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Chapter I. INTRODUCTION

1. The Linearization Problem

Let G be a reductive complex algebraic group acting algebraically on complex
affine /i-space A"=:X. The Linearization Problem asks whether every such action is
algebraically equivalent to a linear action, i.e., whether there is a G-equivariant
isomorphism (p: X ^> V where V is a G-module. Another way to state this problem is
the following: Is every reductive subgroup of the affine Cremona group Aut(A")
conjugate to a subgroup of GL^? A detailed report on this question can be found in
[Kri], where we also describe connections with other classical problems such as the
Fixed Point Problem, the Cancellation Problem and the Equivariant Serre Problem.

There are a number of positive results, all of which require some kind of
"smallness". Linearization always holds in dimension n=l (see [Ka]), and it holds for
n^4 in case G is semisimple ([KP], [Pa]). However, the question remains open in
dimension n=3 for G finite and for G one-dimensional (cf. [Kr3], [KoRl], [KoR2]).

Another approach is to require that the quotient space X//G (see §4) be of small
dimension. This constraint works well in the analogous situation of a smooth action
of a compact Lie group K on R". If the orbit space R"/K has dimension ^2, then the
action is linearizable ([Br, IV. 8.5]). In the algebraic case, it is a corollary of Luna's
slice theorem that linearization holds whenever dim X//G=0, i.e., whenever the only
G-invariant functions on X are constant.

Our present work arose out of the attempt to prove linearizability in the case
that dim X//G= 1. In 1981, Luna outlined an attack on this problem which has been
our guide. Surprisingly (to us), our work has led to the discovery of counterexamples
([Sch5]). We also have many criteria for linearizability to hold. See the next section
for a more precise accounting of our results.

We wish to thank D. Luna for generously sharing his ideas and notes on the
linearization problem. We thank J.-P. Serre for crucial help with Galois and group
cohomology. Finally, we thank F. Knop for helpful conversations.

2. Main results

(2.1) We consider the following situation: We have an action of the reductive
complex algebraic group G on a smooth affine variety X, where X is acyclic (i.e., has
the Z-homology of a point). Denote by n^:X->X//G the quotient map (see §4). We
assume that the quotient X//G has dimension 1. Note that these hypotheses generalize
slightly those in section 1, where we assumed that X=A". In the following, parentheti-
cal references (e.g. (II. 0.1)) indicate the location where a result (e.g. Theorem 1) is
proved.
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Theorem 1 (11.0.1). — We have X//G ̂  A, the of fine line, and exactly one of the
following occurs'.

(1) The action is fix-pointed, i.e., every closed orbit is a fixed point.
(2) There is a unique fixed point XQCX.
In the fix-pointed case it is known that we have linearizability (see Corollary

11.0.3), so we concentrate on the second possibility. If one allows holomorphic
equivalence, then even these actions are always linearizable:

Theorem 2 (VI. 2.11 (4)). — There is a holomorphic G-equivariant isomorphism of
X onto a G-module V.

M. Jiang (Thesis, Brandeis, 1992) has extended Theorem 2 to the more natural
case where the G-action on X is holomorphic.

(2.2) We assume for now that X°=[XQ]. Let V denote the G-module given by the
canonical action of G on the tangent space T^ X. It is easy to see that dim V//G = 1
and that V°={0} . Let 7 iy :V^A be the quotient mapping, where we arrange that
Tiy (0)= 0- Of course, Tiy ls a homogeneous polynomial function on V, and we denote
its degree by d.

Our idea now is to classify all X which give rise to the same G-module V. Let
e^v, A denote the set of isomorphism classes of smooth acyclic affine G-varieties X
with fixed quotient mapping n^: X -> A ̂  X//G such that

(1) X°= { XQ } is a single fixed point,
(2) T^ X is G-isomorphic with V,
(3) Tix^-OeA.

(If (p is an allowable isomorphism of G-varieties X, X7 satisfying our conditions, then
cp induces the identity on A.) The isomorphism class containing X is denoted { X } .
Let ̂ y be defined in the same way as ̂ y. A? ^cepi that we do not fix an isomorphism
of X//G with A. Clearly, Ji^ is the orbit space of eJ^v,A by an action of C*, and ^y
is trivial (i.e. a point) if and only if ^y, A ls trivial.

(2.3) Let F be a G-variety and Y a variety with trivial G-action. A G-fiber bundle
(over Y) with fiber F is a G-equivariant morphism P: g -> Y such that every fiber
is G-isomorphic to F and P is locally trivial in the etale topology. This means
that there is an etale surjective map T| : Y -> Y and a G-equivariant isomorphism
g - Y ^ Y X y S ' ^ Y x F over Y (see IV. 1.3-1.5 for a more detailed discussion of this
notion).

If U is an open subset of A, let Vy and X^j denote Tiy 1 (U) and n^1 (U), respec-
tively. Let A denote A\{ 0}, and set V: = V^, X: = X^.

Theorem 3. - Let [ X } e ̂ y. A-
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(1) (IV. 0.2) The morphisms X-^A and V->A are G-fiber bundles with fiber
¥:=nyl(l). The bundles are isomorphic, hence there is a G-isomorphism
(p : X ̂  V which induces the identity on A.

(2) (VI. 2.11 (3)) There is an open set U S A, OeU such that Xy and Vu are
G-isomorphic over U.

Thus X is obtained from V and V^ identified by a G-isomorphism (pu ozw
U:=U\{0}.

(3) (VI. 2.13) There is a bijection J^^^^D/F where F denotes the dth roots of
unity (rf=deg7iy) and D is a T-module.

We give e^v,A ^e structure of af fine variety coming from the bijection above.

(4) (VI. 2.12) There is an affine G-variety <§ and an equivariant smooth sur-
jective morphism [i: S -> A x ̂  ^ where G acts trivially on AX ̂ y ^ mth

the following property: Let { Y } e ^ y ^ and set X:=[i~1 (A x {Y}). Then
{ Y } = { X } andn^=pr^[i:X^A.

An intriguing question is the following: Is every element in ^y ^ represented by
a variety which is isomorphic to A"? All the examples we give are of this type.

(2.4) To describe the moduli space <^v,A we need fo determine the F-module D.
This is done in Chapter VI. For the present, we restrict ourselves to describing criteria
for D to be trivial.

Let A (V) denote set of all the polynomial vector fields on V, and let A^ (V) denote
the elements of A (V) annihilating the generator t (= Tiy) of the G-invariant polynomials
^(V)0 (see VI. 1 for this and the following). The degree of an element of A(V) is its
degree as a derivation of the graded algebra (9 (V). Now A (V)0 is a Lie algebra over
^(A)=^(V)0, and A^V)0 is a subalgebra. Moreover, A(V)0 and \W are free
graded (9 (A)-modules. Set F^Tiy^l) and let L denote the (linear algebraic) group
Aut (F)° of G-equivariant automorphisms of F. Then I: = Lie (L) is the restriction of
A^ (V)0 to F. Let V denote the inverse image in I of the semisimple part of the reductive
Lie algebra Lie(L/Rad^(L)).

Theorem 4 (VI. 2.4 (2)). - Let f denote the set of restrictions to F of the
homogeneous elements o/A^V)0 of degree at most d(=degt). Then D (hence Ji^^ is
trivial if and only if i +1' = I.

We are able to apply Theorem 4 to several classes of representations.

Theorem 5 (VI .3.2). - The moduli space ^y ^ is trivial if

(1) V is a semifree G-module,
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(2) G is a torus,
(3) dimV00^,
(4) dimV^3,
(5) G° is a simple group, or
(6) V is self dual as G°-module.

(A G-module V is semifree if the only closed G-orbits in V are fixed points or have
trivial stabilizer).

(2.5) Our examples of non-trivial moduli spaces arise from G-vector bundles (see
VII .1.1 for definitions). Consider G-vector bundles whose base is a G-module P with
one-dimensional quotient. The fiber at OeP is a G-module, and we let Vec^P.Q)
denote the collection of G-vector bundles over P whose fiber at 0 e P is isomorphic to
the G-module Q. Let VEC^ (P, Q) denote the set of G-isomorphism classes in
Vec^ (P, Q); the class of E e Vec^ (P, Q) is denoted by [E]. The trivial class is represented
by the product P x Q, which we denote by ©p. If G= [e] is trivial, then the solution
of the Serre Problem by Quillen and Suslin shows that every element of Vec (A7', C^)
is trivial, so that every element EeVec^P,?) can be considered as a G-action on
some X=A".

Let EeVeCo(P,Q). Let C* act via scalar multiplication on the fibers ofE. Then
we obtain an action of G : = G X C* on E^A". It is easy to see that E//G^P//G^A.
The following result allows us to relate the linearization problem to moduli of
G-vector bundles.

Proposition 6 (cf. VII. 1.2, 1. 3). - Let E, E' eVec^ (P, Q) and let G be as above.
Then

(1) ([Kr2]) The vector bundle E is non-trivial if and only if the G-action on E^A"
is not linearizable.

(2) ([BH2]) 7 / 'E®©peVecG(P,Q©P) is non-trivial, then the G-action on E is
not linearizable.

(3) ([MP]) Suppose that H is a subgroup of G such that (P © Q)" = P. Then E
and E7 are isomorphic as G-varieties if and only if E is isomorphic to a pull-
back ( p ^ E ' for some G-automorphism (p of P.

(2.6) It turns out that VECo(P,Q) has a pleasant structure.

Theorem 7 (VII .3.4). — The moduli space VEC^ (P, Q) has a natural structure of
vector group. Moreover, there is a G-vector bundle |LL : SS -> P x VECo (P, Q)
such thai [i ~1 (P x [E]) ̂  E for all E e Vec^ (P, Q).
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Theorem 8 (VII .4.8). - Let Q, Qi and Q^ te G-modules, and let H be a principal
isotropy group ofP (see II. 1.2).

(1) The map VEC^ (P, Q) ̂  VEC^ (P, Q © Q) ^rfrng ̂  cto^ [E] e VEC^ (P, Q)
into [E ® ©QJ ^ bijective.

(2) Z^ [EJ, [EJeVECo(P,Q). Then their sum [EJ+EE^]-:^] ^ VEC^P.Q)
is uniquely determined by the condition: E^ @ E^^E^ © ©QeVec^P.Q © Q).

(3) Whitney sum induces an epimorphism of vector groups

WS: VECo (P, Qi) x VECo (P, Q,) -> VECc, (P, Qi © Q,).

(4) //Hon^Q^Q^^O}, ^^ WS is bijective.

(2.7) Let V : = P ® Q ^ © Q with the G-action of 2.5. We want to compare
VECo (P, Q) with ^y A. As before, let F denote the group of dih roots of unity,
where d is the degree of Tip. Let [E] e VEC^ (P, Q) and let { E } denote E considered as
an element of ^y. A- Note that { E } = { y* E }, y e F, where y* E denotes the pull-back
of E by Y : P ̂  P. Thus we have a natural map ^: VEC^ (P, Q)/F -^ ̂ y ^.

Theorem 9 (VII. 3.7). - Suppose that ^p^ is trivial (i.e., there are no non-
linear izable actions modelled on P). Then

5i:VECG(P,Q)/r^^v^

is a bijection.

(2.8) Let Fp denote Up1^) and let M denote the (linear algebraic) group
N10^^(0))° (see VII. 2.3). The vector group VECo(P,Q) can be computed
from the Lie and Artin algebra m:=Lie(M) :=Mor(Fp,EndQ)G. Let m7 be defined
as in the case of I in 2.4, and let f denote the restriction to Fp of the elements of
Mo^P.EndQ)0 which are homogeneous of degree at most ^(=deg7Cp).

Theorem 10 (VII. 3.4(1)). - The moduli space VECc(P,Q) is trivial if and only
ifl+m^m.

It is quite easy to come up with examples where VEC^ (P, Q) is non-trivial. Using
Proposition 6 we then obtain examples of non-linearizable actions of G on A" and of
non-linearizable actions of G x C* on A" with one-dimensional quotient.

Theorem 11 (VII. 5.9, 5.4, 5.7). - (1) Let G be a simple classical group, a spin
group, G^, E^ or E^. Then G has a non-linearizable faithful action on A" for some n.

(2) There are non-linearizable actions of 0^ on A4, of SL^ on A7 and of 803
on A10.
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(2.9) Remarks. — (1) With our methods we obtain explicit families of non-trivial
G-vector bundles which give rise to non-linearizable actions on affme space (VII. 5).
But only with the later work of Masuda and Petrie (see Proposition 6 (3)) was it
realized that these families of G-vector bundles contain families of non-equivalent
G-actions on affme space (VII .5.4, 5.7 (2)).

(2) Knop [Kn] has shown that for every semisimple G there exist non-trivial
G-vector bundles E with base Lie (G) such that the G-actions on E are not linearizable.
Again, one can show that these vector bundles lead to families of non-equivalent
G-actions, provided that G has a non-trivial center (VII .5.8).

(3) Masuda, Moser-Jauslin and Petrie ([MP], [MMP]) have constructed families
of non-trivial G-vector bundles and families of non-linearizable G-actions. They have
shown that some of our examples of 0^ x C*-actions on A4 remain non-linearizable
when restricted to certain finite subgroups of 0^ x C*, providing the first examples of
non-linearizable actions of finite groups.

(4) There are no known examples of non-trivial G-vector bundles or non-lineariza-
ble G-actions on affme space for commutative groups G (cf. [Kr3], [KoRl], [KoR2]).

3. Methods

We discuss some of the ideas and methods we use.

(3.1) In Chapter II we establish the topological part of our results, following an
outline of Luna. The fact that X//G ̂  A is quite easy. A careful study of the Leray
spectral sequence of n^: X -> X//G, using properties of Luna's stratification of X//G
(see 11.1), gives Theorem 1. If X°^A, we have linearizability, so we assume that
X^^o} where n^ (xo) = 0 e A. Then the Luna strata of X//G ̂  A are A and { 0 } . As
before, let V denote the G-module T^ X. Then n^: X -> A and Tiy '- V -> A are
G-fiber bundles (see 2.3) with fiber F = n^ 1 (1).

The next task is to establish that the two G-fiber bundles X and V are isomorphic.
We show that the G-automorphisms of F form a linear algebraic group, denoted L,
so that X and V correspond as usual to principal L-bundles Px and Py over A,
respectively (see IV. 1.1-1.4). Let us denote by H^(Y,L) the set of isomorphism
classes of principal L-bundles over the variety Y.

Theorem 12 (IV. 5.4). — For any linear algebraic group M the canonical map

H,\(A,M)^H,\(A,M/M°)

is a bijection.
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It is not difficult to see that this result implies Theorem 3(1). Note that the
principal L/L°-bundles over A are the same in the topological and algebraic categories.
In fact, they are just the finite covers with Galois group L/L°. It follows from Luna's
slice theorem that there is a neighborhood U of 0 G A (classical topology) such that
X^ and Vu are analytically G-isomorphic over U. Then Px and Py are isomorphic
over U, hence they are topologically isomorphic over A. Thus the principal L/L°-
bundles Px/L° and Py/L0 are isomorphic (algebraically!), and so P^^Py by
Theorem 12.

(3.2) To continue our discussion, we need to consider a small menagerie of spaces.
Identify (9 (A) with C [t\. Then (9 (A) = C [t, t~1] and set A: = Spec C [^]. The schematic
intersection A C} A is A: = Spec C ((Q). Set

V: = V x ^ A = Spec {(9 (V)®, ̂  (9 (A)),

and define X, V and X similarly.
If Y is an A-scheme, let 91 (Y) denote the group of G-automorphisms of Y x ^ V

which induce the identity on the quotient Y. Then 91 is a group valued functor, and
we show that it is represented by a group scheme (also denoted 91) over A. For now
it is most important to note that 91 (A) =J[ G-automorphisms of V inducing the identity
on A}, and similarly for 91 (A) and 91 (A). Equivalently, the opposite group to 91 (A)
is the group of G- and (9 (A)-automorphisms of (9 (V), etc.

Let {X}e<^v ,A (see 2.2). The slice theorem gives a G-isomorphism ( p : X ^ > V
which induces the identity on A (see 11.0.4). By Theorem 3(1) we have a G-isomor-
phism (p :X^>V which induces the identity on A. The composition (p:=(p(p"'1 lies in
91 (A). Now (p is only determined up to composition with an element ae9I(A), and
similarly for (p. Thus the double coset of (p in

D91:= 91 (A)\9I (A)/9I (A)

is well-defined, and we denote it by [(p(X)]. In this way, we obtain a map

[^]:^v^D9I, {X}^(X)].

(3.3) We eventually are able to show that [(p] is an isomorphism (VI. 2.13), and to
identify D91 with a quotient D/F (VI. 2.7). Simultaneously, we obtain that there is
an isomorphism (pu: X,j ^> Vu over a neighborhood U 9 0 (VI .2.11), and we can then
construct the moduli space (VI. 2.12). Here are some of the main steps.

Let B denote Spec C [s], where t=sd. Then we have a canonical morphism B -> A,
z \—> zd, which identifies A with B/F, where F = {dih roots of unity} acts by scalar
multiplication on B. The group F also acts on F by scalar multiplication, commuting
with the action of G. Thus F is a subgroup of the (linear algebraic) group
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L(=Aut(F)0). LetF act on B x F by Y(z,^0=(zy- l ,Y^ Y^F, zeB, veF. Denote
the corresponding quotient by B^F. Then we have a G-equi variant morphism

p^^F-^V, [z,v]}-^zv,

over A = B/F, and clearly p induces an isomorphism over A.
Note that L is a F-group, i.e., it is a linear algebraic group together with

a homomorphism T:F-^Aut(L). Here T(y)/ is just Y / y ~ 1 , Y6!^ ZeL. Let L(B)
denote the group of morphisms from B to L. Then F acts on L(B) by
y (p(&) = T(Y)(p(6Y)=Y(p(&Y)Y - S Y^r , (peL(B), 6eB. We let I^B^ denote the set of
fixed points of the F-action. One defines groups L (B)^ etc. similarly. The morphism p
above induces a bijection p^ oflUB^ onto Sl(A), and its inverse, denoted c^, induces
bijections

a, : 91 (A) ̂  L (B)^ a, : 21 (A) ̂  L (B)^

and an inclusion (III .4.6)

a^SICO^fiO^.

Thus we obtain an isomorphism

W D9I - L (B^L (B^/a^ SI (A).

(3.4) We say that the F-group L has the decomposition property if

L(BY=L (6)^(6)^

and we similarly say that 31 has the decomposition property if

91 (A) =91 (A) 91 (A).

Note that 91 has the decomposition property if and only if the double coset space
D91 is trivial.

Theorem 13 (V.2.6). — Let M be a T-group. Then M has the decomposition
property.

Using (^) and the fact that MB^ 0 I^B^I^B^ we obtain

D9I^ I^B^L (6)^0^91 (A).

Clearly, the key to determining D91 is to understand the image of 91 (A) in L (B)1^.

(3.5) We now study the double coset spaces above using the "Lie algebras" of the
corresponding groups. Clearly Lie(L(B))=I(B), where I==Lie(L), I (B) = Mor (B, I),
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and the r-action is induced from that on L and B. There is an exponential map, induced
from the exponential map of I. Let I(B),., r^O, denote the algebra ofmorphisms which
vanish to order r at OeB (so elements of I(B)i send OeB to Oel; see V .0 .6 and
V.3.1). Define L(B)^ similarly. Then exp induces isomorphisms of I(B)^ with L(B)^
r^l , andofUB^withI^B^r^l (V.3.2).

In the case of the group 91 (A), the Lie algebra is 3£ (A): == A^ (V) ®^)^(A), the
algebra of G-derivations of ^(V) which annihilate ^(^^(A) (see 2.4). Let m
denote the ideal in (9 (V) of functions vanishing at the origin. We give (9 (V) the ro-
adie filtration and 3£ (A) the induced filtration, so that 3£ (A)^ consists of the elements
sending mj to m^ for ally. We filter 91 (A) similarly. In particular, 91 (A) ̂  consists of
automorphisms fixing the origin of V. We show that there is a natural exponential
map X (A), ̂  91 (A),, r ̂  1 (VI. 1.6).

(3.6) We now study the morphism a^ : 91 (A)^. —> L (B)^ via the corresponding mor-
phism of Lie algebras a : X (A), -. I (B)^ (see VI. 1.14):

yi(A)r———^L(B^
A. A.

exp exp

X(A),———. IW
a#

Theorem 14. - (1) (VI. 1.13 (2), VI. 1.14 (2)) There is an integer r^ ̂  1 such that
a : 3£ (A\ ̂  I (SS)^ is bijectivefor r ̂  r^. Thus a^ : 91 (A)^ ̂  L (B)^ ^ <7 bijectionfor r^r^.

(2) (V. 3.5) L^ M be a T-group such thai Rad (M°) = Rad, (M°). Then

M (B)[ = M (B)[ M (B)^ /or all r ̂  1.

The property in part (2) above we call the approximation property for M. Note
that if L has the approximation property, then 91 has the decomposition property,
since L(B)^ c <j^9l(A), for r^r^ and L(B)^ ^ L(B)^. In particular, D9I and ^y^
are trivial in this case.

(3.7) Write the identity component L° of L as Z • L7 where Z is the central torus in
a Levi factor L of L and L' is generated by the semisimple part of L and the unipotent
radical of L. We may arrange that Z, etc. are F-stable. Now L' has the approximation
property by Theorem 14(2), hence D9I is the image of the vector group
D':=Z(B)[/Z(B)^. It follows that D9I is isomorphic to D/r, where D is a quotient
vector group of D' with linear r-action (VI .2.7).

Let zeZ(B)^ and r^O. One can show that, modulo Z(B)^, z can be represented
by a rational morphism from B to Z (VI. 2.10(1)). It then follows from the results
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above that every double coset [oc] e D9I can be represented by a rational section of 21.
But such a rational section is a G-automorphism (pu of V^j over U = U\{ 0} for some
neighborhood U of OeA (which gives Theorem 3(2)). Using (pu we glue V and \\j to
obtain a G-variety X such that [(p (X)] = [a]. Thus the map [(p]: e^y, A ̂  D^I ls surjec-
tive. It is easy to show that it is also injective, so we have that

^ ^D9i^D/r.

4. Conventions and notation

Our base field is the field C of complex numbers. Let G be a reductive algebraic
group acting on an affine variety X. We denote by (9 (X) the C-algebra of regular
functions on X and by (9 (X)° the subalgebra of G-invariants. A celebrated theorem
of Hilbert shows that (9 (X)° is finitely generated (see [Kr, II. 3.2]). Let X//G denote
the corresponding affine variety, and let n^: X -> X//G denote the morphism
corresponding to the inclusion (9 (X)° c (9 (X).

Proposition (see [Kr, 11.3.2]). — Let G, X, etc. be as above. Then

(1) Tix is surjective.
(2) 7i;x separates disjoint closed G-stable subsets o/X.
(3) Every orbit contains a unique closed orbit in its closure, and n^ sets up a

bijection between the closed orbits o/X and the points O/X//G.

If W is a module for the algebraic group M, we will use the notation (W, M) (in
place of just W) when it is necessary to emphasize the group involved. We use ^ to
denote { dth roots of unity } c= C* = GL^ (C).


