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CRITICAL SETS IN 3-SPACE
by MATTHEW GRAYSON and CHARLES PUGH

Abstract. — Given a non-empty compact set C C R3? ls C the set of critical points for some smooth proper
function/: R3 —> R+ ? In this paper we prove that the answer is <( yes " for Antoine's Necklace and most but not
all tame links.

1. Introduction

Given a non-empty compact set G C R"1, is C the set of critical points for some
smooth (C00) proper function f: H"1 —^R^.? If m == 1, the answer is easily seen to be
"yes55, always. If m == 2, Norton and Pugh (1991) show that the answer is "yes95

if and only if no component ofR^C is simply connected. In this paper some results are
given in dimension m == 3, the most remarkable being that for Antoine's Necklace the
answer is " yes it is a critical set5?. In dimension m ̂  4 there are doubtlessly genera-
lizations of what we do below but stronger hypotheses will be needed and we feel
that m = 3 provides enough problems already.

To be more precise, recall that f: R7"' -> R is critical at a point p e R"1 if and only
if its derivative atj& is zero, (Df)p = 0. The set of all critical points is denoted by cp{f).
Thej^-image of cp(y) is the set of critical values, cv(f) :==f(cp{f))9 The Morse-Sard
Theorem concerns cv(f), not cp(y), and asserts that cv(jf) has zero measure if./is at least
of class Cm+l. Note that this implies that cv(jf) is compact and totally disconnected
when f is smooth and cp(f) is compact.

A proper function has the property th2Ltf~l(K.) is compact for all compact sets K
in its target space. Equivalently, when f: R"1 —^R, \f{x)\ —^ oo as [ x \ —^ oo and vice
versa. We say that G C R^ is critical if and only if C == cp(f) for some smooth function
f: R^ — R and properly critical if f can be chosen to be proper.

Recall from Rolfsen (1976) that Antoine's Necklace is a wild Cantor set in R3 cons-
tructed as follows. Starting with the solid torus R, draw a cyclic chain of small linked
solid toriRo, . . ., R^_i around the longitudinal core ofR$ call R^ == Rg u ... uR^_r
In the figure n =10. Inside each R^, repeat the picture, scaled down to the size of R^.
Call the resulting union of n2 very small solid tori R^. Continue. Antoine's Necklace
is by definition

A =11^.
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A has some bizarre properties. Although it is totally disconnected, no embedded 2-sphere
in R3 is able to separate it—it is " indivisible 55 by 2-spheres. (It is divisible by 2-tori.)
Besides, any loop y in R3 that links one of the tori in the construction of A, also links A
in the sense that y cannot be shrunk to a point in R3\A; the fundamental group
of S^A is non-trivial. Even though A has topological dimension zero, it acts as if it
were a curve.

Theorem A. — Antoine's Necklace is properly critical. (See § 5 for the proof.)

Theorem B. — All tame links in R3 are critical and some but not all are properly critical.
(Below are tables summarizing what we know. The proofs appear in § 2, 4.)

If we relax the smoothnes hypothesis from G00 to G*" where r< din^R^) then an
example of Whitney (1932) suggests that critical sets can be more general than those
we consider here. In particular, Harrison and Pugh (1990) show that a fractal circle
can be the critical set for a G1 function on R2. This is impossible in the G°° case as is
shown in Theorem B.

One may view the question of classifying critical sets as part of <c Morse Theory
with degenerate singularities ".It also has an interpretation in dynamical systems in
terms of chain recurrence. A point p is chain recurrent under a flow 9 if for any e > 0
there is an s-chain from p to itself, an s-chain being a sequence of trajectory arcs
Ti = { 9<(A) : 0 ̂  ̂  t,}, i == 0, . . ., n, where t, > 1 and the distance from the end



Properly critical

Yes No

1. Any cellular set. 1. A circle or knot.

2. The unlink. 2. Any 2-component link except the Hopf link
and the unlink.

3. The Hopf link. 3. The ̂ -adic solenoid link.

4. All tame n-component links, n > 3. 4. A chain of three circles with only two critical values.

5. Antoine's Necklace.

^yssy^StS>.
^

5. Some wild arcs.
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Improperly critical

Yes No

1. Any tame link. 1. Any compact surface.

2. The Denjoy solenoid. 2. S2 with a circle enclosed.

9<,(A) °f Yi to tne beginning j^+i of Ti+i ls < £ for a11 i' To say that the e-chain
Yo, Yi, . . ., Y» g0^ fr0111 ^ to itself means that po = p and the distance from the last
end 9^J top is < s. Chain recurrence is the most general form of recurrence occurring
in dynamics. The set of chain recurrent points, CR((p), contains all the fixed points,
periodic orbits, co-limit sets, oc-limit sets, homoclinic orbits, and non-wandering orbits.
According to Gonley (1976) and Wilson and Yorke (1973), given a smooth flow 9 on
a compact manifold, there is a global Lyapunov function f for 9. The function / is real
valued, smooth, increases strictly along all non-chain-recurrent orbits of 9, and is
critical exactly on GR(9). Thus, every chain recurrent set is a critical set. The converse
is clear: for if 9 is the flow generated by the vector field grad(/) then its only chain
recurrent points are its fixed points, and they are exactly the zeros of grad(/); i.e.,
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CR(grad(y)-flow) = cp{f). Iff is proper then oo is a sink (an attractor) for the gra-
dient flow considered on S3 == R3 u oo. The upshot is

Classifying properly critical sets in R3 amounts to classifying
chain recurrent sets for flows in R3 with a sink at oo.

Corollary. — If a Morse-Smale flow on S3 has exactly two closed orbits and a point sink
then its closed orbits form a Hopf link or the unlink, never other links such as the Whitehead link.

1.1. Section 2 starts with some basic results and tools. Most of the results are positive;
they say what sets are properly critical. It concludes with the proof that all ^ 3 component
links are properly critical, and with some curious examples. Section 3 is a technical
section with machinery necessary for the 2-component link case, proved in section 4.
Section 3A is an appendix to section 3 which demonstrates by an example how difficult
it can be to make Antoine's Necklace properly critical. As previously noted, Theorem A
is proved in section 5.

We thank Elise Gawley, Peter Jones, Bill Massey, Mike Shub, and Bill Thurston
for several valuable comments.

2. Initial answers

In this section we dispose of some of the assertions in Theorem B. The first lemma
lets us eliminate certain critical points of a smooth function f\ M -> R. If in some coor-
dinate system (̂ 1, . . . , x^, f==f(x1, . . . .^m) is a strictly increasing function of one
of the variables then its critical points there are (< clearly irrelevant". More precisely,
we say that f has only superfluous critical points in NC M if there is a smooth coordinate
system (x1, ..., ^w) in which N appears to be a product,

N =={{x\ . . . , ^w-1) e • N , } x { x m E [a, b]},

No being a compact subset of R^1"1, and

(1) a/^ ^ 0 if x e N while ̂ ) > 0 if ^ e N and ^w == ^.
^m ^w

2.1. Erasing Lemma. — If f'. M -> R is smooth and obeys (1) then f can be C^-appro-
8V

ximated by F : M -> R such that F ==/ off N and —^ > 0 on int^N). (All critical points
interior to N get erased.)

Proof. — By compactness, there exist pi, v > 0 such that —— > ^ on No X [b — v, b].
ex

Let a : R^-1 -> [0, 1] and (B : R -> [0, 1] be smooth bump functions such that a is
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positive on int(No), and zero off No; (B is positive on [a, 6), zero off \a, b\, and (3' > 0
on the interval (^, b — v]. Set

FW =/W + ̂ \ • . .^w-1) (B(O,
where x = (A;1, ..., ^w) and s > 0 is small. Clearly, F ==/ off N and F ->f in the G00

sense as s -> 0. Also, for e small, | s(B' | < (JL and so
8F at
^ == ̂  + £<> ° on No x Lb - v3 6L

^y ^F ^T^
while on int(No) X (a, ^ — v], (B' > 0 and -J- ̂  0 imply that — > 0. Thus —— > 0
on all of int(N). ()xm 8xm ()xm

QED

2.2. Theorem (Enlargement of critical sets). — Iff: M -> R is smooth and C is a compact
subset of some level setf'1^), then there is a smooth function F : M ->R such that

CP(F) = cp(/) u C.

Iff is proper, so is F.

Proof. — Let g : R —^ R be a smooth homeomorphism such that g ' > 0 except
at c, where g^c) = 0. Set/o == g of- Clearly/o is smooth and

cp(/o) = cp(/) U/-1^).

We are going to use 2.1 to erase superfluous critical points in P ==/-1(6:)\(G u cp(/)).
For each p e P we can find a coordinate system [x1, ..., ^w) on a neighborhood Np
ofp which is siflowbox for the grad(/)-flow; i.e., for some interval [a, b] with a < c < b
and some 8 > 0,

f{x\ ..., X"1) = ̂  if a< ̂  & and |( ,̂ ..., ̂ -1)! ̂  8.

Then w^- ̂  0 if x e N^, while a/ow > 0 if ^ e N. and ^w =f= c. In the flowbox coor-
ox Sx

dinate system, the neighborhood Ny corresponds to the product of the 8-disc in R"1"1

and the interval [a, b]. We take a locally finite cover ofP by the interiors of such neigh-
borhoods Ny, say N^N2, ..., where N^ == Ny^, making sure that each N^ misses
C U cp(/). Working in N^ we use 2.1 to replace/o by F^. Since flowboxes overlap

aF!naturally, - . remains non-negative when judged in any of the other flowbox coordinate
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systems N^ that meet N^. This lets us continue, replacing Fi by F^ in N3, and so on,
never introducing new critical points where old ones were erased.

Since { N^ } is locally finite, F^x) is independent of n for all n ̂  some n^x). Thus,
F == I1™,1'" is wel1 defined- For safety's sake we can also require that the C^size
of Fy — F^_i is < 2"'' respecting some fixed C1' norm on functions defined on M.
Then F is C°° and has no critical points in U = Uint(NJ. Critical points of/o off U
are unaffected by this construction and so we see that F has all the old critical points of fo
in LP, but has no critical points in U. Since { N ^ } covers P ̂ /-^^(G u cp(/))
and N^ n (C U cp(/)) = 0, it follows that cp(F) = G u cp(/) as claimed.

If/is proper then so is/o = g of, and since F approximates/o, so is F.
QED

2.3. Theorem. — The Hopf link is properly critical.

Proof. — It suffices to show that some ambiently diffeomorphic copy of the Hopf
link is properly critical, for the property of being critical or properly critical is clearly
invariant under ambient diffeomorphism. Consider the function /: R3 ->R defined as

/(^, Z) = ^ _ 2(^2 _^2) + ^2 +y)2 + 1.

It is easy to see that |/| -> oo as \{x,y, z)\ -> oo. That is,/is proper. The critical points
of/ are found from

- 4x + 2{x2 +j/2) (2x) =0, - 4y + 2{x2 +y) (2j/) == 0, 4^ = 0,

and these equations hold if and only if x2 -}-y2 = 1 and z = 0, or {x,y, z} == (0, 0 0).
Calling A the unit circle in the z = 0 plane, we see that /(A) = 0, /(O, 0, 0) = 1,
^(V) = A u {(0,0,0)}. The level set/-^!) is the bagel pinched torus shown. The doughnut
hole has been shrunk to a point to prevent butter leaking out. Except at the origin,
/"^(l) is a regular surface.

On /-'(I), we consider B = {{x, 0, z) : ̂  + ^ - 2x2 + 1 = 1}. It is a smooth
unknotted Jordan curve that links A once. By Theorem 2.2 we can modify / to a
function F: R3 ->R^. so that cp(F) = cp(/) u B$ i.e., cp(F) = A u B, a Hopf link.

QED
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Remark.— We believe that an analytic expression for a properly critical Hopf
link could be found, but we leave it for the interested reader to do so. The general
question of which critical sets occur for analytic functions is probably much harder
than the G00 case treated in this paper.

2.4. Theorem. — The unlink is properly critical.

Proof. — Again, it suffices to show that a diffeomorphic copy of the unlink is
properly critical. Consider the function /: R3 -> R defined as

/(^, z) == ^ - 4(x2 +J/2) z + 2{x2 +y)2 + 1.

It is not hard to check that/is proper. (Break things down into the cases that x2 +j/2 ̂  41 z \
and x2 +y ^ 4| z |.) The critical points of/ are found from

- 8xz + 4{x2 +j/2) (2x) =0, - 8yz + 4(x2 +j/2) (2jQ = 0,
4z3 - 4(A;2 +y) = 0.

These equations hold if and only if x2 +jy2 = 1 and z = 1 or {x,y, z) = (0, 0, 0).
Thus,/(A) = 0 where A is the unit circle in the z = 1 plane; and/(0, 0, 0) == 1. The
level set/'^l) is a bialy pinched torus—it has a smooth bottom face. The bagel pinch
point lies midway up the hole while for the bialy it lies at the bottom. (See the remark
that follows for more details on its shape.)

Let B be any smooth Jordan curve on the level set/'^l) passing through (0,0,0).
(For instance, we could take for B the intersection of the lower branch of/'^l) with
a vertical cylinder {x — p)2 +y = p2 having small radius p.) By Theorem 2.2 there
is a proper smooth function F: R3 ->R+ with cp(F) = cp(/) u B.

QED
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Remark. — Let us say a little more about the bialy, especially its bottom face.
Introducing cylindrical coordinates, the equation for the bialy becomes

^ — 4r2 z + 2r4 == 0.

To check the bialy's shape at the origin, one would like to solve this equation there
for z === z(r), but this is difficult since its ^-partial derivative vanishes at (0, 0). However,
one can write r = r[z) as

'j1^1-?')' ^°- -^
The choice of + ̂  corresponds to the bottom branch of the bialy while — \/~ corres-
ponds to the pinched upper branch. Thus, for (r, z) on the bottom face, we have

zg(z) — r2 = 0 where g = J 1 + Jn — ̂  is analytic at z == 0. The ^-partial

of this equation at (0, 0) is g{0) = -V/2 4= 0 and so one has an analytic solution z == z{r2).
Since z{0) = 0, we see that to second order the bottom of the bialy is a paraboloid
through (0,0,0).

In the preceding proofs we observed that proper criticality is invariant under
ambient diffeomorphism. Under non-ambient diffeomorphism, criticality and proper
criticality may be lost. For example, a sphere plus its center point is properly critical,
but a sphere plus a point outside it is not critical at all. In a different direction the next
result drops from ambient diffeomorphism to ambient homeomorphism.

2.5. Theorem. — If G, G' are compact subsets of R3 and h: R3 ̂ D is a homeomorphism
sending G' to G, then C is properly critical if and only if G' is.

Proof. — Since we are working in R3, not R4, we may replace h with another
ambient homeomorphism H : R3 ±D which sends G' to G and is a diffeomorphism of G'6

to C0. See Munkres (1972). We assume that G = cp(/) for some smooth proper/ :
R3 -> R+ and produce another smooth proper function on R3 whose critical point
set is G'. Let V == cv(/) =/(C).

We pull/back by H, getting/o H : R3 ->R+. We know that/o H is continuous.
Restricted to G'6 it is smooth and regular. By the Morse-Sard Theorem, V C R is compact,
totally disconnected and so we can find a smooth orientation-preserving homeomor-
phism g : R -> R which is very flat at V and otherwise is a diffeomorphism. By Lemma 3 of
Norton and Pugh it follows that F == g o/o H is smooth on all of R3. Its set of critical
values is cv(F) == ^(V) and its set of critical points is the entire F-inverse image ofcv(F),
cp(F) = F'^V)). In particular, cp(F) includes C', but it also includes superfluous
critical points in G'0. These we erase using 2.1.

For any p e G", we can find a flowbox neighborhood Ny == No X [a, b] of p
respecting the grad(/o H)-flow; on N^,, F(x\ ...,^) =g(xm). We always chooser



14 MATTHEW GRAYSON AND CHARLES PUGH

to be a regular value ofF, i.e., b e R\g{V). Then F{x) is strictly increasing respecting ̂
an(^ a m > 0 at ^m = &. The critical points of F in Ny are superfluous. As in the proof

of 2.2 we form a locally finite cover of G'0 n cp(F) by such neighborhoods Ny, and
proceed to erase the superfluous critical points via 2.1. The result is a smooth proper
function/' with cp(/') = G'.

QED
Even so, we have not made full use of the hypotheses of 2.5. We needed to know

that H diffeomorphs G'0 to C0 and that cp(/) = G, but we did not use the fact that H
homeomorphs C' onto C. It suffices that H is globally continuous and sends C' into C.
Thus.

2.5'. Theorem. — If G, G' are compact subsets of' R"1 for which there is a continuous
endomorphism ofJV sending G' into C, dijfeomorphing G'0 onto G6, and if C is properly critical,
then so is G'.

Let us draw some conclusions from 2.5, 2.5'.

2.6. Corollary, — Any cellular set CCR^ is properly critical, m 4= 4.

Proof. — See also Norton and Pugh. Recall that a set G C R"1 is said to be cellular,
a term invented by Morton Brown, if it is the monotone intersection of compact topo-
logical w-balls, C == (\ B^. Any cellular set G C R"1 is a compact non-empty connected
set—known as a continuum—and if m 4= 4 then S^C is diffeomorphic to R"1, oo being
sent to 0. See Brown (1962). (Ifm=4 one must assume that C is the monotone inter-
section of smooth 4-balls. See Norton and Pugh.) The diffeomorphism extends to a conti-
nuous map S"" t=) sending G to oo. Reflecting in the equator gives a map 9 : R"* ±D which
diffeomorphs G° to R"^ 0 } and sends G to 0. According to 2.5', since { 0 } is properly
critical, so is C.

QED

2.7. Corollary. — Any finite disjoint union of cellular sets in R3 is properly critical.

Proof. — This is easy and left as an excercise. So is its generalization to a cc tame
union of cellular sets ".

QED

2.8. Theorem. — If a properly critical set in R"1 is a compact non-empty connected set then
it is cellular.

Proof. — The proof is easy and appears in Norton and Pugh.

Combining 2.6 and 2.8 we get
QED

2.9. Theorem. — A compact non-empty connected set in R3 is properly critical if and only
if it is cellular.
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2.10. Corollary. — No circle in R3 is properly critical.

Proof. — A circle—unknotted, knotted, wild, or whatever—is compact and
connected but is not cellular. Its complement is never simply connected and is therefore
not difFeomorphic to J^\{ 0 }.

QED

2.11. Corollary. — The Alexander horned ball is properly critical if and only if it horns
are internal.

Proof. — The horned ball is a continuum that is cellular if and only if the horns
curl inward.

QED

2.12. Corollary. — Some wild arcs in R3 are properly critical and others are not.

Proof. — An arc A C R3 is tame if there is an ambient homeomorphism of R3

carrying A onto a straight segment. If it is not tame it is wild. One example of a wild
arc is gotten by tying a sequence of smaller and smaller disjoint overhand knots that
limit down to an interior point p of the arc A from a to b. Between^ and b, A is a segment.

According to Wilder (1930), A is wild. (Interestingly, without the segment [̂ , 6], A is
tame.) It is not hard to prove that A is cellular. For we can enclose it in a decreasing
sequence of spheres as shown. (In particular, this proves that R^A is simply connected.
Note too that making such disjoint knots accumulate at other points interior to A still
leaves A cellular, even if the knots accumulate at a Cantor subset of A.) Being cellular,
A is properly critical according to 2.6.

To exhibit a wild arc that is not properly critical, we consider B as shown. It is
taken from Fox and Artin (1948), p. 981. The clasps converge to the endpoints a, b
ofB. (This time it is uneccessary to add segments beyond the knot accumulation points.
The complement of B is not simply connected as can be seen by trying to unlink the
loop a shown. Therefore B is not cellular and by 2.8 it can not be properly critical.
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QED

Remark. — There is probably a similar result for other non-trivial properly critical
sets—they can be re-embedded so that in their new incarnation they are no longer properly
critical.

2.13. Corollary. — The p-adic solenoid and the Denjoy solenoid are not properly critical.

Proof. — Thej^-adic solenoid is the nested intersection of longer and longer, thinner
and thinner solid tori T^ that wrap more and more times around the core of a fixed
solid torus T. See Shub (1987), p. 27. The Denjoy solenoid is the suspension over a
circle of a Cantor subset of the circle, see Nemytskii and Stepanov (1960), p. 381-383
and p. 391-392. Both are continua but neither has simply connected complement.

QED

Remark. — Simply connectedness of the complement of C is not enough to conclude
that it is cellular. For example, the components of the complement of the 2-sphere are simply
connected. A more enlightening example is the Whitehead continuum G. See Rolfsen, p. 82.
Its complement W in S3 is a contractible open set, so R^C is extremely simply connected, but
W is not homeomorphic to R3, and so G is not cellular. We have just indicated a proof of

2.14. Corollary. — The Whitehead continuum is not properly critical.

Next we turn to links with more than two components.

2.15. Theorem. — Any tame link in R3 with at least three components is properly critical.

Example. — Consider the Borromean rings L = \ u \ u Xg. We construct a
smooth proper function f on R3 such that cp(/) == L and f(\) === z, i = 0, 1, 2. The
level surfaces of f are shown in the figures on next page.

The level surface/ = 0.1 is a torus enclosing \. At level/= 1, the torus has grown
larger and has hit ^ in two points. The level surface /== 1.1 has genus 3 and encloses
^ U Xi == the set of critical points in/^ 1. The last component Xg snakes through two
holes of this level surface. As /1 2, the level surface f = t grows so that the two holes
through which Xg passes shrink to critical points p, q in the bagel fashion of 2.3, while
the empty hole shrinks to a critical point r in the bialy fashion of 2.4. We arrange ̂
(by an isotopy) so it lies on the pinched level surface/ = 2 and contains the three critical
points p, q, r. The level surfaces / == t > 2 are spheres. By Theorem 2.2 we enlarge
the critical set on f = 2 to Xg, introducing no new critical points. This gives a function
with the Borromean rings as critical set.


