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LIFTING SMOOTH HOMOTOPIES OF ORBIT SPACES
by GERALD W. SGHWARZ (1)
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o. Introduction.

This paper establishes a G°° analogue of Palais' covering homotopy theorem.
Techniques from differential analysis, invariant theory, and commutative algebra are
used in the proof.

Let K be a compact Lie group, and let X be a smooth (=C00) K-manifold. We
denote by TT^K tne canonical map from X to the orbit space X/K. We give X/K the
quotient topology and differentiable structure, i.e. if UcX/K is open, then G^U)
is the set of real-valued functions on U whose pull-backs to TTXK(U) are smooth. Thus
C00 (U) ̂  C00 (TCX/KW)^ IfY is another smooth K-manifold, we say that ^ : X/K-.Y/K
is smooth if ^C^Y/K) c C^X/K). The notions of difieomorphism, isotopy, etc.,
of orbit spaces have their usual categorical meaning.

Let ^eX. The slice representation at x is the representation of the isotropy
group K^ on the normal space at x to the orbit K^. Two K-orbits are said to have
the same normal type if there are points in each with the same isotropy group and
isomorphic slice representations (up to trivial factors). The subsets of B==X/K of
given normal type are G°° manifolds, and they form a locally finite stratification of B.
Above each stratum, X-»B is a smooth fiber bundle, so we may view X—-B as a
collection of smooth fiber bundles. Many beautiful and deep results concerning regular
actions of the classical groups have been proved by classifying these types of bundle
collections over a fixed B ([7], [8], [i2], [13], [14], [15], [i6], [23], [36], [41], [42]).
These classification results have all hinged upon proving some form of homotopy lifting
theorem. For the category of continuous K-actions one has the celebrated covering
homotopy theorem of Palais [61]. In the case of ordinary fiber bundles Palais' theorem
reduces to the statement that pull-backs by homotopic maps are isomorphic. There
is a natural smooth analogue of Palais' theorem which lies behind the classification
results cited above, and this smooth Palais theorem is equivalent to the

Isotopy Lifting Conjecture (0.1). — Let F : X/Kx [o, i] -> X/K be a smooth isotopy
starting at the identity. Then there is a smooth 'K-equivariant isotopy F : X x [o, i] -> X starting
at the identity and inducing F.

The above conjecture is due to Bredon. In [7] he proved the conjecture for
" special G-manifolds. " Davis [12] showed that (o. i) holds for a large class of regular
actions of the classical groups, and Bierstone [2] showed that (0.1) holds for smooth
actions all of whose isotropy groups have the same dimension. In this paper we show
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LIFTING SMOOTH HOMOTOPIES OF ORBIT SPACES 39

that (0.1) holds in general (corollary (2.4) below). The smooth analogue of Palais5

covering homotopy theorem is our theorem (2.3).
We now briefly describe the contents of the chapters of this paper. Each chapter

begins with a more detailed precis of its contents.
In chapter I we reduce (o. i) to a lifting problem for vector fields: Let X and K

be as above, and let Der(C°°(X/K)) denote the real-linear derivations of C^X/K).
We refer to elements ofDerfd^X/K)) as smooth vector fields on X/K. (See § 3 for
justification of this terminology.) An element of De^C^X/K)) is strata preserving
if it preserves the ideals of G00 (X/K) vanishing on the various strata of X/K. We denote
by ^(X/K) the collection of strata preserving smooth vector fields on X/K, and we
denote by ^(X) the smooth vector fields on X. We prove that the following result
implies (o.i):

Smooth Lifting Theorem (0.2). — The canonical map

{n^: ^(X^Der^X/K))

has image X°°(X/K).

Using the differentiable slice theorem we reduce to proving

(°-3) (^^(W^r^W/L)

for all representation spaces W of closed subgroups L of K. We prove that (0.3) is
equivalent to analogous statements involving polynomial, real analytic, or complex
analytic vector fields.

In chapters II, III, and IV we concentrate on the algebraic and complex analytic
analogues of (0.3). In chapter II we reduce (0.3) to a cohomology problem which
we can solve provided the representation ofL on W has finite principal isotropy groups
and no S3 strata (conditions on slice representations). In chapter III we show how
to classify representations with infinite principal isotropy groups or S3 strata. Using
this classification and some theorems of§ n we are able to reduce (0.3) to the case of
representations of the simple compact Lie groups which have trivial principal isotropy
groups and S3 strata. In chapter IV we develop a method for handling these remaining
cases.

We found it necessary to develop several techniques for calculating rings of invariants
of representations, and in chapter IV we exhibit many cases where the rings of invariants
are regular. Further work along these lines can be found in [67], [68], and references
therein. Also see remarks (17.28) and (17.30) below.

During this work I have benefited from conversations with many mathematicians,
and I would especially like to thank E. Bierstone, D. Buchsbaum, D. Eisenbud,
M. Hochster, D. Lieberman, D. Luna, J. Mather, and Th. Vust.
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I. — THE COVERING HOMOTOPY THEOREM

In § i we recall the basic results concerning orbit spaces of smooth transformation
groups. In § 2 we show how to reduce the isotopy lifting conjecture (0.1) and the
smooth Palais theorem (2.3) to the smooth lifting theorem (0.2). Much of § i and
§ 2 overlaps with [14]. In § 3 we reduce (0.2) to a polynomial analogue of (0.3).
In § 5 we study representations of reductive complex algebraic groups and complexi-
fications of representations of compact Lie groups, and in § 6 we show that polynomial,
real analytic, and complex analytic versions of (0.3) are equivalent. In § 4 we prove
that the kernel of the map (rc^n)* °f (°-2) has a closed complementary subspace in
^co^K ^Qoo topology). As we explain, this result is a step towards a strengthening
of (0.1).

i. Orbit Spaces.

We fix notation and review some of the main theorems concerning orbit spaces.
Proofs of unreferenced claims can be found in [7]. We end the section by proving
an orbit space version of the inverse function theorem.

Z, R, C, and Q^ will denote, respectively, the integers, real numbers, complex
numbers, and quaternions. The non-negative integers (resp. reals) are denoted Z"1"
(resp. R^, and Z^ will denote Z/^Z, yzeZ4'.

All manifolds will be assumed to be second countable and are allowed to have
a boundary.

If G, K, . . . are Lie groups or linear algebraic groups over C, then 3, f, ... will
denote their Lie algebras and G°, K°, ... will denote their identity components. If
L is a subgroup of a group G, then (L) denotes the conjugacy class of L. If L^ and Lg
are subgroups of G, we write (Li)^(Lg) if L^ is conjugate to a subgroup of Lg. If
(L^La) and (Li)=|=(La), we write (L^Lg).

Throughout this paper, K will denote a compact Lie group. A representation of K will
mean a finite dimensional real vector space W (the representation space) together with
a continuous homomorphism p from K to the general linear group GL(W) of W. We
will denote the representation by p or by the pair (W, K). The direct sum of m copies
of p is denoted by wp or (^W, K). If p'=(W', K), then p+p' or (W+W, K) denotes
the direct sum of p and p'. The trivial real ypz-dimensional representation of K is
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LIFTING SMOOTH HOMOTOPIES OF ORBIT SPACES 41

denoted 8^, and we will also use 6^ to denote the corresponding representation space R^.
A trivial representation of unspecified dimension is denoted 6.

We use the (standard) notation of [7] when referring to the classical groups.
We denote the basic representations of0(%), U(n), Sp(yz), etc., by (R^ 0{n)), (C^ U(^)),
(QT? ^p(72))? etc- ^e embed 0(m) into 0(n) via the natural action of the former group
on the first m co-ordinates of R^, m<_n. We similarly consider U{m), SU(m), etc.,
as embedded in U(%), SU(%), etc.

Let p == (W, K) be a representation of K, and let X be a smooth K-manifold.
Following Bredon [8], we say that X is modelled on p if each A:eX has a K-invariant
neighborhood which is K-diffeomorphic to an open subset of W. We say that X is
stably modelled on p if for each component X' ofX there arer, j-eZ4' such that X'x6^
is modelled on p+6s« If K is the classical group 0(n) (resp. U(7z), resp. Sp(^)), then
X is called a regular K-manifold if X is stably modelled on (mR^ 0(^)) (resp. (wC",
U(^)), resp. M, Sp(^))), meZ+.

Let L be a closed subgroup of K, and let P be a smooth L-manifold. The twisted
product K XL? is the orbit space (KxP)/L where ^k,p)=={k^~\ I p ) ; /'eL, AeK, peP.
We denote the orbit of {k,p) by [k,p]. The twisted product KXi^P is a smooth
K-manifold, where k'\k, p\==.\k'k, p\\ k ^ k ' e K , peP. Note that (Kx^P)^ is diffeo-
morphic to P/L. If X is a smooth K-manifold and ^eX, then the normal bundle
to Kx is K-difFeomorphic to Kx^Np, where Na;==T^(X)/Ta;(KA:) is the normal space
to K^ at x.

The following is a variant of a theorem of Koszul:

Differentiable Slice Theorem (i. i). — Let X be a smooth 'K-manifold,

(1) If A:(^X, then a ^.-invariant neighborhood of x is K.-dtffeomorphic to Kx^N^.
(2) If xe ̂ X, then a ̂ -invariant neighborhood of x is 'K.-diffeomorphic to R"*" x (K X^NJ,

where N,==T^X)/TJK^). •

Statement (i) is the usual differentiable slice theorem, and (2) follows from (i)
and the fact that ^X has a collar equivariantly diffeomorphic to R4' x ^X, where K acts
trivially on R4'. We will refer to theorem ( i . i) as the DST. If X and the K-action
are real analytic (e.g. X is a representation space of K), then the diffeomorphisms of
the DST can be chosen to be real analytic. Note that the DST implies that X/K is
locally diffeomorphic to (perhaps the product of R4" and) orbit spaces of linear actions.

Let L be a subgroup of K, and let X be a smooth K-manifold. The union of
those orbits whose isotropy groups are in (L) is denoted X^, and X^ denotes X^cX^
Suppose that X^^ 0. We then call (L) an isotropy class of the K-action on X. There
is a canonical embedding of X^/K into X/K, and the image (X/K)(L) is called an
isotropy type stratum of X/K. We give (X/K)(L) the smooth structure of the orbit
space X^/K.

41
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42 G E R A L D W . S C H W A R Z

Proposition (1.2). — Let X be a smooth Y^-manifold.

(1 ) The isotropy type strata {(X/K)(L)} are smooth manifolds^ and the inclusions
(X/K)(L) -> X/K are smooth.

(2) 77^ components of the isotropy type strata are a locally finite collection of subsets o/'X/K
whose boundaries (as manifolds) are a locally finite collection of subsets of ^X/K.

(3) Let {(5y} be the set of normal type strata of X/K. Then the components of the a^ are
the same as the components of the (X/K)(L), and {(^}={(X/K)(L)} if X is stably modelled
on a representation of K.

Proof. — Using the fact that ^X has a K-collar ^XxR4', we may easily reduce
to the case ^X=0. Let ^eX. By the DST, a K-invariant neighborhood U of Kx
is K-diffeomorphic to Kx^N^. Let W be a K^-complement to N^ in N,. Then
X^nU^KxK^N^), and (X^nU^K^N^ is a G00 manifold which embeds
smoothly in U/K^N^xW/K^. Thus ( i ) is proved. Part (2) is well-known: Since
U/K^IsTJK^, one can reduce to the case of representations, and then one proceeds
by induction (see [62]).

We now prove (3). Let W be a representation space of K, and let weW. Then
there is an isomorphism of K^-representations:

N,=TJW)/TJK^W/(f/fJ.

It follows that isotropy type determines normal type for stably modelled actions, and
that isotropy type determines normal type locally. •

Corollary (1.3). — Let X be a smooth ^.-manifold. Then

(^^(X^X^X/K).

proof. — Let AeX^X)^ let xeX, and let U and W be as in the proof of ( i . 2 J .
Let /eC^U/K^C^N^N^xW)^, and suppose that/vanishes on N^x{o}.
Since the image of A{x) in N^ lies in N^, A{f){x)=o. It follows that (TT^K^A pre-
serves the ideals in C^X/K) vanishing on the strata of X/K, i.e. (Tr^E:)^^0^/1^)- •

The following result is due to Montgomery, Samelson, and Yang:

Theorem (1.4). — Let X be a connected smooth K-manifold. There is a unique isotropy
class (H) such that

(1 ) (X/K)/H) is connected and open and dense in X/K.
(2) (H) is a minimum among all isotropy classes of X.
(3) The slice representations at points of X^ are trivial.
(4) d^X/K^-dimX-dimK+dimH. •

We call (H) the principal isotropy class, H is called a principal isotropy
group, and orbits Kx with ^eX^ are called principal orbits. The covering
dimension dim X/K of X/K equals dim(X/K)(n); see ([7], Gh. III).



LIFTING SMOOTH HOMOTOPIES OF ORBIT SPACES 43

We now require small digressions on stratifications and invariant theory. Let
S be a (for simplicity closed) semi-analytic subset of R^ (see [48] or [55] for definitions).
A primary stratification of S is a locally finite collection {EJ of connected semi-
analytic submanifolds ofR^, called strata, such that S == U E, and such that, for each z,

closure(E^)—E^ is a union of lower dimensional strata. Lojasiewicz [48] gives an
algorithm for constructing such a stratification of S, and we call the resulting {EJ the
primary strata of S. The G00 structure sheaf of S is the sheaf of germs of functions
on S which have local smooth extensions to R^. Since S is closed, C^^^C^R^ |g.
A remark of Mather's ([55], p. 210) shows that the primary stratification of S only
depends on the 0°° structure of S.

Let W be a representation space of K. By a theorem ofHilbert (see [80], p. 274)
the algebra of K-invaiiant polynomials R^]1^ is noetherian. Let j&i, ' - "> Pd be
homogeneous generators, and let j&==Q&i, . . .,^) : W-^R^. Then p is proper and
induces a homeomorphism of W/K with the closed subset S==^(W) of R^ ([66]).
Since p is polynomial, S is semi-algebraic ([69]). If W, K, p, S, and d are as above,
we call p and the quintuple (W, K,^, S, d) orbit maps. If d is minimal, we say that
(W, K,^, S, d) and p are minimal orbit maps. We will confuse p : W-^R^ with the
associated map from W to S. We denote by p the induced map from W/K to S (or R^).

Theorem (1.5). — Let (W, K,j&, S, d) be an orbit map. Then

(1 ) p maps the components of the normal (= isotropy) type strata of W/K in a one-to-one
manner onto the primary strata of S.

(2) ^((W/K)(L)) is semi-algebraic for each isotropy class (L).
(3) There is a continuous linear map 9 : G^W)1^ -> G^R^) (C00 topologies, see [25])

such that p* o 9 is the identity. In particular,

(4) CW)(W)K=p*CW{'Rd)

and p : W/K-^S is a diffeomorphism. •

Part ( i ) is due to Bierstone [2], and most of the results we derive from it were
known to him. Part (2) is the following observation: If W^ + 0, then ^(W^) =p{WL>)

m

is semi-algebraic since it is the difference ^(W1')-— .U ^(W^'), where (Li), . . . ,(LJ
are the isotropy classes strictly larger than (L). Part (3) is due to Mather [56], and
(4) was first shown by the author [66] (see also [52]).

In [2], Bierstone observes that the primary stratification of S satisfies Whitney's
conditions. Moreover, from his proof of (1.5.1) one can see that the primary stratifi-
cation of S only depends on its C1 structure. The key point is that if W1^^}, then
S contains no non-singular arcs through o (see (3.4) below).

43



44 G E R A L D W. S C H W A R Z

Corollary (1.6) . — Let Wi W Wg &<? representation spaces of K, ̂  ̂  ^ : W^R^
W q : Wg-^R6 ^ or^ 77 .̂ 7/' ^ : Wi/K -> W^/K z'j a smooth map, then there is a smooth
map T] making the following diagram commute:

Wi/K -^ W^/K

P 3

R^ —'—> R6

Proo/. — Let r^===(^, . . ., T]J where T], is any smooth function on R^ such that
^=^(7,, i=i, . . . , e . m

Unless otherwise specified, we give orbit spaces their stratification by normal
orbit type, and we give images S of orbit maps the induced stratification. The canonicity
of the primary stratification yields

Corollary (1 .7) . — Let X be a smooth ^.-manifold. Then
(1) The partition of X/K given by the components of the interiors and boundaries of

its strata (as manifolds) is determined by the G°° structure of X/K.
(2) Let ^,o<^<^i, be a smooth isotopy of X/K starting at the identity. Then

each ^ is strata preserving. •

In the remaining part of this section we prove the orbit space analogue of the
inverse function theorem.

Let X be a smooth K-manifold. Let ^eX/K, and let e^ (or e^(X/K)) denote
the elements in the ring of germs of smooth functions at ^ which vanish at ^. As usual
we define the (Zariski) cotangent space T^X/K) of X/K at ^ to be ̂ /e^.^, and
the dual space T^(X/K) is the (Zariski) tangent space. The DST and (1.5) show
that T^(X/K) and TI(X/K) are always finite dimensional vector spaces. If Y is a
smooth K-manifold and ^ : X/K—Y/K is smooth, then ^ induces a linear map
W),:T,(X/K)-^T^(Y/K).

Lemma (1.8). — Let (W, K,j^, S, d) be a minimal orbit map, and let o denote n^{o).
Then

W-,: ^-(W/K^^R^R^

is an isomorphism.

Proof. — Since?' is surjective and p is proper, ^^(R^^W/K), hence {dp)-Q
is injective. If {dp )o is not surjective, then there is a non-zero element [a^, . . . , ̂ ) eTJR^)
which is perpendicular to Im dp-^. In other words, there is a relation

d

(1.9) ^Ae^W^.^W^
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LIFTING SMOOTH HOMOTOPIES OF ORBIT SPACES 45

where the ^ are not all zero. Without loss of generality, suppose a^o. Taking
Taylor series in (1.9) and restricting to terms homogeneous of degree degp^, we see
that p^ is a polynomial in j&g, . . .,j^, contradicting the minimality of p. •

Lemma (i. 10). — Let (W, K, p, S, d) be an orbit map. Let Ui and Ug be neighborhoods
ofo in R^, and suppose that ^ : Ui-^Ug is a diffeomorphism such that ^(SnUi) cS, ^(o)==o.
If SnUg zj connected, then ^(SnU^cS.

Proo/'. — Let S' c S denote the image of the principal orbits. Then (1.7) shows
that ^(S'nUi)cS' and that ^((S-S^nUi) <= S-S'. Thus ^ : S'nU^ -> S'nUa is
an open embedding with image a closed subset of S'nU^. Now SnUg is connected,
and it follows from the DST and (1.4.1) that S'nUg must then also be connected.
Hence ^(S'nU^^S'nUg. Since S' is dense in S and since ^ is proper,

^(SnUi)=SnU2.
Consequently, ^^(SnUycS. •

Inverse Function Theorem (1.11). — Let X and Y be smooth K-manifolds. Suppose
^ : X/K->Y/K is a smooth strata preserving map, ^(BX/K) c BY/K, and [d^)^ is an
isomorphism at ^eX/K. Then ^ is a diffeomorphism near ^.

Proof. — Suppose ^BX/K. Using the DST we may reduce to the case where
X=Y is a representation space W of a closed subgroup L of K, ^=^(^)=7r^ ̂ (o).
Let (W, K,j&, S, d) be a minimal orbit map. Then by (1.6), (i .8), and ( i . 10) there
is a germ of a G00 map T] : R^-^R^, T](S) c S, such that p~lo^op is a local smooth
inverse for ^ near ^. If ^eBX/K, we may reduce to a case X===Y=WxR+^
S=^)=:=-^:w,L(o). By (1.5), we may identify W/KxR4- with (WxR) / (Kx{± i}),
where {±1} acts by multiplication on R. Our previous argument then applies. •

2. Covering Smooth Homotopies.

We begin with some preliminaries on pull-backs (fiber products). Let X and Y
be smooth K-manifolds, and let ^ : X/K-^Y/K be smooth. We define the pull-
back yY to be {(^eX/KxY:^)-^^)}. We give ^Y the G00 structure
induced from that on X/KxY. Then K acts smoothly on ^*Y, where k(^,y) ==(^, k y ) ;
AeK, (^,j/)e^*Y. The pull-back (J/Y has the usual universal properties of fiber
products ([7], [14]).

Let ^eX/KL, and let ^ denote the stratum of X/K containing ^. Then T^(^)
is a subspace of T^ (X/K), and we let ^(X/K.) denote T^(X/K)/T^)—the normal
space to a^ at ^. Suppose that ^ : X/K—Y/K is smooth and strata preserving. Then
(rf^ induces a linear map (S^ :^(X/K) ->^^(Y/K), and we say that ^ is
normally transverse if (8^ is an isomorphism for all ^eX/K.

Let A:eX, let N, denote T^X) fT^Kx) as before, and let ^(X) denote N^/N^.
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If ^ : X->Y is smooth and equivariant, we say that ^ is strata preserving if it preserves
the normal type of orbits. In this case, (^)^ induces (S^^X) -^^(^(Y), and
we say that ^ is normally transverse if (S^ is an isomorphism for all xeX.

Proposition ( 2 .1 ) .— Let X and Y be smooth K-manifolds, BY=0. Let f. X/K^Y/K
be a smooth strata preserving map., and let f: X-^Y 6^ smooth, equivariant, and strata preserving.

(1) Iff is normally transverse, thenf*Y is a smooth K-manifold whose boundary is (/lax)"^-
(2) If f induces f and both are normally transverse, then the canonical map from X tof*Y

is a YL-diffeomorphism.
(3) If f induces/, then f is normally transverse if and only iff is normally transverse.

Proof. — By the DST it suffices to consider the case X == W X R" X R4-, Y^WxR^,
where W is a representation space ofK and VfK= {o}. To prove (i), write /^(/i,/^)
where Im/^_W/K, Im/^R- Let F(^ x, t)={f^, x, t),x,t)-, ^eW/K, xeK1,
teR^. Then F is a map from X/K to X/K, F(BX/K) <=BX/K, and F has a non-
singular differential at each point since/is normally transverse. By ( i . 11), F is locally
smoothly invertible, so we may further reduce to the case f^, x, t)==^. Then

f*Y={^, X, t, W,J) : ^^K^^^O^K^ ^ t)},

so clearly/"Y is a smooth manifold with the indicated boundary. We have proved (i).
To prove (2), express/as (/i,/2) where Im/cW, Im/g^R^. As in the proof

of (i), an inverse function theorem argument reduces us to the case where f^{w, x, t) == w.
Then the canonical map of X to/*Y is

X=> (w, x, t) K {^^{w), x, t, w, f^w, x, t))ef*y,

clearly an isomorphism.
To prove (3), we may reduce to the case where X=Y=W, W^^}, and both

/and/ are origin preserving. If/is normally transverse, then/is an equivariant
diffeomorphism and/ is then clearly normally transverse. Suppose (^% is singular.
Let Wo denote the kernel of {df)Q, considered as a subspace of W. Clearly Wg is
K-invariant. Let r^ denote the square of the radius function on WQ relative to some
K-invariant inner product. Since W^^}, no non-zero element of R^]1^ is
homogeneous of degree i, and using Taylor series one sees that r^ cannot be written
as f*h in any neighborhood of o, AeC^W)1^ Hence/is not a diffeomorphism near
the origin of W/K, i.e./is not normally transverse. This completes the proof of (3). •

Example (2.2).—Let X==Y==R, K=={±i} . Let neZ, n>o, and let/denote
the map Sh->^ from R^X/K to R'^Y/K. One easily sees that/* Y is a smooth
submanifold of X/KxY if and only if n=i, the only case in which/ is normally
transverse.
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