## PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

## DAVID G. SCHAEFFER

## An index theorem for systems of difference operators on a half space

Publications mathématiques de l'I.H.É.S., tome 42 (1973), p. 121-127 <a href="http://www.numdam.org/item?id=PMIHES">http://www.numdam.org/item?id=PMIHES</a> 1973 42 121 0>

© Publications mathématiques de l'I.H.É.S., 1973, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



# AN INDEX THEOREM FOR SYSTEMS OF DIFFERENCE OPERATORS ON A HALF SPACE

by David G. SCHAEFFER(1)

In our joint paper [3] we presented an index theorem for a certain class of operators analogous to Toeplitz operators. The index which appeared there was real-valued and it involved Breuer's theory [1] of Fredholm operators in a von Neumann algebra of type II — indeed, this result vas of interest precisely because it was the first example of an index theorem for the Breuer index. In the present paper we extend the theorem of [3] to the matrix case, and we apply this result to prove the equivalence of existence and uniqueness of solution for elliptic systems of difference equations, generalizing the result of [6] for a single equation.

Our main result is stated in § 1 and proved in § 2. These sections overlap somewhat with [2] and [3] — our slightly different point of view here allows us to give simpler proofs of the results from these papers which are needed. (See the discussion at the end of § 1.) In § 3 we state without proof the application of the index theorem to difference equations.

#### 1. Statement of the main theorem.

For  $j \in \mathbb{Z}^n$  a multi-integer let  $T_j$  be the translation on  $L^2(\mathbb{R}^n)$ ,

$$(\mathbf{I}.\mathbf{I}) \qquad \qquad T_i v(x) = v(x+j),$$

and let  $\mathbf{M}_{\nu}$  be the  $\nu \times \nu$  matrix algebra. If  $\varphi \in \mathbf{C}(\mathbf{T}^n, \mathbf{M}_{\nu})$  is a continuous, matrix-valued function on the torus with Fourier series  $\sum_{j} m_{j} e^{i\langle j, \cdot \rangle}$ , then the formula  $L_{\varphi} = \sum_{j} m_{j} \otimes T_{j}$  defines a bounded linear operator on  $\mathbf{C}^{\nu} \otimes \mathbf{L}^{2}(\mathbf{R}^{n})$ . In this paper we study the restriction of such operators to a half space  $\mathbf{H} = \{x \in \mathbf{R}^{n} : \langle x, \mathbf{N} \rangle \geq 0\}$ , where  $\mathbf{N}$  is a unit vector in  $\mathbf{R}^{n}$ . Let  $E = \chi_{[0,\infty)}(\langle x, \mathbf{N} \rangle)$  be the projection onto  $\mathbf{L}^{2}(\mathbf{H})$ , and for  $\varphi \in \mathbf{C}(\mathbf{T}^{n}, \mathbf{M}_{\nu})$  let  $\mathbf{W}_{\varphi} = EL_{\varphi}E$ .

Let  $\mathcal{N}_0$  be the von Neumann algebra of operators on  $L^2(\mathbf{R}^n)$  generated by multi-

<sup>(1)</sup> Research supported under NSF grant 22927.

integer translations  $T_j$  and multiplication by functions of  $\langle x, N \rangle$ . Any operator  $A \in \mathcal{N}_0$  may be expressed uniquely as a weakly convergent sum:

$$A = \sum_{j \in \mathbf{Z}^n} c_j(\langle x, \mathbf{N} \rangle) T_j$$

where  $c_j \in L^{\infty}(\mathbb{R}^1)$ . Two such operators multiply according to the extension by linearity of the basic product formula

$$(\mathbf{I.2}) \qquad c(\langle x, \mathbf{N} \rangle) T_i d(\langle x, \mathbf{N} \rangle) T_k = c(\langle x, \mathbf{N} \rangle) d(\langle x+j, \mathbf{N} \rangle) T_{i+k}.$$

In § 1 of [6] we defined a faithful, normal trace  $\tau: \mathcal{N}_0^+ \to [0, \infty]$  such that for non-negative operators

(1.3) 
$$\tau(\sum_{j} c_{j}(\langle x, N \rangle) T_{j}) = \int_{-\infty}^{\infty} c_{0}(t) dt,$$

where  $c_0$  is the coefficient of the identity translation in the sum on the left in  $(\mathbf{r}.\mathbf{3})$ . (In particular, for non-negative operators  $c_0 \geq 0$  almost everywhere.) Let  $\mathcal{N} = \mathbf{M}_{\mathbf{v}} \otimes \mathcal{N}_{\mathbf{0}}$ ; we shall also use  $\tau$  for the natural trace on  $\mathcal{N}$  defined by

(1.4) 
$$\tau(m \otimes A) = \operatorname{tr}(m)\tau(A).$$

Of course  $W_{\varphi} \in \mathcal{N}$  for every  $\varphi \in \mathbf{C}(\mathbf{T}^n, \mathbf{M}_{\varphi})$ .

If  $P \in \mathcal{N}$  is a projection, we shall call  $\tau(P)$  the (relative) dimension of the subspace range P. Let  $\mathscr{K}$  be the uniformly closed, two sided ideal in  $\mathscr{N}$  generated by operators whose range has finite relative dimension. Following Breuer [1] we shall say that  $A \in \mathscr{N}$  is (generalized) Fredholm if A is invertible modulo  $\mathscr{K}$ . It was shown by Breuer that if A is Fredholm, then dim ker A and dim ker  $A^*$  are finite, so that one may define a real-valued index of A

$$i(A) = \dim \ker A - \dim \ker A^*.$$

This index has the same algebraic and invariance properties as the ordinary Fredholm index. In particular, even though the index is a real number, it is unchanged by a continuous deformation.

Theorem 1. — If  $\varphi \in C(\mathbf{T}^n, \mathbf{M}_{\varphi})$ ,  $W_{\varphi}$  is (generalized) Fredholm if and only if  $\det \varphi$  is non-vanishing on  $\mathbf{T}^n$ , and in this case the index of  $W_{\varphi}$  equals the mean winding number of  $\det \varphi$  along the line  $\{t\mathbf{N}\}$ ,

$$\lim_{T\to\infty} (2T)^{-1} (\arg \det \varphi(TN) - \arg \det \varphi(-TN)).$$

The above theorem is the main result of this paper. The simplest example to which it applies occurs in the case of a pure shift  $S_j = ET_jE$  for v = 1. Note that according to (1.2)

$$(\mathbf{1.6}) \qquad S_{j}S_{k} - S_{j+k} = \begin{cases} \chi_{J}(\langle x, N \rangle)S_{j+k} & \text{if } \langle j, N \rangle < 0 \text{ and } \langle k, N \rangle > 0 \\ 0 & \text{otherwise} \end{cases}$$

where  $\chi_J$  is the characteristic function of the interval  $J=[0,-\langle j,N\rangle]$ . Thus  $S_j$  is Fredholm, since by (1.6)  $S_{-j}$  is an inverse of  $S_j$  modulo  $\mathscr{K}$ . Of course ker  $S_j$  and ker  $S_j^*$  may be determined by inspection. For example, if  $\langle j,N\rangle \geq 0$  then ker  $S_j^*$  is trivial and ker  $S_j$  equals the range of the projection  $\chi_J(\langle x,N\rangle)$  where  $J=[0,\langle j,N\rangle]$ . Hence for  $\langle j,N\rangle \geq 0$ :

$$i(S_j) = \tau(\chi_{J}(\langle x, N \rangle)) - o = \langle j, N \rangle,$$

which is equal to the mean winding number of  $e^{i\langle j,\cdot\rangle}$  along  $\{tN\}$ . The case  $\langle j,N\rangle < 0$  may be checked similarly.

Let  $\mathscr{A}$  be the uniformly closed sub-algebra of  $\mathscr{N}$  generated by the operators  $\{W_{\varphi}: \varphi \in C(\mathbf{T}^n, M_{\varphi})\}$ . In § 2 we introduce a symbol calculus for the algebra  $\mathscr{A}$ , a homomorphism  $\sigma: \mathscr{A} \to C(\mathbf{T}^n, M_{\varphi})$  such that  $\ker \sigma = \mathscr{A} \cap \mathscr{K}$  and  $\sigma(W_{\varphi}) = \varphi$ . Thus an operator  $A \in \mathscr{A}$  is Fredholm if and only if  $\sigma(A)$  is invertible in  $C(\mathbf{T}^n, M_{\varphi})$ ; indeed  $A - W_{\sigma(A)} \in \mathscr{K}$ , so if  $\sigma(A)$  is invertible the index of A equals the mean winding number of  $\sigma(A)$ . Hence it is a trivial matter to extend theorem 1 to an index theorem for any operator in  $\mathscr{A}$ .

Let  $\mathscr{G}$  be the group of invertible elements in  $C(\mathbf{T}^n, M_{\nu})$ . Both the analytic and topological indices depend only on the symbol, and they are constant on any homotopy class of  $\mathscr{G}$ . Therefore to prove theorem 1 it would be sufficient to check the index formula on one representative from each homotopy class. In the scalar case  $\nu=1$ , for any  $\varphi \in \mathscr{G}$  we may write:

$$\varphi(\xi) = e^{i\langle k, \xi \rangle} \psi(\xi),$$

where  $k \in \mathbb{Z}^n$  is a vector whose  $\ell^{th}$  component if the winding number of  $\varphi$  around the  $\ell^{th}$  factor of  $\mathbb{T}^n$  and  $\psi$  is homotopic to a constant. Thus the components of  $\mathscr{G}$  are classified by the winding numbers, and since  $\sigma(S_k) = e^{i\langle k, \cdot \rangle}$ , the computation above of the index of a pure shift suffices to prove theorem 1 when  $\nu = 1$ . In the matrix case, however, more invariants are required to classify the components of  $\mathbf{T}$ . For example note that  $\mathrm{SU}_2$  is homeomorphic with  $\mathrm{S}^3$ ; thus any symbol  $\varphi \in \mathrm{C}(\mathbf{T}^3, \mathrm{SU}_2)$  of non-zero Brouwer degree cannot be homotopic to a constant, although the winding numbers of  $\det \varphi$  certainly vanish, since  $\det \varphi(\xi) \equiv 1$ . In this paper we make no attempt to classify the components of  $\mathscr{G}$ ; instead we prove theorem 1 by computing the analytic index for a wider class of operators.

The original result in this area, theorem (2.2) of [3], was an index theorem for a certain algebra of operators on  $L^2(0,\infty)$ . Our representation on a half space in  $\mathbb{R}^n$  rather than a half line is suggested by the application to difference equations in § 3. Moreover on a half space the analytic index may be computed directly in the von Neumann algebra on  $L^2(H)$  generated by  $\mathscr{A}$ , avoiding the slightly unnatural passage to a representation on  $L^2(0,\infty)\otimes \ell^2(\mathbb{R}_d)$  that was required in [3]. In any event, the formulas of § 2 have obvious analogues which apply to the matrix generalization of the algebra considered in [3].

#### 2. Proof of the main theorem.

In this paragraph we summarize certain facts about the trace class that will be needed below. (See chap. I, § 6 of Dixmier [4] for proofs.) Let

$$\mathscr{K}_1^+ = \{ K \in \mathscr{N}^+ : \tau(K) \leq \infty \}$$

and let  $\mathcal{K}_1$  be the linear span of  $\mathcal{K}_1^+$ . Then  $\mathcal{K}_1$  is a two-sided ideal of  $\mathcal{N}$ , contained in  $\mathcal{K}$ , whose closure equals  $\mathcal{K}$ . The trace  $\tau$  extends uniquely to a linear functional on  $\mathcal{K}_1$  with the property that  $\tau(AK) = \tau(KA)$  for  $A \in \mathcal{N}$ ,  $K \in \mathcal{K}_1$ . If  $K \in \mathcal{K}_1$  let  $||K||_1 = \tau(|K|)$  where  $|K| = (KK^*)^{1/2}$ ; then  $||\cdot||_1$  is a norm on  $\mathcal{K}_1$  such that  $|\tau(K)| \leq ||K||_1$  and moreover

(2.1) 
$$||AK||_1 \le ||A|| \, ||K||_1$$
 and  $||KA||_1 \le ||A|| \, ||K||_1$ 

for any  $A \in \mathcal{N}$ . Finally if  $K = \sum_{\ell} K_{\ell}$  is a series that converges absolutely with respect to both the operator norm and the trace norm, then  $K \in \mathcal{K}_1$ .

Lemma (2.1). — If 
$$\varphi$$
,  $\psi \in C(\mathbf{T}^n, \mathbf{M}_{\varphi})$  then  $W_{\varphi}W_{\psi} - W_{\varphi\psi} \in \mathcal{K}$ . Indeed if 
$$\varphi = \sum_{j} m_j e^{i\langle j, \cdot \rangle} \quad and \quad \psi = \sum_{j} n_j e^{i\langle j, \cdot \rangle}$$

are smooth, then  $W_{\scriptscriptstyle \phi}W_{\scriptscriptstyle \psi}-W_{\scriptscriptstyle \phi\psi}{\in}\mathscr{K}_1$  and

(2.2) 
$$\tau(W_{\varphi}W_{\psi}-W_{\varphi\psi}) = \sum_{\langle j, N \rangle < 0} \langle j, N \rangle \operatorname{tr}(m_j n_{-j})$$

*Proof.* — Suppose that  $\varphi, \psi \in \mathbf{C}^{\infty}(\mathbf{T}^n, \mathbf{M}_{\nu})$  have the indicated Fourier series; then

$$(2.3) W_{\varphi}W_{\psi}-W_{\varphi\psi}=\sum_{i,k}m_{j}n_{k}\otimes(S_{j}S_{k}-S_{j+k}).$$

Note from (1.6) that for any  $m \in M_{\nu}$ :

$$||m \otimes (S_i S_k - S_{i+k})||_1 < |\langle j, N \rangle| \operatorname{tr}(|m|)$$

Since  $\varphi$  and  $\psi$  are smooth, the Fourier coefficients of these functions are rapidly decreasing. Hence the series in (2.3) is absolutely convergent in both the operator and trace norms, so  $W_{\varphi}W_{\psi}-W_{\varphi\psi}\in\mathcal{K}_1$ . Moreover the trace of the sum in (2.3) may be evaluated term by term to yield (2.2). Finally it follows by limits that  $W_{\varphi}W_{\psi}-W_{\varphi\psi}\in\mathcal{K}$  for general  $\varphi$ ,  $\psi\in\mathbf{C}(\mathbf{T}^n, \mathbf{M}_{\varphi})$ . This completes the proof.

Lemma (2.2). — If 
$$W_{\varphi} \in \mathcal{K}$$
 then  $\varphi = 0$ .

*Proof.* — We may assume without loss of generality in the proof of this lemma that v=1, for the matrix operator  $W_{\varphi}$  is generalized compact if and only if each of its entries is generalized compact. If  $a \ge 0$  let  $E_a$  be the projection  $\chi_{[0,a]}(\langle x, N \rangle)$ . Suppose that  $\varphi \in C(\mathbf{T}^n)$  has Fourier series  $\sum c_j e^{i(j,\cdot)}$ . We claim that

$$\lim_{a\to\infty} a^{-1}\tau(S_{-j}W_{\varphi}E_a) = c_j.$$

400

It follows from (1.6) that  $\tau(S_{-i}S_kE_a) = 0$  if  $j \neq k$  and that

$$\tau(S_{-j}S_{j}E_{a}) = \begin{cases} a & \text{if } \langle j, N \rangle \leq 0 \\ a - \langle j, N \rangle & \text{if } o < \langle j, N \rangle < a \\ o & \text{if } \langle j, N \rangle \geq a. \end{cases}$$

Thus for large a

$$a^{-1}\tau(S_{-j}S_kE_a) = \delta_{jk} + O(a^{-1})$$
.

Therefore (2.4) holds if  $\varphi$  is an exponential polynomial, and by limits it holds in the general case.

Suppose now that  $W_{\varphi} \in \mathcal{K}$  for some  $\varphi \in \mathbf{C}(\mathbf{T}^n)$ . Since  $\mathcal{K}_1$  is dense in  $\mathcal{K}$ , for every  $\varepsilon > 0$  there exists  $K \in \mathcal{X}_1$  such that  $||W_{\omega} - K|| \le \varepsilon$ . Thus

$$|\tau(S_{-j}W_{\varphi}E_{a})| \leq |\tau(S_{-j}(W_{\varphi}-K)E_{a})| + |\tau(S_{-j}KE_{a})|$$

$$\leq \varepsilon a + ||K||_{1}$$

If 
$$\varphi = \sum_{j} c_{j} e^{i\langle j, \cdot \rangle}$$
, then

If 
$$\varphi = \sum_{j} c_{j} e^{i\langle j, \cdot \rangle}$$
, then 
$$|c_{j}| \leq \limsup_{a \to \infty} a^{-1} |\tau(S_{-j} W_{\varphi} E_{a})| \leq \varepsilon.$$

Therefore every Fourier coefficient of  $\varphi$  vanishes, so  $\varphi$  itself vanishes. This completes the proof.

Let  $\mathscr A$  be the uniformly closed sub-algebra of  $\mathscr N$  generated by the operators  $\{W_{\pi}: \varphi \in \mathbb{C}(\mathbf{T}^n, \mathbf{M}_{\varphi})\}$ , and let  $\pi$  be the canonical projection  $\pi: \mathscr{A} \to \mathscr{A}/(\mathscr{A} \cap \mathscr{K})$ . By lemma (2.1) the formula  $\rho(\varphi) = \pi(W_{\varphi})$  defines a norm decreasing \*-homomorphism of  $C(T^n, M_n)$  into  $\mathscr{A}/(\mathscr{A} \cap \mathscr{K})$ . (It is easily verified that  $\rho(\varphi)^* = \rho(\varphi^*)$ .) According to lemma (2.2) the kernel of  $\rho$  is trivial. The range of  $\rho$  contains a generating set for  $\mathscr{A}/(\mathscr{A} \cap \mathscr{K})$ ; since the range of a homomorphism of two C\*-algebras is closed (corollary 1.8.3 of [5]),  $\rho$  defines an isomorphism of  $C(\mathbf{T}^n, \mathbf{M}_{\nu})$  onto  $\mathscr{A}/(\mathscr{A} \cap \mathscr{K})$ . Therefore if  $\varphi \in C(\mathbf{T}^n, \mathbf{M}_{\varphi})$ ,  $W_{\varphi}$  is invertible mod  $\mathscr{K}$  if and only if  $\varphi$  is invertible in  $C(\mathbf{T}^n, M_{\nu})$ ; in other words,  $W_{\omega}$  is Fredholm if and only if det  $\varphi$  is non-vanishing on  $\mathbf{T}^n$ .

If  $\varphi$  is an invertible element of  $C(\mathbf{T}^n, \mathbf{M}_{\varphi})$ , then there exists  $\psi \in C(\mathbf{T}^n, \mathbf{M}_{\varphi})$ homotopic to  $\varphi$ , such that  $\psi(\xi)$  belongs to the unitary group  $U_{\varphi}$  for each  $\xi$ . Indeed, for  $0 \le t \le 1$ , let:

$$\Phi(t, \xi) = (\varphi(\xi) \varphi^*(\xi))^{-t/2} \varphi(\xi);$$

then  $\Phi(0,\xi) = \varphi(\xi)$  and  $\Phi(1,\xi) \in U_{\omega}$ . Of course both the analytic and topological indices are unchanged by this homotopy. Moreover any function in  $C(T^n, U_n)$  may be uniformly approximated by a smooth function. Therefore, to prove theorem I it suffices to check the index formula for  $\{W_{\infty}: \varphi \in \mathbb{C}^{\infty}(\mathbf{T}^n, \mathbf{U}_{\nu})\}$ .

Suppose that  $W_{\varphi}$  is a Fredholm operator. Let  $W_{\varphi} = HV$  be the polar decomposition of  $W_{\varphi}$ , where  $H = (W_{\varphi}W_{\varphi}^*)^{1/2}$  and V is a partial isometry. Then  $V^*V = I - P$  and  $VV^* = I - P'$ , where P and P' are projections onto ker  $W_{\varphi}$  and ker  $W_{\varphi}^*$  respectively. Hence  $[V, V^*] = P - P'$  belongs to  $\mathcal{K}_1$  and  $\tau([V, V^*]) = i(W_{\varphi})$ . However if

$$\varphi \in C^{\infty}(\mathbf{T}^n, U_{\nu}),$$

then by lemma (2.1):

$$H^2-I=W_{\varphi}W_{\varphi}^*-W_{\varphi\varphi^*}\in\mathscr{K}_1$$

so that

$$W_{\infty}-V=(H-I)V=(H+I)^{-1}(H^2-I)V\in\mathcal{K}_1.$$

Hence  $\tau([W_{\varphi}, W_{\varphi}^*]) = \tau([V, V^*])$ , and we may use (2.2) to evaluate this trace. If  $\varphi = \sum_i m_j e^{i(j,\cdot)}$  one finds that:

$$\tau([W_{\scriptscriptstyle \varphi},\,W_{\scriptscriptstyle \varphi}^*]) = \tau(W_{\scriptscriptstyle \varphi}\,W_{\scriptscriptstyle \varphi}^* - I) - \tau(W_{\scriptscriptstyle \varphi}^*W_{\scriptscriptstyle \varphi} - I) = \sum_j \langle j,\, \mathbf{N} \rangle \operatorname{tr}(\mathbf{m}_j^*\mathbf{m}_j).$$

On the other hand, by a trivial computation with Fourier series one sees that if  $\varphi = \sum_i m_j e^{i \langle j, \cdot \rangle}$  belongs to  $\mathbf{C}^{\infty}(\mathbf{T}^n, \mathbf{M}_{\nu})$ , then

$$(2\pi)^{-n}\int_{\mathbf{T}^n}\operatorname{tr}(\varphi^*(\xi)\nabla_{\mathbf{N}}\varphi(\xi))\;d\xi = \sum_{j}\langle j,\,\mathbf{N}\rangle\operatorname{tr}(m_j^*m_j),$$

where  $\nabla_{\mathbf{N}} = \frac{\mathbf{I}}{i} \sum_{\ell=1}^{n} \mathbf{N}_{\ell} \frac{\partial}{\partial \xi_{\ell}}$ . Of course if  $\varphi \in \mathbf{C}^{\infty}(\mathbf{T}^{n}, \mathbf{U}_{\nu})$  then  $\varphi^{*}(\xi) = \varphi^{-1}(\xi)$ . Observe that  $\operatorname{tr}(\varphi^{-1}(\xi) \nabla_{\mathbf{N}} \varphi(\xi)) = \nabla_{\mathbf{N}}(\log \det \varphi(\xi))$ .

Now we may write:

(2.5) 
$$\log \det \varphi(\xi) = i\langle k, \xi \rangle + \psi(\xi),$$

where  $\psi \in C^{\infty}(\mathbf{T}^n)$  and the  $\ell^{th}$  component of  $k \in \mathbf{Z}^n$  is the winding number of det  $\varphi$  around the  $\ell^{th}$  factor of  $\mathbf{T}^n$ . Note that by (2.5), the mean winding number of det  $\varphi$  along  $\{tN\}$  equals  $\langle k, N \rangle$ . But

$$i(W_{\varphi}) = \tau([W_{\varphi}, W_{\varphi}^*]) = (2\pi)^{-n} \int_{\mathbf{T}^n} \nabla_{\mathbf{N}} (\log \det \varphi(\xi)) d\xi = \langle k, \mathbf{N} \rangle,$$

since  $\int \nabla_N \psi d\xi$  vanishes by an integration by parts. This completes the proof of theorem 1.

### 3. Application to elliptic difference equations.

In this section we assume the reader is familiar with the result of [6]. Suppose

$$Q_{\alpha\beta}(\mathrm{D}) = \sum_{j \in \mathbf{Z}^n} c_j^{\alpha\beta} T_j, \quad \alpha, \beta = 1, \ldots, \nu$$

is a system of difference operators on  $\mathbb{R}^n$ . Let  $m_j$  be the  $v \times v$  matrix with entries  $c_j^{\alpha\beta}$ , and let

$$Q(\xi) = \sum_{i} m_{j} e^{i\langle j, \xi \rangle}.$$

402

We whall call  $Q_{\alpha\beta}(D)$  properly elliptic if det  $Q(\xi) \neq 0$  for  $\xi \in \mathbb{R}^n$  and arg det Q is periodic. Consider a boundary value problem for an elliptic system:

(3.1) 
$$\sum_{\beta=1}^{\nu} Q_{\alpha\beta}(D) v_{\beta}(x) = 0 \quad \text{for} \quad \langle x, N \rangle \geq a_{\alpha}, \ \alpha = 1, \dots, \nu$$
(3.2) 
$$\sum_{\beta=1}^{\nu} q_{\gamma\beta}(x, D) v_{\beta}(x) = g_{\gamma}(x) \quad \text{for} \quad 0 \leq \langle x, N \rangle \leq b_{\gamma}, \ \gamma = 1, \dots, M.$$

(3.2) 
$$\sum_{\beta=1}^{\infty} q_{\gamma\beta}(x, D) v_{\beta}(x) = g_{\gamma}(x) \quad \text{for} \quad 0 \leq \langle x, N \rangle \langle b_{\gamma}, \gamma = 1, \dots, M \rangle$$

Here the unknown functions  $v_{\beta}$  belong to  $L^{2}(H)$ ; we shall require that  $c_{j}^{\alpha\beta} = 0$ for  $\langle j, N \rangle < -a_{\alpha}$  so that in (3.1) no attempt to evaluate  $v_{\beta}$  in  $\mathbb{R}^{n}$ —H is made. As in [6] we assume the boundary operators  $q_{\gamma\beta}(x, D)$  depend on x only through  $\langle x, N \rangle$ .

We regard the boundary data g as an element of  $\bigoplus_{\gamma=1}^m L^2([0,b_\gamma]\times\partial H)$ . Finally we suppose

$$\sum_{\alpha=1}^{\nu} a_{\alpha} = \sum_{\gamma=1}^{M} b_{\gamma}.$$

Theorem 2. — Under the above hypotheses, the following two statements are equivalent.

- (i) Equation (3.1) with homogeneous boundary conditions has the unique solution zero in  $\bigoplus_{i} L^{2}(H)$ .
- (ii) For a dense set of boundary data g there is at least one solution of (3.1), (3.2) in  $\bigoplus^{\mathbf{v}} L^2(\mathbf{H}).$

We omit the proof of this theorem, as it is completely analogous to that of [6].

#### ACKNOWLEDGEMENT

I am indebted to Lewis Coburn and Isadore Singer for discussions about the topology of the general linear group which influenced my thinking about this problem.

#### REFERENCES

- [1] M. Breuer, Fredholm Theories in von Neumann Algebras I and II, Math. Ann., 178 (1968), pp. 243-254 and 180 (1969), pp. 313-325.
- [2] L. A. COBURN and R. G. DOUGLAS, On C\*-Algebras of Operators on a Half Space I, Publ. math. I.H.E.S., 40 (1971), pp. 59-67.
- [3] L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and I. M. Singer, C\*-Algebras of Operators on a Half Space II, Publ. Math. I.H.E.S., 40 (1971), pp. 69-79.
- [4] J. DIXMIER, Les Algèbres d'opérateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris, 1957.
- [5] J. DIXMIER, Les C\*-Algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [6] D. G. Schaeffer, An Application of von Neumann Algebras to Finite Difference Equations, Ann. of Math., 95 (1972), pp. 117-129.

Manuscrit reçu le 1er mars 1972.