2 2 

(1+r' ) 

2 

applied to a polynomial of degree η in l/(l+r ) , produces a polynomial 

of degree η . Its eigenvectors ττ̂  satisfy the orthogonality relation : 

6
nm = J\( -HKC-1?) J^ ib 
15,11 J n

 1 + r
2 m

 1 + r
2 (1+r 2) 3 

This shows that the π are Jacobi polynomials which form a complete set : 
η 
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1 1 1 ré 
π ~ρϊ2(·2=£-) 

η η 1 +r 2 

[i.e., Tchebytcheff polynomials [δ]]. The eigenvalues can be obtained by 
2 2—1 

looking at the highest degree terms in (a +r ) : 

Pn**(±4) = - J — J H(r,r') P H ( J z £ ^ ) d r . 
n 2(n+l) J n 1+r'2 

Let us now consider variations of V around the basic solution : 

V = - ( - 4) 2(1+€(Γ)) 
1+r 

2 2 
To prove that the solution (l/l+r ) is isolated, we insert this expression, 
retaining the lowest order in e , excluding dilatations [e(r) = const.] , 

2 
and keeping the symmetry of r V(r) by imposing e(r) = e( l/r) . 
We expand 

e = Σ C π η η 

with 

ο 2n+1 

Inserting to lowest order in the integral equation with eigenvalue λ , we find 

C 
π + 4, Σ C π ^ - [ π + Σ - ^ - π ] ο d η η 2 ο η+1 η 

Since and are zero, we see that the only eigenvalue close to 

λ = 1 is λ =s 1 , with eigenvector π . 
ο 

This procedure also allows us to prove that v
0 = 0 + r ) produces 

a local minimum. With 
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V - (l+r 2)- 2(l + e(r)) 

we compute 

A r h v | 3 / 2 < A Ç ) 4 / 3

 Γ 2 / / 3 [ d 3 x d3x> vCx)v(x')  
Α - φ ν ' 4ττ; ' V J 4π 4π }X_X.J2 * (Α.20) 

In the e expansion, the constant and linear terms in e cancel by definition. 

Ve get 

- 3/2 2 ,3 V - 3/2 3 γ l/3 

ρ 3/2 .3 V 2 » 3/2 3 v -2/3 

* i Cj|v 0 | .CD ± f ) Cj|v 0 | ^ ) 

|x-x«I 

with 

+ 0 ( e 3 ) -

O0 

e(r) = Σ C π w
 2 η η 

we see from the orthogonality condition that 

ρ 3 / 2 H 3

V 

and the whole expression reduces to 

V Γ 

n=2 
_ 4M 

( Α · 2 1 ) 

which is strictly positive. 

In fact the proof holds also for finite β . Using the fact that 
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0 * . ) ^ - 1 - * 
2 

ε 

decreases for e > 0 . and that ( l + x ) 4 / 3 > 1+4/3(x) one easily finds that 

A is strictly positive for 

- 1 < e ( r ) < e 

where e is the solution of ο 

« - ο » - ι - Κ · - § - (A.22) 

e Q is strictly larger than 3· However, the proof that the V q gives the 

absolute minimum is still missing. 
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