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I l l 

TilE FINITE RANGE OF STRONG INTERACTIONS ANT) 
ANALYTICITY PROPERTIES IN MOMENTUM TRANSFER 

i>V R. OMNES 
Centre de Recherches Nucléaires - SFR AS DOURO-CRONENBOURG 

(Bas-Rhin) FRANCE 

V\re investigate how the finite-range of strong interactions can 
be stated in terms of an experiment. It is found that it is equivalent 
to the fact that the probability of any process generated by strong 
interactions should decrease exponentially as a function of the impact 
parameter a. This impact parameter is defined by a translation of the 
initial wave-packet in a direction normal to their mean relative velo
city in the center-of-mass system. Due to the spreading of wave-packets 
with time, it is necessary to consider wave-packets, the width of which 
in configuration space increases like \Z1T. 

It is then shown that this property is equivalent to the analy-
ticity of all absorptive parts due to different channels as functions 
of the momentum transfer inside an ellipse. Such analyticity properties 
are also valid for the amplitude of a two-body channel. The ellipse does 
not shrink to the physical region when the energy tends to infinity. 
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1 - Introduction. 

This paper is part of a series where we try to investigate 
what properties of the 8-matrix can be stated from considerations of 
measurement theory. In a preceding paper, we have shown that the S~matrix 
exists, at least below the threshold for three-particle production. In 
the present paper we want to concentrate upon a most fundamental property 
of strong interactions, namely their finite range character. 

As long as one considers the Born approximation fo the scatte
ring of a particle by a potential of finite range, there is a very simple 
way of stating this property of finite range as the result of a measure
ment. Let us consider a wave-packet which decreases more rapidly than 
any exponential in configuration space at tire 0 (for instance a gaussian 
wave-packet), and let us translate it by a distance a (the impact para
meter) in a direction normal to its mean velocity. The Born approximation 
to the probability of scattering decreases exponentially with a, more pre-

—^ ix a 
cisely like e~~ r if JU. is the range of the potential. It could then 
be suggested that it is equivalent in non-relativistic theory to assume a 
potential of finite range or to assume that the probability of scattering 
decreases like an exponential with the impact parameter. 

Unfortunately, this proposition is not tenable. In Section 2, 
we show that the spreading of wave-packets is such that as long as one 
considers a wave-packet of fixed size, the probability cannot decrease 
exponentially. The situation in this respect is essentially the same for 
a relativistic or a non-relativistic wave-packet. However, the analysis 
of the spreading suggests that, by taking a wave-packet the width of which 
in configuration-space increases like \/"a, the probability decreases ex
ponentially. Furthermore, this is the only possible form of a wave-packet 



- 2 -

which can allow such a strong decrease. 

In Section 3, we transform the suggestion into a theorem for 
the non-relativistic Schr<5dinger equation. In other words, we show that 
there is a statement of measurement theory, which we call property P, 
which is equivalent to the finiteness of the potential range. This proper
ty is : the probability of any reaction decreases exponentially with the 
impact parameter a defined by a translation of the wave-packet normally 
to its mean velocity, if the width of the packet in configuration space 
increases like V"a. This statement corresponds to a gedanken experiment (or, 
if necessary, an actual experiment) where one shoots bunches of particles 
with an energy of increasing precision farther and farther from the target. 

It is then natural to take property P as a starting hypothesis 
in the relativistic case. This we do in Section 4 whereas we recall also 
some refinements in the notion of the position of a particle which are 
needed in the relativistic problem. 

A few sections are hen devoted to a very straightforward proof 
of the fact that property P is strictly equivalent to the analyticity of 
the absorptive parts as a function of momentum transfer inside an ellipse. 
This ellipse does not shrink when the energy tends to infinity. 

In the last section, a comparison is made of this result with 
a recent paper by Martin where the same conclusions are obtained from 
quantum field theory. This leads to interesting consequences concerning 
the respective roles of spectral conditions and causality in the analyticity 
properties of the scattering amplitude. It is also pointed out that, as 
a result of Martinrs work and the present one, property P is satisfied by 
axiomatic quantum field theory. In this framework, it appears as a very 
strong property of the cluster type. 
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2 - Finite range and the spreading of wave-packets. 

A non-relativistic gaussian wave-packet is given by 
r X-X (t) 1 

(p^t)- , exp- [ 2 j (2.1) 
r ~b(t) i * 2 h S ^ 

where x (t), the center of the wave-packet, is related to its position a 
at time zero and to the mean momentum k by 

x (t)=a+ kt/ (2.2) o m 

(m being the reduced mass). The spreading of the wave-packet with time is 
given by 

b2 (t) = b? + ̂ m 2 b2 (2.3) 

In non-relativistic physics, an interaction is said to be of a 
finite range when the potential vanishes at least exponentially with the 
distance. The overlapping of the potential and the wave-packet (2.1) 

r 
j V(x) W (x,t) d3 x (2.4) 

decreases exponentially with the impact parameter a, which is chosen nor
mal to k. at any finite time t. However when t tends to infinity, the 
value of (j)(x,t) at the origin of space is given by 

lim [b (t)]1 (p(o,t) = exp - \JSTS-) (2.5) 
t 00 

and therefore the finiteness of the range will not result in any simple 
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behavior of the scattering probability as a function of the impact para
meter, due to the spreading of wave-packets. 

Let us now consider a wave-packet which is farther and farther 
from the origin, i.e. let a increase. Furthermore, let the width b vary 
with a. According to Eq. (2.5)« if we let b2 increase linearly with a : 

b 2 = X a (2.6) 

the overlapping integral (2.4) will decrease exponentially with a_unifor
mly for any value of t. Note that b2 has to be linear in a, otherwise there 
would not be an exponential decrease of (2.4), either at finite or infinite 
time. 

It is therefore suggested that the finite range character of the 
interaction can be exhibited by using wave-packets the size of which in
creases with the impact parameter as in Eq. (2.6). The criterion for fi
nite range would be that the probability decreases exponentially with the 
impact parameter. That this suggestion is correct will be proved in the 
next section. 

The essential properties of the wave-packets remain true for 
relativistic particles. A gaussian wave-packet will then behave like 

-(p-k)2b2/ ip.(x-l) -irtt 
(x,t)= re e e ds p (2.7) 

where u)2 = p2 + m2 • A straightforward computation of the asymptotic beha
vior shows that, when t tends to infinity 

^ / k2 b2 *\ lin t (p (o,t) exp - ( x constant (2.8) 
t - «, 1 \ 2 J 
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just as in the non-relativistic case. It shows that, when k is large, the 
effect of the spreading of wave-packets is small and X can be taken small. 

3 - Fast decrease of the probability for a finite range potential. 

We shall now prove that if a potential is everywhere finite and 
decreases exponentially, with the distance, i.e. 

|V(r)|e № ( c (3.1) 

where C is a constant, then the probability for scattering decreases expo
nentially with the impact parameter. This result will be obtained by using 
a gaussian wave-packet, the width of which increases with the impact parame
ter like fa. Our method will be a slight adaptation of a method first 

(2) 
given by Brenig and Haag for the case of a square-well potential )• 

Denoting as usual the scattering matrix by T, we shall start 
from an inequality given by Branig and Haag : 

!lT<p!!^ | " |iv<p(t) I! dt (3.2) 
J 

-co 
In order to find a bound for the right-hand side of this inequality, we 
shall split the potential into two parts which are essentially a square 
well potential of radius p smaller than a and the tail of an exponential 
potential : 

V(r) = Va (r) + V2 (r) (3.3) 

Vx (r) = 0 for r < p (3*4) 
V2 (r) = 0 for r > p 

!vi 4 u 0 (3.5) 

|V2 <r)| < U^e" ̂ r (3.6) 
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U and U, are constants, о 1 

The contribution of V2 to the integral in Eq.(3.2) is easily 
majorized to give 

f -boo 
IIV3 C p (t) || dt ^ constant e~ (3-7) 

J —CO 
On the other hand, according Brenig and Haag, the contribution of Va 

is majorized by 

Г P l / z г Л ||VX <f> (t)llxTu - I — exp i~J / as+ -SSr . p (3.8) 
T 4 0 L b (t)-l 2bs (t)L I w»/ -I 

In order to majorize the integral of ||V1 (j) (t)|| upon t, we introduce the 
function 

f ( t b — i — Г (.» + p1 " - J L l ^ L L ( 3 . 9 ) 

20s (t) L V m3 / lJ 2 T
3 + g2 

where T
2 = a2 + (ЗЛО) 

m2 

в2 = ь2 — 2 L _ ( 3 > 1 1 ) 

k^b8 

2 (a — P ) k2 b2 

One has f(o) = ^ r ' and f(<») = — 1 so that, once more, we 
2b2 2 

shall find an exponential bound only if b 2 is of the order of a, i.e. 
b 2 = x a (3.12) 

or g2 = a (X X— ) (3.13) 
Xk2 

According to Eq. (3• 13) two cases have to be distinguished : 
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1st case j jj^X^ 1« In this case Bs is positive and f(t) increases from 
t = 0 to t ~ © so that f(o) is a lower bound of i{t) 

2nd case ^J^^A.j« I n t h i s c a s e 62 * 3 negative and f(r) has & minimum at 
t ~ / p • This minimum will be outside th$ r&nge of variation of ? if 

p Jo < a i.e, p > — — ( 3 * 1 4 ) 

and, once again,f(o) will be a lower bound of fit) 

Finally5 for p satisfying (3c 14} #e nave cbt&i&ed a bottftd 

ilTtjH^ exp - 4- Cg 6 Xp -(iip) (3.1$) 
2 X & 

The best bound will be obtained when both exponentials h&v$ fthe saate ar** 
gument, i*e. we shall have 

with (a - p) ~ 2 X up a (3.1?) 

It is clear that for > p, small , p will differ very little from a so fchfct 
we shall have 

If £ C s e ^ * € ) a (2,l8) 

with e small. 

4 ~ The basic hypothesis* 

We want to investigate the conditions under vrfucfe the following 
property holds % 
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Porperty P. When the impact parameter a tends to infinity together with 
the width of the wave-packet in x-space : 

b3 » X a (4.1) 

the probability of any physical process generated by strong interactions 
decreases exponentially with the impact parameter. 

We shall consider this property as a precise formulation of the 
finite-range character of strong interactions. 

A few comments about definitions and notations are in order. 

In relativistic physics, the states of a free particle lie within 
a Hilbert space. We shall, for simplicity, consider the particles to be 
spinless. Then we can introduce eigenstates of the momentum together with 
their scalar products : 

^ > = * > r l f > > (4.2) 

< r l t > ' > = f î i M ' * y = U+r')K

 ( 4 . 3 ) 

We shall work with gaussian wave-packets 

[ C C F ) * H - I » > ( 4 . 4 ) 

where r _ -,-Vi TV vf/ 1 (4.5) 

Such a wave-packet corresponds to a gaussian wave-packet in configuration 
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space 

if define the operator x by 

<*if< > * e f y*«u (4.7) 

In f&ct* such operator has no simple meaning* On the other hand* 
the Kewt-on-Wigftor position operator f defined by v) 

<s| i P 7 - e • 5 u k ; (4,o) 

chwactortus tbo position of the particle *t tine &ero< The rsl&tion of 
the w*ve~pecke&t$ in l$~§p&co and in f ~$p&ce is givan quite generally by 

6(iT) ^ I 4 A ( f } ^ ~ j ( t o i i f - f l j (4,9) 

1st us now consider a collision exp&rlm̂ nt between two particles 
which we sh&Il take to to* of the same mass for simplicity* We shall call 
Px * ̂  * ? P respectively the momenta of the two particles* the total 
montenf&m and the relative- momentum 

P a £ +• R j? * jr (K ~!V (4, jo) 

A tt^ml^tlon, of space by a vector 8* aces upon & stats as 

Therefore a state of two particles with mm relative momentum trans* 
la-ted relatively by a vector "a normal to 5c will bs giver, by 
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HHf\f) - L t £ ^ * J (4.12) 

This last expression gives a precise meaning to the width b 2 and the im
pact parameter a mentioned in property l\ In practice, we shall let A be 
very large so that the expression (4*12) is in feet a delta function of 
the total momentum P. 

Let us now make a few remarks : 

1) Our definition of the impact parameter coincides with the usual meaning 
of that term only for large values. This cannot lead to any ambiguity since 
we are precisely interested only into large values of this parameter. 

2) We shall make property P more precise by assuming that the total probabi
lity for two particles giving rise to a channel a behaves 
for large values of a like 

I ^ ( a ) < con^t^tx e (4.13) 

3) Generally p. could depend upon X, £ and a. We shall assume that it 
a -» 

does not depend upon k because in fact all values of the relative momen
tum 1? are always present into Eq. (4.12), whatever the value of k be. 
Furthermore, we shall assume that there exists an absolute lower bound 
p, independent of the channel a* 

4) Property P can be expressed as a statement about measurements: If we 
compare the results of experiments made by accelerators which are increa
singly far from a target and increasingly precise in energy as in 
Eq. (4.18), then the probability of any process induced by strong inte
ractions vanishes exponentially. 

5) According to Eq. (4.9) and the fact that (imx) decreases like 
e"""1*, the preceding interpretation as a gedanken experiment will only 
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be meaningful if 

p. ̂ > (4.U) 

if we specify position by means of the Newton-Wigner operator. 

5 - Probability and absorptive part. 

In this section, we shall express the probability P (a) as an inte
gral upon the contribution of a given channel a to the absorptive part of 
the scattering amplitude. For a two-body collision we shall use the conven
tional notation Sj tj u for the invariants. 

Let us consider a reaction initiated by two particles : 

A * +• ^ — * a V + a ' a - + • " +- a'*v (5.1) 

where the set of final particles is in a channel a. The collision matrix 
element T^(p 1 ? p 2;p f

1 #.. p f^ ) relates the initial wave-packet ^(Px > Ps) 
and the final wave-packet in the channel a. ̂  (Pi1 P !

n ) by 

We can compute the norm of , i.e. the total probability for reaction 
(5.8) as 

£ u s < Y , W < > (5.3) 

P depends only upon the absorbtive part A (s,t) 
f «~i * 
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by P< = [ X , (*, W> àSl' p 4 * M (5.5) 

where we have used the jacobian 

clipt dfpk _ ci
H2 Wf> d^L ^ ^ 

calling W = Vs and dXi a solid angle element in the center-ofmass system. 

The integration upon P has been made by assuming that the wave-packet de

pended upon P like in Eq. (4.12) f In practice, we shall take for the ini

tial wave-packet the gaussian form 

I jJU.pU e Û (5.7) 

We are now going to choose more convenient variable for the angu

lar integrations in Eq. (5.5). To that end we define two coordinate systems 

( Z* o ) and ( r ). The system ( Z ) has its z -axis along the direction 

of the mean momentum k. We take the impact parameter a to be along its 

x q -axis. The system ( 21 ) is linked to the vectors ̂  and"p
!, the z-axis 

—* —* 
being normal to the plane which contains p and p !, the x and y axes being 

directed along the bissecting lines of the angle defined by p and p'. We 

shall call ( W , ) the Euler angles of the rotation which brings (21 ) 

upon (Z ) and t» tlte scattering angle between p and p'. 

By straightforward calculations, one gets : 

(f + $'lï = -ix.̂ jâ C Î Ï coi \ pk - S-iex^J^k c*i\ 

5.9) 



- 13 -

In Eqs. (5.8) we have called for instance ~e the unit vector along the 
z-axis. 

The expression (5.5) for the probability becomes finally 

E a ^ J A a ^ $ ) e ^ ' (5.10) 

X t ! ̂ .r 

6 - Laplace transform of the probability. 

In this Section, we shall replace property P by analytic properties 
of the Laplace transform of the probability P (a). 

a 
If we introduce the Laplace transform of P (a) : 

a 
L-o< Cvj — j £ Lu ^<L) da (6.1) 

o 
property P is equivalent to the statement that L { 9 ) is an analytic func-a tion of inside the domain defined by 

- 2p. <( Re V (6.2) 

When Re y / 0, we can replace P̂ (a) in Eq. (6.1) by its expression (5.10) 
and invert the order of the integrations to get 

U(V) - J ^L*>r; f W~* ( 6 # 3 ) 

0 

where -t , » ' ' r a ,• \ r-. , (6.4) 
- U 19, p̂ j ~ i ol Ocj H ft* k ' b j r C y> K )]-
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and 

F £ V i F j Ui= j ; — — 7 - 7 - - ( 6 - i } 

Althought F by itself is rather untractable. it needs only a lit-
9 F 

tie algebra to compute -7-;— which, for our purposes, will be just as 
good. One has 

r . . . , . - r -

o r I E P j a^j = ( a + { 6 - 7 ) 

where 
, Aft I . V" 

B » 4 ^ [ v>+-C.j?Hk̂ /J (k'V+4;~ ?p4 ^ (6.8) 
It is clear from Eq. (6.1) that L ̂  (v>) is well-defined and ana

lytic for Re v> v> O.In order tc extend \) into the strip -2m-<^v<"0<> we 
shall need to consider the possible singularities of the integral in Eq. 

(6.3). 

The case where k A - 1 is particularly simple and gives 

- 2 j L ( , , P , f c , & ] = : i^±3fX/z- (6.o) 

where 
_ |£ jo4 +. X» f Cp'f J (.610) 

3 ? - ^ r ^ c p ^ / * r ( e . n ) 
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In the present paper, we shall restrict our attention to this spe
cial case. It will make our considerations much simpler. On the other hand, 
if k is too small, the restriction to k X ~ 1 will give too large values 
of 'A . Accordingly, we shall also restrict our considerations to the case 
where p and k are restricted by 

p y jj. k X- f*> (.6.12) 

7 - Geometric considerations. 

Before entering into the discussion of the relation between the 
analyticity properties of 1^ (J) and of (s ,x) as a function of 
x = cos 6 , we need to make some geometric discussion of the strip Av> 
and its image under some changes of variables. 

Under the conditions where Eq. (6.Q) holds, the integral (6.4) for 
I ̂  ( V, p ) reads 

- —~ ! _ _ — (7.1) 
G i V f -i V # - * 

The singularity y of the square root is related to V more easily 
through the expressions 

l J = & (.1 T ^ (7.2) 

S - C V f f (7.3) 

f. . c ^ ^ V ( 7 . 4 ) 

When v varies inside the strip A ^ , § v aries inside a domain A$ 
and y inside a domain A^ • These domains depend upon p and p and 
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we are now going to discuss them* 

To a line parallel to the imaginary axis : 

where V0 is fixed and >̂  varies from - to 4- . corresponds in the § 
plane a parabola "Tl ( % ) : 

- .. " *5,. . ... (7.6) 

This parabola goes to infinity in the negative ; , direction. Its axis is 
along the real axis and its apex at = "T""p— f < • t^le P a r a~ 
bolas corresponding to different values of V0 are equal and translates. 

When v varies inside , t varies inside JS^ which is bounded 
by two equal parabolas l\.x and with their apexes respectively at 
Z - f and J =( f - H/j ) . Let us note that, since the corres

pondence between £ and v is not one-to-one, and Tu would be in 
two different Riemann sheets if £ - "Vjo were negative. However, since P 
is larger than 1 and p restricted by (6.12), this possibility will not arise. 

The correspondence (7*2) between t and y applies a circle 
I t i ~ r into an ellipse with its focii at y = ± 1 and semi-axes ~ir tf"1, 

—1 **" • -|(r - r~ ), if r > 1. To a given value of y correspond two values of § 
which are inverse of each other. The unit circle in the £ plane which se
parates these two values of i> is applied upon the segment y = 1 to + 1 
and the y Rienann-surface is two-sheeted. 
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The topological structure of A can be different if Ti^ and TI2. 
cross or not the unit circle. It is easily checked that the parabolaT) ( *V0 ) 
crosses the unit circle if and only if ( f> + °/2p) is smaller than 1; 
Accordingly H d never crosses the unit circle and only two cases have to 
be distinguished 

Case i ) : f - /% Z 4 (7.7) 
Case ii) : p_ {*./ < 4 («.8) 

Let us call C^ and the images of 1}{ and Ttr In case i) and C^ are 
in the same Riemann sheet and encloses the segment y = -1 to +1. In 
case ii), crosses the segment y = -1 to +1 and it consists into two parts 
C ^ and 6 ^ ( see fig, l) where C\ is in the same Riemann sheet as C, 
whereas C ^ is in another sheet. A consists then into two parts : 

bounded by C^ and C ^ andZi^ 1^ bounded by C ^ in another sheet. 

Let us note that 71̂  does not cross the circle with its center at 
the origin which touches it at its apex. Accordingly,A^ is completely 
contained inside an ellipse with its focii at y = ±1 which is tangent to 
C^1^ at its apex on the real axis. This remark will prove to be important 
in the future. 

8 - Analytic properties of the absorptive part. 

Since the absorptive part Ao<(s,cos&) is not an analytic function 
of s, the analyticity domain of L^(v) is the intersection of the analyticity 
domains of I^^p 1) as a function of V • Therefore I (V,p*- ) must be ana
lytic inside the strip defined by 

- 2pu < Re 7 <̂  0 
In fact it will be shown below that the integration over p in the expres
sion of L̂ (̂ ) can be restricted to a finite range of values of p around k. 

We shall call Â^(pyk) the domain without the cut along the 
real axis. We have indicated explicity its dépendance upon p for a given 
value of k. For the values of p which satisfy Eq. (7.7)> the domain is 
empty. We shall also call it A x(p) when the notation x replaces the notation 
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y. We are now ready to prove the following theorem : 
Theorem : A necessary and sufficient condition for 1^ ( V ̂p2-, k) to be 
analytic inside the strip Ay is that the absorptive part (s,x) be 
an analytic function of x inside the domain A (p,k). 

When one continues the expression (7.1) for 1^ (v ,p*") along a 
path P which starts from a point with Re = 0 inside the strip the sin
gularity at x = y of F( 9 ,p^x) will vary along a path t inside A which 
starts from a point of . As long as \ does not cross the integration seg
ment from x = -1 to +1, the integral (7*1) will remain an analytic function 
of V • This is always so when condition (7.7) is satisfied i.e. when the 
domain A (p,k) is empty. 

Under the conditions (7.8) and (6.12) we shall first note that £ 
is an analytic function of v inside A^ so that it is equivalent to dis
cuss the analyticity properties of 1^ (; ,pr) as a function of £ inside 
A„ or as a function of y inside A , y j y 

Dropping all unnecessary parameters and calling f(y) the function  
r Eq. (7.1) takes the form 

= A,>;(a_xj (8.1) 

The determination of the square root is fixed from values of y> with Re 0> 
i.e. from the right of C4 where it is taken to be positive definite. 

The difference 2F(y) between the two determinations of f(y) in 
the two Riemann sheets is given by 

f A(x) dx 
F(y) = | = = = • (8.2) 

x Vy - x 

which shows immediately that, if A(x) is analytic in A , F(y) is ana
lytic in A ^ . 
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To prove the necessity part of the theorem, we solve Eq. (8.2) 

which is an Abel equation : 
r 1 F!(y) dy 

A(x) - ~ — = - (8.3) 
Tl ^ tf^T- y 

If F(y) is analytic, F?(y) exists and the integral is well-defined. It 
shows that A(x) is an analytic function of x in . In order to show 
that it is analytic in Ax , i.e. that it has no singularity at x = 1, we 
note that, f(y) is an analytic function of f # It can therefore be written 
as a uniformly converging series in a neighborhood of y = 1 as 

f(y) = Z b(y-l) n+ Z a n(y-l ) n + 2 (8.4) 

from which 

^ i 
F (y) = £ a (y-l)n+2 (8.5) 

From Eq. (8.3) we get then 
Ji. p (n + 

A(x) * X a n y11 (8.6) 
P ( n + 1) n 

which has the same circle convergence as the series (8.5). Which proves the 
theorem. 

We can increase the analyticity domain by noticing that in the 
Legendre expansion (8.3) of A^ (s, x), all the coefficients â (s) are po
sitive. Accordingly, if A^ (s, x) is analytic for x real between 1 and 
x^^ 1, it has to be analytic inside the ellipse with its focii at x = ± 1 
and semi-axis x^ . Taking into account the remark at the beginning of Section 
8 about the analyticity domains of 1^ (V, p1* ) ans L we get the 
following new theorem. 
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Theorem : A necessary and sifficient condition for property P to be satis
fied is that A v (s, x) be an analytic function of x inside the smallest 
ellipse with its focii at x =* ± 1 which contains • 

This smallest ellipse has for major semi-axis 

a - i ( + ) 

' L ^ ( 8 ' 7 ) 

\ 2pk p / 
For a given value of p, the largest value of a will be obtained for the 
smallest value of f0 . i.e. for k = p. or 

r f u. ̂  / ^ \ -21 
a = 1 ; i . J ] -f a - -—; 1 (8.8) 

m a x L \ P ' V P / J 
The corresponding value of the momentum transfer is 

^ ( 2 p f 
t - 2P 1 (a -1) = — r~ (8.o) 
o ^ v max / x2-

Ip - /*• ) 
it is a decreasing function of p and tends to 4 when p tends to 

i 
infinity. 

As a final remark, let us note that the case i) where f - fVp 
is larger than 1 does not lead to any condition on the absorptive part so 
that the discussion is not modified if we cut off the wave-packet to values 
of p which satisfy 

(p - kf < 2 f k (8.10) 
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Conclusions. 

We have obtained that the contribution of any channel <̂  to the 
absorptive part Aw(s,t) is an analytic function of t inside an ellipse. 
This ellipse contains positive values of t up to t = 4 fxL when the 
energy tends to infinity. Since the total absorptive part A (s,t) is a 
sum of (s,t) over the finite number of channels open at energy s, 
it is also analytic in the same region. 

When o( is a two-particle channel, unitarity tells us that the 
amplitude for the two initial particles going to channel U is also an 
analytic function of t. 

It has to be emphasised that these results depend only upon the 
finite-range hypothesis as expressed in an experimental way by property 
P. They do not involve any reference to quantum field theory. 

The same results have been obtained in a recent work by A. Martin 
as a consequence of quantum iield theory 4 ) . This is a beautiful achieve
ment, however we feel that it involves going a very long way from the 
axioms of field theory as compared to the very simple arguments given here. 
Since our results are in the form of a necessary and sufficient condition, 
the result of Martin together with ours give a proof that property P is 
satisfied in quantum field theory. This is a marked progress with respect 
to the cluster properties of this type which have been obtained up to 
now ^ ) . It also shows that Martin*s result in fact does not depend upon cau
sality but only upon the spectral properties. 

Not all the consequences of our technique have been drawn. In 
particular, we shall have to examine the analytic properties of A^(s,t) 
in the low-energy region. 
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In our considerations, the mass appears as a parameter. In 
the case of pion-pion scattering, using a dispersion relation in s and 
crossing, it is easy to show that ^ = m 

It is of a foremost importance to investigate the derivation 
of dispersion relations along the same lines of measurement theory as we 
have done here. It is well known that it has been impossible up to now 
to derive analyticity properties in s directly from causality (i.e. the 
observed signal does not precede in time the initial signal) because the 
spectrum of energy has a gap for systems of particles with a finite mass. 
It is our opinion that this difficulty is spurious. Indeed, in order to 
produce a signal which is zero for negative times, one must take into 
account explicity the generation of particles, i.e. for instance the ac
celerator. This breaks up the invariance of the subsystem made up by the 
particles with respect to translation of time and therefore suppresses 
the gap in energy. We intend to investigate if a careful analysis of the 
production of particles, together with the down-to-the-earth notion of 
causality does not in fact imply dispersion relations. A preliminary ana
lysis on the SchrîSdinger equation support this view. 

I have benefited from useful remarks or criticisms by M. Froissart, 
J. Bros, K. Hepp, R. Haag and JJL. BASDEVANT. I also want to thank 
G.F. Chew and S. Mandelstam for their encouragements. The beginning of 
this work was made during a stay at the Lawrence Radiation Laboratory in 
Berkeley and I thank David L. Judd for his hospitality. 
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Figures Captions 

Fig. la ; The donain A¿ image of the strip A^ 

Case i) (> - ̂  г i 

Fig, lb : The domain iïïîage of the strip Лj 

Case ii) P~ ̂  4-I 




