DEREK W. ROBINSON
Analyticity Properties of Spin Systems

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1969, tome 9
« Conférences de J. Carmona, M. Froissart, D.W. Robinson et D. Ruelle », , exp. n° 3,
p. 1-20

<http://www.numdam.org/item?id=RCP25_1969__ 9 A3 0>

© Université Louis Pasteur (Strasbourg), 1969, tous droits réservés.

L’acces aux archives de la série « Recherche Coopérative sur Programme n° 25 » implique 1’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RCP25_1969__9__A3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ANALYTICITY PROPERTIES OF SPIN SYSTEMS

e T o™e T oMo T e™Oo™ 0o T0o T e T oo ™e T e T 0T o0 "o

Lecture Given at the R.C.P.

Strasbourg, April 1969

*
Derek W. ROBINSON

Faculté des Sciences, Luminy

69/P. 273

*
Postal Address : Centre de Physique Théorique - C.N.,R.S. —~
31, chemin J. Aiguier 13 - MARSEILLE 9°-



INTRODUCTION
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In this lecture we wish to review and describe recent work on analyticity
properties of spin - % systems both classical and quantum. The method used to
derive these analyticity properties is essentially due to Ruelle and consists of
interpreting and analysing integral equations of the Kirkwood-Salzburg type as
equations on a suitably chosen Banach space. Whilst Ruelle's original work
was for continuous classical statistical mechanical systems with two-body forces
the work we review on spin systems allows a large class of many body interactions.
The discreteness of the configuration space of a spin system allows us to
greatly improve the analyticity region obtainable for continuous systems and
symmetry between '"spin up' and "spin down" can be further used to extend this

analyticity region.



1. DEFINITION OF SPIN SYSTEMS,.

Let us associate with each point x of a v-dimensional cubic lattice
Zv a two-dimensional vector space %x and with each ACZV the direct product
. . N{A
space %A = 11 ® %x . The space %A has the dimension 2 (A) whose N(A)
x€A
is the number of points of the set A .
The operators (2x2 matrices) acting on each %x are linearly generae
ted by the unit operator ‘lX and three Pauli matrices g, x° Alternatively these

operators can be generated by annihilation and creation operators (spin-raising

s E + .
and -lowering operators) a aX defined by

e N (2) + _ 4. (1) . (2)
a =3(o, '-ioc, ) a =3(c " +io, )
satisfying the anti-commutation relations
aa+ + a+a = 1 a a =O_—.a+a+ (1)
X X X

Similarly the bounded operators @(%A) acting on %A are generated by annie

hilation and creation operators {ax,a;' ; XA} which satisfy (1) and

]1=0= [ax,ay] for X Ay, x7EA (2)

Let us next introduce a basis in %A in the following manner,

We define l,@'>A to be a normalised vector such that

a !;zf>A=o for all x€A (3)
and then introduce the normalised vectors JX>A by
> XcA (4)

We are interested in two different algebras of operators acting on ?é,\ .
4

The quantum algebra C)GQ(A) is defined as the algebra Ya(%A) , i.e. the algebra



of annihilation and creation operators, and the classical algebra :Kb(A)CZcﬂé(A)
is defined as the abelian subalgebra of Jﬁ(ﬁﬁv\) generated by the set

{a;axnx s XxEN T .

2., REDUCED DENSITY MATRICES AND INTEGRAL EQUATIONS.

. . . A% . .
Physically we consider the points X&2Z as particlie sites and assume
that these particles interact via a Hamiltonian HACZCKb(A) or HACZ(I'J'C(A)°

At this point we will not further specify of H, other than assuming that it is

A

hermitien, In the following our attention will be concentrated upon the reduced

density matrices p,{(X : Y) which are defined as follows :
Al

. A + N A - ;
p (X;Y) =Tr_ (e I a I a) Tr_, (e ) (%)
A jf?\ x€X XyEY y (}X
For economy introduce the notation :
—.H"\, + . + . .
Z, =Tr (e ™ a"X)= 1 a, a(y) = I a (6)
X% xeX vEY y
} 1 —HA R "
and then pA(X,Y) == Tr (e a (X)a(y))
Z 9,
A4
A
1 ‘ Hy
=z 2 <yusle * |xus> (7)
Ao
SCA
sN{xuY)=d
It is easily checked that (7) may be inverted to give the relation
1 ! ' N(R|
ZA<Tie s> = 3 (-1) *)pA(Rus ;s RUT) (8)

RCA '
RO{(5UT)=f
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Now (7) and (8) can be combined to derive integral relations for the Py
as follows. If X=Y=f then p,(X,Y) = 1 ; assume YAZ and define y! =Y/{y1}
where y1 is any point in Y . Now
1 ' 1 ~Hp
p, (X3 Y) = = S_ <Yus|a e |xus>
A ZA L ' V4
sSN(XUY)=F
-H H -H
=1Z ? <vlusle Mre<r]e Aaye M xus >
b gren !
sNxuy)=g
. H -H
, T ,
(9) = ) p(RUT;Y1URUS)(—1)N(R)<T |e Aay e Mxus>
RST CA 1
sN(xUY) = ¢

RN(RUTUY! = ¢

where the first step is obtained from inserting a complete set of intermediate
states and the second step uses (8} » Next changing variables to V=RUT and

W = RUS (9) takes the form

, ) 1 1 )
(10) pGY) = )Y o, (VYUK (%, Y50, W)
wny'= @ vea

WCA V:X'ID(XU{y1})

‘ H -H
where K1(X,Y;V,W) = EZ (—1)N(R)< V/R|e Aay e A|XU(W/R)>
wmv:&e::wm(}(u{y1 1) !

These are the integral relations which we will use to obtain analy-
ticity properties. Note that the above derivation, which is due to the present
author, does not depend upon any detailed structure of the Hamiltonian ; this

structure is important only for the analysis of the integral equations and not
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for their derivation. This method of derivation also generalises to the case of
continuocus systems quantum or classical. We will analyse these equations in the

two different cases, classical and quantum, separately.

3. CLASSICAL SPIN SYSTEMS.

Ve begin by parametrizing the Hamiltonian H, in terms of one-body, two-

A
body and many-body interactions, We define an interaction & as a

function from the finite subsets ACZ® to the algebra oU= U(ﬂb(A) with the
A

properties

1 - @(X)CZCKb(X) is hermitien
2 - 8(X) = 7 ¥(X-a) for a€ 7’

T

. . A, . .
where the translation automorphisms OU -~ UL is defined by ax+a= Taax y etc

3 - Jlefl = ) ex)li<+e

0eX
In terms of such interactions we define the Hamiltonian HA(=U§(A)) of the
finite system A by
Hy = Ug(0) = Z 3(%)
XA
Example : to illustrate these abstract definitions consider the following

example

, +_ : N _+ + :
@({X}): —uaXaXYQ({X—]’Xz})ztp(xf]-xz)ax aX1aX ax 1¢({.X1°'Xk})=o

2 "2

k>2
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Conditions 1,2 and 3 are satisfied if u and @(x) are real and the latter

satisfies

lel ) oG] <+e
x€z”

The Hamiltonian corresponding to this interaction is given by

N N _F +
= - 1 ) -
Hy = p‘Nl\. Tz, @(X1 XZ)ax % ™% %%

%& 177172 72

*17%2

x1,x2€A

Where NA is the number operator i.e. NA = }4 a:;aX » With such an interac-
XA

tion the spin system can be viewed as a lattice gas, i.e. the sites x& A can
be occupied by particles interacting through a two-body potential @(x) at

chemical potential u »

It is convenient at a later stage to write & = (§(1),é') where §(1) is

the one-body interaction derived from & and @' contains the two-and many-

body interactions, We will also always take U 1(A) = -uNA and introduce the

¢

fugacity z = e .

. . + - SV
As dbC 1s generated by the operators {axax’1x;XE:Z } the states

X>, are eigenfunctions of &(x) and we introduce the eigenvalues «(x) by

A
@(Y)]X>A = oY) ]x>A for YCX
3(Y) lx>A = 0 for Y¢ZX
and then Uy (1) |x>A= /\: cp(s')lx>A
scX
=U(P(X) | x>,
where U@(X) = }: o(s)

scX
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It follows from this structure that the classical reduced density matrices

are such that
pA(X;Y)=O if XAY

Whilst from (10) we find for pA(Y) = pA(Y ; X) the simplified integral

equations
p[(Y) = z pﬁ(_YTUW')ﬂ(Y;w) (11)
WCA
WY =
. , Ug(n)  -Ug(A)
where K1(Y;W) = }i (—1)N(W/R)<Y1UR|e ¢ a, ¢ 2 |YUR>
RCW L
RNY=F

- }i (—1)N("J/R>exp{—[UQP(YJR)-UQP(YMR)]}
RCW
ROY=g

) J(—ﬂNW Mexp(-[0,, (WR)-u,, (UM} (12)
RCW

ROY=4

where we have explicitly exhibited the dependance of K1 on the fugacity =z
(@’ indicates the eigenfunctions associated with @') °

The method of utilising these equations that Ruelle invented is to intro-~
duce a Banach space & of complex functions ¢ on the non-empty finite

¥

subsets of Zv with the norm

4] = sup  J4(x)]
=AY

We see immediatly that pAEE'é » The major point of this definition is the

fact that K1 is a uvniformly bounded operator on‘é o



LEMMA
For YCZV fixed, we have
) X lep?
Z |K1(Y;W)| < IZI [exp {e"(§ H—‘l}—ﬂel’cp i
wezY
wny=g
PROOF,
We have the following Proof of Gallavotti and Miracle-=Sole

Ugn (R0 (YUR) = ) 9(8) = ) @'(s)
SCYUR st yr

where UJP'(Y) = \L w'(S) I(p,(Y,R) = ; @' (TUS)
y1ESCY y1€TCY
Fiscr
Further introducing J ,(Y,S) = > @' (TysS)
L
y_I:TCY
we have Icp,(Y,R) = Z JCP,(Y,S')
ioce
T RN e n J ,(Y,sj) ’
and X (Y,W) =z e © Z > n (e -1)
n=71 5 50093 =1
1 n
Us.=W
i
n -J ,(Y,S:
@ J)_']')

H]e

thus |K1(Y,W)| slz[e”cp,“ Z Z
J=1
n=1 S1caotg2

us. =W
i
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el o Gl 1. n :
- né (W 5, Zs J'I=I1 ,J‘P'(Y’Sj)!
Us, =¥
because IU (N = lle'|] and iJ (¥,8)] =< o |

Thus finally

- ) vil , H¢ |
z |K1(Y%W)| s|z|e|l<P | Z nl, (——n—‘II—1 (Z IJ (Y, s)l)

v >0 e
WCZ " SNy —;Zf

wny ' =g A4

< |z|e“<P'H exp(ei.@'“_1 )

As a result of this bound we may interpret (11) as an integral equation on %
of the form
= H

Pp = 2 X% F X TePy
where @(X)=1 if N(X)=1 and a(X)=0 if N(X)=0 ; the inhomageneous term in
the equation comes from the term with Y={y1} and w;ﬁ in (11) and the
operator M@ is defined in the natural manner from K1 . Combining (11) and
the result of the lemma one immediatly finds that

i } | '!'i 't ’

hM§[|< 2lzle”@ ”exp(eHé I‘-—1) .

If z and &' are such that

Iy, f1<2lzlel® fexp(el® ) <1

than Ruelle's methods allow us to conclude that the limit

lim p,(X) = p(X)
hoo B

exists and that p = TN
@
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is analytic in a small complex neighbourhood of (z,@') [we have used the

notation p for the element of f% with components g (X) 1.
Tt also fellows immediately that the thermodynamic pressure

. . 1
P(¢) = 1lim NT) log ZA(Q)

Ao

exists and is analytic in the same domain.

Note that as [|8']|=0 (13) is only satisfiecd if 2|z| <1 thus in this
limit the analyticity in 2z is only in a finite region. This is due to the
fact that 1‘“@;1 remains finitc as Hé'jyﬂO . However , H@ is defined in terms
of K1(Y,W) and these latter functions tend to zerc as H@'H-*O for all values

of W except W;ﬁ or Yy, . This remark motivates us to rewrite the integral

relations in the following form due to Gallavotti and Miracle-Sole.
1 \
\ - gH(Y) 1. \ 1 .. w1 )
p\(V)=2 e Lo, (¥)=p, (V)T ) Lo, (¥'uW)- g, (i) I (vw)
ghIc A

WY =g

i.e. we explicitly separate out the terms W;ﬁ and W=y1, This last relation

can then be rewritten as

"U1|(Y)
0 (V) = Lo, (¥") + ) 0, (¥'UW)-p, (YUW) I (¥,W)] (14)
teze #'(y) pris
where H1(Y,W) = ———l———f K1(Y,W)

Finally interpreting (14) as an integral equation on ‘% of the form

z
PA = Taz Xp@ Xy HogPy
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|(2 exp(eHQ'H—1)—1) (15)

we have ilgééll < sup e

As previously we may conclude the existence and analyticity of the infinite
volume correlation functions g(X) = lim pA(X) , together with the existence

Ao

and analyticity of the thermodynamic pressure if (z,&) are such that

li?ﬁén <1 e.g, if

Uy (¥)
151 o
sup | “““TT‘“”' | exp(e“@ H—1)—1)<<1
-U (Y)
Y &
T+ze
In particular as &'—0 we have analyticity for |T§z|<:1 i.e, for

z20 .
Beforc proceeding to the gquantum casc we note that the important feature in
the foregoing analysis is the fact that the kernel K1 leads to a uniformly

bounded operator ¥ on ?E o Although our method of estimation rather obscures

Q

the physical reason behind this property it essentially derives from

locality and short range forces ; this will become clearer in the quantum case.
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4, QUANTUM SPIN SYSTEMS

Let us again begin byparametrising our Hamiltonian H, . We consider, as

A
in the classical case, an interaction % to be a function from the finite sets

Xxcz® to the algebra Jb= U dLQ(A) but now we assume
A

1-8X) < cn;Q(x') is hermitian

2 ~ (X)) = 7T.8(X-a) for all a€z”
<l

3= Qe = ) et <
0eX
where A>0

The Banach space norm H@H is a generalization of that used in the

A
classical case where wec had A = O . The necessity cf taking A £ 0 will
appear due to our inability to make such precise estimates, as previously.

- 1,
We will again write ¢ = (@( >@') and take ¢ Q<1)(X) = - pa;ax . Hence

We further assume [U (1)(A),§'(X)] =0 for XCA , i.e. we assume the interac-
¢

tion conserves particle number, Note tﬁat whilst
[8+(x,),2'(X,)] =0

if X1f1X2 = ¢, this is no longer true in gceneral. Now we still have the integral

relations
) =) \ TS Vs
o (X5Y) = ) ), e (WYUK (X, %5 75W)
WY =g ueh

WCA vmzn(xu{y1})
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U@ t (A) o e‘U§v(A)

;. |xU(W)R) >

where K1(X,Y;V,W)= z Z (-—1)N(R)<V/Rle
WNVoRWN( xu{y1 b

and we will try andinterpret these relations on a Banach space %& of complex

. . AY .
functions {§ on pairs of non-empty subsets of Z  with the norm

H’l = sup l‘k(X:Y) 1
x,ycz’

The major difficulty is in proving the uniform boudedness of the operator

determined by K1 . As a preliminary to this calculation we prove the following

lemma

LEMMA 2 : if @ is such that 2H@H1<1 then

. UQ(A) —UQ(A) z 1 2
lim e a e = -
71
= CZ

SIS CAI SR CICH RN

Vv \Y

Proof.
The equality is formally true and all we have to do is prove convergence,
But
) ‘ AN ) )
=l Y e ) [@(Yn)...[@(y1)ay1]] 0

v cz¥ v cz¥
n 1

$Y e ) (SCARRECALY

Y NS £ 0 v, €Y,
n-1
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where Sn = U Y. and we have used local commutativity. Therefore

CnSZn z él (k1+,,°+ki+1:) z |]<§(Yi)]]

i=1
Kpeooky 0EY, N(Y. )=k, +1
1 1 1
n < .n n , .
<2 ZJ (14 eentk ) T ji ey, )
koo-k l=1 K
1 n o€y, N(Yi)=ki+1
, n - -k,
<2%nt e E: 1 ) H@(Yi)ne *
' Kova.x =17 :
1°"""n 0€Y. N(Y,)=k,+1
L L 1

s 2% nt |

Thus the series converges if Zﬁéih <1 o

Uy (A) ~U,(8)
The fact that this pertubation series for e ay,e converge at
least for weak interactions leads us to replace this operator by its perturbation

expansion in K1 « Thus we write

K;(X,Y;V,w)

(X, 0;v,W) =z }: —
n>0
1 ' \ZN(R) T
where Kn(X,Y;V,W) = }2 (-1) > ‘oo
WDV:R:WH(XU{y1})S:A

coe }Z < V/R}[Q(Yn).o.[é(Y1)ay 1IXU(%/R) >
Y een¥, !
UY.= 5

Note that in the last definition all sums are finite.
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As a preliminary to the study of this operator consider

H1(X,Y;V,wis1) = >ﬁ (—1)N(R)<V/RIA(S)|XU(W/R)>

x-1r1v:mm(xu{y1 1)
where y,lES and A(S)C ()DQ(S) « Introduce disjoint sets F, G, H, Dy
F=W/V , G=V/W , H=WNW . Then

H1(X,Y;F,G,H;S) = Z (_1)N(R)

HORHN (XU, )

<GU(H/R)| A(S) | XUFU (B/R) >

N(H) {L (_1»)N(R
RcH

rN(xuiy, 1) #

= (-1) )<GUR|A(S)IXUFUR>

- N(R,
= (-1')N(H) Z(-f) ( 1)< GUR1|A(S)|XUFUR1>
R1CHﬂS
R,N(XU{y,})=F

R,N(xU{y,}) =&

But the latter sum vanishes unless the range of summation is empty i.c. unless

BSUXU(y,} - If HOSUXU[y,} we have

H'(X,Y;F,G,H;S) = (—1)N<H) Z(—1)N(R)<(GHS)URiA(s)l(xns')u(Fns)URxs/s}..,,

< l{ }
1 ) ooo(X/S)UF/S>



and this last expression is zerc unless
/s =%/s and F/s=¢ .

Thus we must have FCS and G/S = XU{yd}/é where we have used y1E S. Thus

finally we find

D RS AATE

Wy = v:wn(xu{y1}‘)

< Z z Z ZKGURIA(S)|(XHS)UFUR>5

FCSGSS/FUH  Bos/F - Rel/(RUy, })

= 2 )] 51

where the final estimate arises from replacing the matrix element by HA(S)H
and camping out the remaining summations. Using this estimate procedure which

is due to Greenberg we find

LEMMA

I

Yo Y IRy s @) ferm)se) T
oeX

A

r

Wy = v:wn(xu{y1 D)

‘ n
ol
3nt (2|8 Hk) for Kze1+10965

A

PROCF

The proof consists of combining (16) and the method used to prove
the proceeding lemma.
Thus we now see that the kernel K1 will lead to a uniformly bounded

operator on %3 ifr 2|8, <1 for \=1+log e5 and in this case we can derive
A
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analyticity results in the samc manner 2s we did for the classical systems
1 .
We note however that the kernel X can be explicitly evaluated and then

(o

the integral relations take the form

1 -
A0 = TG [8(riX)p (¥ ) + ) ) T k1%, w39, W), (Vi 'Uw)]
V,W n=1
where é(y;X) =1 1if ye€X and zero otherwise and the restrictions on the
summations over V and W have been summarised by the prime. With this
partial inversion we now have rclations analogous to (14) which may be
interpreted as integral equations on %é of the form

_Z._ R 974
AT Tez Xa® TR e Py

where o(X,Y}) =1 if X=Y and ¥(X)=1 and zero otherwise. Further ?@%

has the bound
BEN

fff& | < ___Z_ + . 17
Hd(i,h l1+Z 1__2 .9' ) ( )

Y

provided 2“§'Hx<:1 where A = 1+log 5 . If z and &' are such that

SN EIC U

ez A2

<1 and 2ljerf <1

for A = 1+loge5 we ray conclude that the thermodynamic correlation functions

and pressure exist, are analytic in a small complex neighbourhood of (z,@')

Zz

and as a vector p€ % given by p = Ton

T%; @ . LActually a little more
2
work is required to establish the analyticity properties hut the necessary

continuity and differentiability of the kernel ?6§ can be established by

. = 0 the above

estimates similar to the above, ] Note that in the limit Hé'fA

result coincides with that obtainced in the classical case,
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5. A SYMMETRY PRINCIPLE

To conclude this review we now indicate how the above results may be
extended by the use of a symmetry principle. Consider the algebra M2 cf

2 X2 matrices., Therc exists a mapping AEM2 - AEM2 defined by

A=A=~A+Tr(a)

which has the properties

e ™

o -, AN e
A =4 , Tr(a) =Tr(a) , AB =

BA .

[Each AEM2 can be written as a linear combination of the identity and three
Pauli matrices ¢ ; the above symmetry corresponds to the mapping ¢ g .
Similarly there is a mapping of S(?@A) defined by

BES (%0,) ~ BEL(H,) 7 A=) (—1)N<S>Tr%A/ (8)
S

SCA
which has the properties
/; Ny . A /\ nA
A=A ; Tr, () =Tr, (A) , AB = BA .
%A ' MDA

Next let us introduce a mapping L , on the subspace of interactions @
which are such that &(X) = 0 for N(X):>N§ where Né is a real number,

by the definition

(£2)(s) = (-7 ) a0

p 'y
We find U£Q(A) = 2; }2 (-1)N(S) Trg, (e(T))
Sch TS /s
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and therefore UQ(A) - Uxé(A> = N(A)Eé + E;(A)

where

and Z;(A) is a surfacc termc i.c. N(A)-1HZJ(A)|E - 0
A=

We thus have

LEMMA

If 3€B is such that §(X) =0 for N(X‘)>Né then the thermodyna-

mic pressure satisfies the symmetry relation

P(%) +%EQ=P(£§) + 3 By

The proof of the lemma is a conscquence of the above definitions and the
standard arguments establishing the existence of the thermodynamic
pressure and its independence of surface terms.

The importance of this symmetry principle is that it allows us to extend
the analyticity properties obtained previously from the integral equations,
Originally from the intcgral equations one derives analyticity of the corre-
lation functions p in some domain but then from this one may deduce
analyticity of the thermodynemic pressure P as a functional of the interactions
in the same domain. Now however we may use the symmetry principle derived
above to extend the analyticity domain of P and thcen finally one deduces
straightforwardly that in this exfended donmain the thermodynamic correlation

functions p exist and are analytic,

KKK
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