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0. Introduction

Let X be a compact Kahler manifold. In this paper we will study a correspon-
dence between representations of the fundamental group of X, and certain holomorphic
objects on X. A Higgs bundle is a pair consisting of a holomorphic vector bundle E, and
a holomorphic map 6 : E -> E ® 0^ such that 6 A 6 == 0. There is a condition of sta-
bility analogous to the condition for vector bundles, but with reference only to sub-
sheaves preserved by the map 6. There is a one-to-one correspondence between irre-
ducible representations of^(X), and stable Higgs bundles with vanishing Chern classes.
This theorem is a result of several recent extensions of the work of Narasimhan and
Seshadri [39], [5], [16], [17], [18], [30], [37], [49], [52], [47]. The purpose of this
paper is to discuss this correspondence in detail, to obtain some further properties, and
to give some applications.

The correspondence between Higgs bundles and local systems can be viewed as
a Hodge theorem for non-abelian cohomology. To understand this, let us first look at
abelian cohomology: H^X, C) can be thought of as the space of homomorphisms
from 7Ci(X) into C, or equivalently as the space of closed one-forms modulo exact one-
forms. But since X is a compact Kahler manifold, the Hodge theorem gives a
decomposition

H^X, C) = H^X, ̂ ) @ H°(X, i^)-

In other words, a cohomology class can be thought of as a pair (e, ̂ ) with e e H^X, fl^)
and S a holomorphic one-form. The correspondence between Higgs bundles and local
systems is analogous. If 7Ti(X) acts trivially on Gl(^, C) then the non-abelian coho-
mology set H^TT^X), G\(n, C)) is the set of representations 7ri(X) ->GI(TZ,C), up to
conjugacy. Equivalently it is the set of isomorphism classes of G°° vector bundles with
flat connections. The theorem stated above gives a correspondence between the set of
semisimple representations and the set of pairs (E, 6) where E is a holomorphic bundle
(in other words, an element of H^X, G\(n, fl^)) and 6 is an endomorphism valued
one-form, subject to various additional conditions.

There is a natural action of C* on the set of Higgs bundles. A nonzero complex
number t sends (E, 6) to (E, rf)). This preserves the conditions of stability and vanishing
of Ghern classes, so it gives an action on the space of semisimple representations. This
C* action should be thought of as the Hodge structure on the semisimplified non-abelian
cohomology.

Before describing the contents of the paper, let me make a comment about the
length. Several different topics are covered in different sections, and while there are
some interdependencies, they do not build linearly. So the reader might well be interested
in skipping to selected parts and working backwards.

The basic linear algebra of the correspondence between Higgs bundles and local
systems is described in § 1. The main construction is that a metric on a Higgs bundle
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or flat bundle leads to an operator corresponding to a structure of the opposite kind.
This operator may not satisfy the required integrability condition—the obstruction
is a curvature Fg; or pseudocurvature Gg. If the (pseudo-) curvature vanishes then one
has a harmonic bundle, a bundle with both structures of Higgs bundle and flat bundle
related by a metric. The main existence theorem is that if a Higgs bundle is stable, or
a flat bundle is irreducible, then the equations AF^ == XI or AGg = 0 can be solved.
In the Higgs case an extra assumption, that the Ghern classes vanish, is required for
concluding that F^ = 0. In the flat case, the stronger vanishing Gg = 0 is automatic,
which is the statement of the main Lemma 1.1. We get an equivalence between the
category of direct sums of stable Higgs bundles with vanishing Ghern classes, and the
category ofsemisimple local systems, through equivalences with the intermediate category
of harmonic bundles. At the end of § 1 some facts about existence of moduli spaces for
Higgs bundles are stated without proofs, in the case when X is a smooth projective
variety.

The classical Kahler identities for differential forms on X can be extended to
the case of forms with coefficients in a harmonic bundle. The principal consequence
is that the complexes of forms with coefficients in a harmonic bundle are formal. This
provides a natural quasiisomorphism between the de Rham complex of forms with
coefficients in the flat bundle, and the Dolbeault complex with coefficients in the cor-
responding Higgs bundle (with differential including 6). There is a natural duality
statement, and also a Lefschetz decomposition for cohomology with coefficients in a
semisimple local system. The next topic in § 2 is a crucial compactness property: the
set of harmonic bundles with a fixed bound on the eigenvalues of 6 is compact. One
can conclude that the map from Higgs bundles to flat bundles is continuous. The section
is closed with a brief discussion of monodromy groups and real structures. These topics
are treated in greater generality in § 6, so the proofs here are redundant, but it seems
worthwhile to have a straightforward introductory version.

In § 3 we will discuss a way of extending the correspondence between stable Higgs
bundles and irreducible representations, to a correspondence between semistable Higgs
bundles (with vanishing Ghern classes) and possibly reducible representations. The
reason this is possible is the formality of the complexes of forms with coefficients in
harmonic bundles discussed in the previous section. We introduce some machinery, of
differential graded categories., to carry out the argument. It is a generalization of the notion
of differential graded algebra to the case when there are several different underlying
objects. The theory of extensions of semisimple objects is governed by a differential
graded category, and formality of the differential graded category gives a trivialization
of the theory of extensions, as well as an isomorphism between the de Rham and Dol-
beault theories. In order to obtain the best hypotheses, we need to make a digression
and prove the theorems of Mehta and Ramanathan in the case of Higgs bundles. These
say that the restriction of a semistable or stable Higgs bundle to a sufficiently general
hyperplane remains semistable or stable. This allows us to prove that a semistable Higgs
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bundle with vanishing Ghern classes is actually an extension of stable Higgs bundles
(rather than stable Higgs sheaves). Finally, at the end of the section we go back to the
formalism of differential graded categories, and introduce the notion of tensor product
structure. The extended correspondence between semistable Higgs bundles and repre-
sentations is compatible with tensor product.

There is an important class of representations of the fundamental group, the
variations of Hodge structure. This class of representations was first considered by
Griffiths in connection with his study of the monodromy of cohomology in smooth
families of varieties [24]. Griffiths' original notion of a variation of Hodge structure
with integral lattice can be weakened to the notion of complex variation of Hodge
structure [8]. In § 4 we show that the representations which come from complex varia-
tions of Hodge structure can be characterized as the fixed points of the action of C* on
the space of semisimple representations. A consequence is that any rigid representation
of the fundamental group of a compact Kahler manifold must come from a complex
variation of Hodge structure. (In fact it turns out that a rigid representation must be
a complex direct factor of a rational variation of Hodge structure.)

This places restrictions on which groups can occur as fundamental groups of
compact Kahler manifolds. This is because there are restrictions on which groups may
occur as the real Zariski closure of the monodromy group of a complex variation of
Hodge structure. The groups which may occur we say are of Hodge type. The groups
which are not of Hodge type include all complex groups, S1(^,R), and some others
listed in § 4. On the other hand, lattices in semisimple groups often provide examples
of rigid representations f54], [35], [42]. A rigid lattice in a group which is not of Hodge
type cannot be the fundamental group of a compact Kahler manifold. This rules out,
for example, Sl{n, Z) for n ̂  3, or co-compact lattices in complex groups or other groups
which are not of Hodge type. Similar topological restrictions on Kahler manifolds using
harmonic maps have been obtained in many works. The first in this line was Siu [49],
then Sampson [44], and others. Carlson and Toledo prove (among other things) that
a discrete co-compact lattice in S0(^, 1) cannot be the fundamental group of a compact
Kahler manifold [4]. For the groups S0(^, 1), this is better than our statement, which
only applies when n is odd.

If X is a smooth projective variety, then one can construct an algebraic moduli
space for direct sums of stable Higgs bundles with vanishing Chern classes. We will
not give the construction in this paper, but only the statements. Although the moduli
space is not projective, there is a proper map to a vector space. Using this proper map,
the corollary about rigid representations can be extended to the statement that any
representation of ^i(X) can be deformed to a complex variation of Hodge structure.
Using this fact, the nonexistence results for 7Ci(X) can be extended somewhat, to groups
which are semi-direct products with split quotients which are lattices ruled out as above.
It seems reasonable to expect that a moduli space could be constructed in the Kahler
case. These extra results would then hold in that case.
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The theorem about rigid representations shows that they play a special role. It
seems reasonable to make the following

Conjecture. — Rigid representations of the fundamental group of a smooth projective variety
should be motivic.

To be more precise, a rigid irreducible representation should be a direct factor
in the monodromy of a family of varieties. There would be several consequences of a
representation's coming from a family of varieties. The first is that the representation
would underly a complex variation of Hodge structure. We prove that this holds for
rigid representations (Lemma 4.5). Second, a motivic representation would be a direct
factor in a Q^-variation of Hodge structure, and the corresponding A-adic representations
would descend to a model of X over a number field. We also prove these properties for
rigid representations in § 4. Another property would be integrality, because the mono-
dromy representation of a family preserves the integral cohomology. This leads to a
conjecture implied by the previous conjecture,

Any rigid irreducible representation of the fundamental group of a smooth projective variety
should be defined over a ring of integers.

I do not know how to prove this (M. Larsen informs me of a simple example
which demonstrates that it is not true for arbitrary discrete groups). Finally, let me
remark that the properties called absoluteness I and II in [48] are immediate for rigid
representations. So the above conjecture is actually a special case of the conjecture
described in [48]. The results o f § 4 may be viewed as proving the variation of Hodge
structure and Galois type conjectures stated in [48], for the case of rigid representations.

The last two sections, 5 and 6, have been added after the preliminary versions of
this paper were circulated. Some theorems are stated in § 5, the proofs given in § 6.
The purpose is to interpret the results of the previous sections as a way of putting a
Hodge structure on the fundamental group. The action of C* on the space of Higgs
bundles leads, via our correspondences, to an action of C* on the pro-algebraic
completion c5i(X, x) of the fundamental group. We formulate the notion of pure non-
abelian Hodge structure, and show that the action of U(1)CC* on the reductive
quotient ©^(X, x) provides an example of such a structure. We rephrase some of the
results about rigid representations and variations of Hodge structure in this language.
We also treat the nilpotent quotient ^(X, x), which is the nilpotent completion of
the fundamental group. The extended correspondence of § 3 provides an action of C*
here too, and we show that this action serves to define the Hodge filtration known by
work of Morgan and Hain.

The proofs of the results stated in § 5 are given in § 6, using Tannakian categories.
The reader should notice that the discussion is (with the exception of the part about
the Hodge filtration on G^1) simply an application of the results discussed in the pre-
vious sections. We close § 6 with another application of the Tannakian formalism, to
give definitions of principal objects or torsors, and to extend the correspondence to that

2
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case. The final result is a description of reductive representations with values in a real
group, in terms of principal Higgs bundles with a Cartan involution. The rationale for
using the somewhat complicated language of Tannakian categories here is that it demons-
trates the intuitive point that one can prove existence theorems and the like in the
vector (Gl(%)) case, without having to deal with principal bundles in the beginning.
Eventually, the results for principal bundles are obtained in an essentially formal way,
using the information about tensor products.

The main result used in this paper, the correspondence between Higgs bundles and
local systems, has the following origins. The first example of a correspondence between
holomorphic objects and representations of the fundamental group was due to Nara-
simhan and Seshadri [39]. This was generalized to vector bundles and unitary connec-
tions in higher dimensions by Donaldson [16] [17], Mehta and Ramanathan [37],
and Uhlenbeck and Yau [52]. Hitchin originated the definition of Higgs bundle in
the case of objects on a curve [30]. He proved half of the correspondence in the rank
two case, and the other half was provided in that case by Donaldson [18] (see also the
paper by Diederich and Ohsawa [14], which treated the SU(1, 1) case). Hitchin
considered the action of U(l) CC* on the space of Higgs bundles, and also a version
of the compactness statement. Higgs bundles of the type which come from variations
of Hodge structure were treated by Deligne and Beilinson (unpublished) and in [46]. For
the general statement in higher ranks and higher dimensions, Gorlette provides one
half of the correspondence [5]. The other half is provided by [47]. A crucial lemma
in the present treatment was communicated to me by Deligne. It is this lemma which
allows one to apply Gorlette's result and conclude that every semisimple representation
comes from a Higgs bundle. A similar lemma is contained in Corlette's paper. This
lemma is really a version of Siu's Bochner-type formula [49]—see also [44]. It should
be noted that one of our main applications, the theorem that a rigid representation
must come from a variation of Hodge structure, uses only that half of the correspon-
dence which is provided by Corlette's paper (or Donaldson's) and this main lemma.

The Kahler identities for harmonic bundles are based on Deligne's Kahler iden-
tities for variations of Hodge structure [7]. The properties of formality and their appli-
cations discussed in § 3 are inspired by the work of Goldman and Millson [21]. The
compactness result appeared as one of the main steps in Hitchin's paper [30]. The
notion of group of Hodge type was essentially understood by Griffiths and Schmid and
Deligne from the beginning [26] [11] [9] (and it is not clear whether the version dis-
cussed in § 4 is the optimal one). The ideas presented in § 5 were only recently fully
formed. The idea of using the Tannakian formalism to put a Hodge structure on the
fundamental group was partly instigated by an electronic message from K. Corlette.
He contemplated using the Tannakian category of variations of mixed Hodge structure
(which might lead to a theory somewhat distinct from that outlined in § 5).

Earlier versions of this paper have been circulated in preprint form. Some new
material has been added since then, including everything in §§ 5 and 6. Some of the
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results of this paper have been announced in the paper (( The ubiquity of variations
of Hodge structure ".
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and suggesting that it could probably be generalized, as well as for explaining with
J. Millson their theory of deformations. I would like to thank N. Hitchin for helpful
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years ago, W. Schmid asked me what would happen if you multiplied 6 by a number t.
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leads to one of the main concepts in this paper. So I would like to thank him for that
comment in particular, as well as for more general encouragement. In the category
of debts from many years ago, I should also like to thank the people at Harvard who
fostered an environment of interest in the topics of representations of fundamental
groups and harmonic maps. These include Y. Siu and his students, N. Boston and his
fellow students of number theory, and many others. It is remarkable that, unbeknown
to any of us, we were all working on the same things. Finally, back to more recent things,
the discussion of real representations was added in response to encouragement from
G. Kempf and S. Zucker. I would like to thank A. Beilinson for some useful comments
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1. Non-abelian Hodge theory

Let X be a compact complex manifold with a Kahler metric <*). Choose a base
point x. We will describe some definitions and constructions, and then state some basic
results. The discussion of the history and references for these definitions and constructions
will be ̂ deferred until the statements of the main results.

We will study the representations of the fundamental group ^(X, x). A repre-
sentation on a complex vector space V^ is the same thing as a C°° complex vector
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bundle V together with a flat connection, where V^ is equal to the fiber over x. The
flat connection is a first order differential operator D which takes sections of the bundle
to one-forms with coefficients in the bundle. Such an operator is a flat connection if
and only if Leibniz's rule T){av) = d{a) v + a D(^) holds, and it is integrable, m other
words D2 = 0. To understand the second condition note that D is extended to an ope-
rator on differential forms with values in the bundle, using the Leibniz formula with
the usual sign which depends on the degree of the form. Another way of thinking of a
flat bundle is by looking at the sheaf V^ of flat sections (those with D(^) == 0). This is
a local system of complex vector $paces, whose monodromy representation is the one
we began with. These objects depend only on the topological or smooth structure of X.

The purpose of this section is to establish a correspondence between flat bundles
and another type of object which depends on the analytic structure of X. A Higgs bundle
is a holomorphic vector bundle E together with a holomorphic map 6 : E -^ E 0 Q^ 5
such that 6 A 6 == 0 in End(E) ®0|:. If z^ ..., ̂  are local holomorphic coordinates,
then 6 == S6^ dz^ where 6^ are holomorphic endormorphisms of E. The condition that
6 A 6 == 0 means that the matrices 6, commute with one another. A Higgs bundle
may also be thought of as a C00 bundle with a first order operator. The holomorphic
structure ofE is determined by an operator 3, which takes sections of E to (0, 1) forms
with coefficients in E, and which annihilates the holomorphic sections. The map 6 is
an operator of order zero taking sections to (1, 0) forms with coefficients in E. Combine
these to form an operator D" = ^ + 6 which determines the structure of the Higgs
bundle E. Conversely, such an operator defines a Higgs bundle if and only if it satisfies
Leibniz's rule D"(^) = 1){d) e + a D"(^), and satisfies the integrability condition
(D")2 = 0. Note that this condition contains the integrability of the holomorphic struc-
ture ~82 == 0, the fact that 6 is holomorphic, B(6) = 0, and the condition 6 A 6 = 0.

The fact that an integrable 8 operator is the same thing as a holomorphic structure
is a consequence of the theorem of Newlander-Nirenberg. If X is a projective variety,
then this may be taken one step further, by Serre's GAGA theorem. A holomorphic
bundle E is in fact an algebraic vector bundle; in other words, it can be given by algebraic
transition functions for a Zariski open cover. The holomorphic 6 is then also algebraic.
Thus if X is a projective variety, the notion of Higgs bundle is an algebraic geometric
one.

CONSTRUCTIONS

In order to establish a relationship between the structures of flat bundles and
Higgs bundles, we consider metrics on the underlying G°° vector bundles. A metric K
on V or E is a positive definite hermitian inner product (., . )^ on the fibers, varying
smoothly over the base. Given a frame { ^ } for the bundle, a metric is determined by
the hermitian matrix h^ == (^, v^. It is sometimes helpful to think of a metric as an
isomorphism K : V -> V* between the bundle and the dual of the complex conjugate
bundle, with K == K/. The map is related to the metric by the formula K(«) {v) == («, v)^.


