PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

JEAN-CLAUDE TOUGERON

An extension of Whitney's spectral theorem

Publications mathématiques de l'I.H.É.S., tome 40 (1971), p. 139-148 http://www.numdam.org/item?id=PMIHES 1971 40 139 0>

© Publications mathématiques de l'I.H.É.S., 1971, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN EXTENSION OF WHITNEY'S SPECTRAL THEOREM by J.-Cl. TOUGERON

1. Notations and results.

For $y \in \mathbb{R}^p$ and $Y \subset \mathbb{R}^p$, |y| denotes the euclidean norm of y and d(y, Y) the euclidean distance from y to Y. If Y is empty, we write d(y, Y) = 1.

Let Ω_p denote an open set in \mathbb{R}^p and $\mathscr{E}(\Omega_p)$ the \mathbb{R} -algebra of all \mathbb{C}^{∞} real-valued functions in Ω_p . When $y \in \Omega_p$, let \mathscr{F}_y^m denote the \mathbb{R} -algebra of Taylor expansions of order m at y of all elements in $\mathscr{E}(\Omega_p)$; if $m < \infty$, \mathscr{F}_y^m is isomorphic to the algebra $\mathscr{F}_p/\mathfrak{m}_p^{m+1}$, where \mathfrak{m}_p denotes the maximal ideal of the formal power series ring $\mathscr{F}_p = \mathbb{R}[[y_1, \ldots, y_p]]$; if $m = +\infty$, \mathscr{F}_y^m (simply written \mathscr{F}_y) (1) is isomorphic to \mathscr{F}_p (by the generalized Borel theorem).

Let $T_y^m:\mathscr{E}(\Omega_p)^q\to (\mathscr{F}_y^m)^q$ denote the projection associating to each function G its Taylor expansion of order m at y. If Y is a compact set in Ω_p , we write $|G|_m^Y=\sup_{\substack{y\in Y\\|k|\leq m}}|D^kG(y)|$. We provide $\mathscr{E}(\Omega_p)^q$ with its usual structure of a Fréchet space,

defined by the family of all semi-norms $G \mapsto |G|_m^Y$, where Y ranges over the set of compacts in Ω_n and $m \in \mathbb{N}$.

Let M be a submodule of $\mathscr{E}(\Omega_p)^q$ and let us write

$$\hat{\mathbf{M}} = \big\{ \mathbf{G} \in \mathscr{E}(\Omega_p)^q \, | \, \forall y \in \Omega_p, \, \exists \, \mathbf{G}' \in \mathbf{M} \ \, \text{so that} \ \, \mathbf{G} - \mathbf{G}' \ \, \text{is flat at} \ \, y \big\} = \bigcap_{y \in \Omega_p} (\mathbf{T}_y)^{-1} (\mathbf{T}_y \mathbf{M}).$$

According to a standard result of Whitney (B. Malgrange [1]), $\hat{\mathbf{M}}$ is the closure $\overline{\mathbf{M}}$ of \mathbf{M} in $\mathscr{E}(\Omega_p)^q$: we propose to extend this theorem.

Let Φ denote a \mathbf{C}^{∞} function from an open set Ω_n in \mathbf{R}^n to Ω_p . The mapping Φ defines a homomorphism of \mathbf{R} -algebras $\Phi^*:\mathscr{E}(\Omega_p)\ni g\mapsto g\circ\varphi\in\mathscr{E}(\Omega_n)$. Let Ψ be a Φ^* -homomorphism from $\mathscr{E}(\Omega_p)^q$ to $\mathscr{E}(\Omega_n)^r$, i.e. Ψ is a homomorphism of abelian groups and, $\forall G\in\mathscr{E}(\Omega_p)^q$ and $\forall g\in\mathscr{E}(\Omega_p)\colon \Psi(g.G)=\Phi^*(g).\Psi(G)$. For $y\in\Omega_p$ and $x\in\Phi^{-1}(y)$, the mapping Ψ induces an \mathbf{R} -linear mapping $\Psi_x^m:(\mathscr{F}_y^m)^q\to(\mathscr{F}_x^m)^r$, so that $T_x^m\circ\Psi=\Psi_x^m\circ T_y^m$. For $X\subset\Phi^{-1}(y)$, we note Ψ_X^m the \mathbf{R} -linear mapping $(\mathscr{F}_y^m)^q\ni V\mapsto (\Psi_x^m(V))_{x\in X}\in\prod_{x\in X}(\mathscr{F}_x^m)^r$. Finally, let T_X^m be the mapping $\mathscr{E}(\Omega_n)^r\ni F\mapsto (T_x^mF)_{x\in X}\in\prod_{x\in X}(\mathscr{F}_x^m)^r$.

. We propose to determine the closure $\Psi(\overline{\mathbf{M}})$ of $\Psi(\mathbf{M})$ in $\mathscr{E}(\Omega_n)^r$. Therefore, let us write

$$\begin{split} \widehat{\Psi(\mathbf{M})} = & \big\{ \mathbf{F} \in \mathscr{E}(\Omega_n)^r \, \big| \, \forall \, y \in \Omega_p, \ \, \exists \, \mathbf{G} \in \mathbf{M} \ \, \text{such that} \ \, \Psi(\mathbf{G}) - \mathbf{F} \ \, \text{is flat on } \Psi^{-1}(y) \big\} \\ &= \bigcap_{y \, \in \, \Omega_p} (\mathbf{T}_{\Phi^{-1}(y)})^{-1} (\Psi_{\Phi^{-1}(y)} \circ \mathbf{T}_y \mathbf{M}). \end{split}$$

⁽¹⁾ We shall omit afterwards the index m, if $m = +\infty$, and shall write: T_u, Ψ_x, \ldots instead of $T_u^\infty, \Psi_x^\infty, \ldots$

We shall prove the following result:

Theorem $(\mathbf{r}.\mathbf{r})$. — Let us suppose that Φ verifies the following condition:

(H) For all compact sets $X \subset \Omega_n$ and $Y \subset \Omega_p$, there exists a constant $\alpha \ge 0$ such that, $\forall y \in Y$:

$$\Gamma(y) = \sup_{x \in X \setminus \Phi^{-1}(y)} (d(x, \Phi^{-1}(y))^{\alpha} / |\Phi(x) - y|) < \infty.$$

Then
$$\overline{\Psi(\mathbf{M})} = \widehat{\Psi(\mathbf{M})}$$
.

It is easy to find C^{∞} mappings Φ which do not satisfy this condition. Nevertheless, we shall prove the following result:

Theorem (1.2). — An analytic mapping Φ verifies the condition (H).

Both following paragraphs are devoted to the proofs of these theorems which are independent of each other. In the last paragraph, we give a refinement of the Theorem (1.2), when Φ is a polynomial mapping.

2. Proof of theorem 1.2.

Definition (2.1). — Let \Im be a finitely generated ideal of a subring of the ring of germs at x^0 in \mathbb{R}^n of continuous functions with real values. Let $\varphi_1(x), \ldots, \varphi_s(x)$ denote real valued functions, continuous in a neighborhood of x^0 and such that their germs at x^0 generate \Im . Let $V(\Im)$ be the set of their zeros.

We say that $\mathfrak I$ verifies a Lojasiewicz inequality of order $\alpha \geq 0$ (or simply that $\mathfrak I$ verifies $\mathscr L(\alpha)$) if there exist a constant C>0 and a neighborhood V of x^0 such that, $\forall x \in V$, $\sum_{i=1}^{s} |\varphi_i(x)| \geq C \cdot d(x, V(\mathfrak I))^{\alpha}$.

Let Ω_p be an open set in \mathbf{R}^p , Ω_n an open set in \mathbf{R}^n , $y=(y_1,\ldots,y_p)$ and $x=(x_1,\ldots,x_n)$ coordinate systems in Ω_p and Ω_n respectively. Let $\mathcal O$ be the sheaf of germs of analytic functions with real values on $\Omega_n\times\Omega_p$; $\mathscr I$ a sheaf of ideals, analytic and coherent on $\Omega_n\times\Omega_p$. For $(x^0,y^0)\in\Omega_n\times\Omega_p$, we denote $\mathscr I_{(x^0,y^0)}$ the stalk of $\mathscr I$ at the point (x^0,y^0) . Let $\varphi_1,\ldots,\varphi_s$ be generators of the ideal $\mathscr I_{(x^0,y^0)}$: we denote $\mathscr I_{(x^0,y^0)}^n$ the ideal generated by $\varphi_1(x,y^0),\ldots,\varphi_s(x,y^0)$ in the ring $\mathscr O_{(x^0,y^0)}^n$ of germs at (x^0,y^0) in $\Omega_n\times\{y^0\}$ of analytic functions with real values. Permuting x and y, we define similarly the ideal $\mathscr I_{(x^0,y^0)}^p$ of $\mathscr O_{(x^0,y^0)}^p$. Finally, let $V(\mathscr I)$ be the set of zeros of $\mathscr I$.

Theorem (1.2) is an easy consequence of the following one (Łojasiewicz inequality with a parameter):

Theorem (2.2). — Let X be a compact set in Ω_n , Y a compact set in Ω_p . There exists $\alpha \ge 0$ such that the ideal $\mathscr{I}^n_{(x,y)}$ verifies $\mathscr{L}(\alpha)$, $\forall (x,y) \in X \times Y$.

Indeed, let us suppose this theorem is true, and let Φ be an analytic mapping. Let \mathscr{I} denote the analytic and coherent sheaf generated on $\Omega_n \times \Omega_p$ by $\Phi_1(x) - y_1, \ldots, \Phi_p(x) - y_p$. Let X, Y be compact sets in Ω_n , Ω_p respectively. By (2.2) applied to \mathscr{I} , $\forall (x^0, y) \in X \times Y$, there exists a constant $C_{(x^0, y)} > 0$ such that for x in a neighborhood of

 $x^0: |\Phi(x)-y| \ge C_{(x^0,y)} \cdot d(x, \Phi^{-1}(y))^{\alpha}$. Hence, the set X being compact, there exists a constant $C_y > 0$ such that, $\forall x \in X$:

$$|\Phi(x)-y| \ge C_u \cdot d(x, \Phi^{-1}(y))^{\alpha}$$
.

Clearly, condition (H) follows.

Proof of (2.2). — Obviously, condition $\mathscr{L}(\alpha)$ is verified, with $\alpha = 0$, for $(x,y) \notin V(\mathscr{I})$. The set $X \times Y$ being compact, it suffices to find, for $(x^0,y^0) \in V(\mathscr{I})$, an $\alpha \geq 0$ such that $\mathscr{I}^n_{(x,y)}$ verifies $\mathscr{L}(\alpha)$ for (x,y) in a neighborhood of (x^0,y^0) . We shall suppose that (x^0,y^0) is the origin of $\mathbf{R}^n \times \mathbf{R}^p$. Now, it is enough to prove the following result:

(2.3) There exists an $\alpha \ge 0$ such that $\mathscr{I}^n_{(0,\,y)}$ verifies $\mathscr{L}(\alpha)$ for $(0,\,y) \in V(\mathscr{I})$ and |y| small enough.

Indeed, let $\varphi_1(x,y), \ldots, \varphi_s(x,y)$ generate \mathscr{I} in a neighborhood of (0,0), and let us consider the sheaf \mathscr{I} generated on a neighborhood of the origin of $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^p$ by $\varphi_1(x+z,y), \ldots, \varphi_s(x+z,y)$. By (2.3) applied to the sheaf \mathscr{I} (with the parameter (z,y) instead of y), there exists an $\alpha \geq 0$ such that $\mathscr{I}^n_{(0,z,y)} = \mathscr{I}^n_{(z,y)}$ verifies $\mathscr{L}(\alpha)$ for (z,y) in a neighborhood of the origin.

Proof of (2.3). — We proceed by induction on the height k of the ideal $\mathscr{I}_{(0,0)}$. There exist sheafs of ideals $\mathscr{P}^1, \ldots, \mathscr{P}^r$, analytic coherent on a neighborhood of the origin of $\mathbf{R}^n \times \mathbf{R}^p$, such that $\mathscr{P}^1_{(0,0)}, \ldots, \mathscr{P}^r_{(0,0)}$ are prime ideals of height $\geq k$, and an integer $\beta \geq 1$, such that:

$$\mathscr{I}\supset (\mathscr{P}^1\cap\ldots\cap\mathscr{P}^r)^{\beta}.$$

Clearly, if $\mathscr{P}^{i}_{(0,y)}$ verifies $\mathscr{L}(\alpha_{i})$ for y small enough, $\mathscr{I}_{(0,y)}$ verifies $\mathscr{L}(\beta \sum_{i=1}^{r} \alpha_{i})$ for y small enough. Hence, we may suppose that $\mathscr{I}_{(0,0)}$ is prime and its height equals k.

Let $\varphi(y)$ be analytic in a neighborhood of the origin of $o \times \mathbf{R}^p$ and null in $V(\mathscr{I}) \cap (o \times \mathbf{R}^p)$ in a neighborhood of the origin. Let \mathscr{I} be the analytic coherent sheaf on a neighborhood of the origin of $\mathbf{R}^n \times \mathbf{R}^p$, generated by \mathscr{I} and φ : obviously, $\mathscr{I}^n_{(0,y)} = \mathscr{I}^n_{(0,y)}$ for y small enough. If $\varphi \notin \mathscr{I}_{(0,0)}$, we get ht $\mathscr{I}_{(0,0)} > k$ and hence the result is proved by the induction hypothesis. Therefore, we may suppose that $\varphi \in \mathscr{I}_{(0,0)}$, i.e. $\mathscr{I}_{(0,0)} \supset \mathscr{I}^p_{(0,0)}$ and $\mathscr{I}^p_{(0,0)}$ is the ideal of germs $\varphi(y)$ null in $V(\mathscr{I}) \cap (o \times \mathbf{R}^p)$.

Lemma (2.4). — With the preceding hypothesis, let $k-\ell$ be the height of the prime ideal $\mathscr{I}^p_{(0,0)}$. After an eventual permutation on the coordinates x_1, \ldots, x_n , there exist $\varphi_1, \ldots, \varphi_\ell \in \mathscr{I}_{(0,0)}$ such that $\xi_1 = \frac{\mathrm{D}(\varphi_1, \ldots, \varphi_\ell)}{\mathrm{D}(x_1, \ldots, x_\ell)} \notin \mathscr{I}_{(0,0)}$.

Proof. — We proceed by induction on the height k of $\mathscr{I}_{(0,0)}$. Let us suppose that $k > \ell$. There is a sequence $(0, y^i) \in V(\mathscr{I})$, $y^i \to 0$, such that for each $i: \mathscr{I}_{(0,y^i)}^n \neq 0$ (otherwise $\mathscr{I}_{(0,0)}$ would be generated by $\mathscr{I}_{(0,0)}^p$). After an eventual linear change of coordinates on the variables x_1, \ldots, x_n , we know (following the analytic preparation theorem, Malgrange [1]) that there exists, for each i, a distinguished polynomial $\Psi_i = x_1^{q_i} + a_{1,i}(x',y) \cdot x_1^{q_{i-1}} + \ldots + a_{q_i,i}(x',y) \in \mathscr{I}_{(0,y^i)}$ (we write $x' = (x_2, \ldots, x_n)$ and the $a_{j,i}$

are analytic functions of (x',y) in a neighborhood of $(0,y^i)$). Besides, we may suppose that $\frac{\partial \Psi_i}{\partial x_1} \notin \mathscr{I}_{(0,y^i)}$. (Indeed, there exists a smaller integer $\beta_i \geq 0$ such that $\frac{\partial^{\beta_i+1} \Psi_i}{\partial x_1^{\beta_i+1}} \notin \mathscr{I}_{(0,y^i)}$; we have only to substitute $\frac{\partial^{\beta_i} \Psi_i}{\partial x_1^{\beta_i}}$ for Ψ_i .) Hence, there exists $\varphi_1 \in \mathscr{I}_{(0,0)}$ such that $\frac{\partial \varphi_1}{\partial x_1} \notin \mathscr{I}_{(0,0)}$.

Let \mathcal{O}' be the sheaf of germs of analytic functions with real values on $\mathbf{R}^{n-1} \times \mathbf{R}^p = \{(x,y) \in \mathbf{R}^n \times \mathbf{R}^p | x_1 = 0\}$ and let us write $\mathscr{I}' = \mathscr{I} \cap \mathscr{O}'$. There exists an integer i_0 such that $\inf_{(0,y^i)} = k$ for $i \geq i_0$; besides, $\mathcal{O}_{(0,y^i)} | \mathscr{I}_{(0,y^i)}$ is a finitely generated module over $\mathscr{O}'_{(0,y^i)} | \mathscr{I}'_{(0,y^i)} = k$ and hence their Krull dimensions are equal (by the Cohen-Seidenberg theorem, Malgrange [1]; th. (5.3), chap. III); therefore $\inf_{(0,y^i)} = k-1$ for $i \geq i_0$. Since $\mathscr{I}'_{(0,0)}$ is prime, $\inf_{(0,0)} = \inf_{(0,0)} \inf_{(0,y^i)} \inf_{(0,y^i$

such that $\frac{\mathrm{D}(\varphi_2, \ldots, \varphi_\ell)}{\mathrm{D}(x_2, \ldots, x_\ell)} \notin \mathscr{I}'_{(0, 0)}$. Hence:

$$\frac{\mathrm{D}(\varphi_1,\ \ldots,\ \varphi_\ell)}{\mathrm{D}(x_1,\ \ldots,\ x_\ell)} = \frac{\partial \varphi_1}{\partial x_1} \cdot \frac{\mathrm{D}(\varphi_2,\ \ldots,\ \varphi_\ell)}{\mathrm{D}(x_2,\ \ldots,\ x_\ell)} \notin \mathscr{I}_{(0,\ 0)}.$$

Since ht $\mathscr{I}_{(0,0)}^p = k - \ell$ and $\mathscr{I}_{(0,0)}^p$ is prime, there exist $\varphi_{\ell+1}, \ldots, \varphi_k \in \mathscr{I}_{(0,0)}^p$ such that, after an eventual permutation on the coordinates y_1, \ldots, y_p :

$$\xi_2 = \frac{\mathrm{D}(\varphi_{\ell+1}, \, \ldots, \, \varphi_k)}{\mathrm{D}(y_1, \, \ldots, y_{k-\ell})} \notin \mathscr{I}^{p}_{(0, \, 0)}; \quad \text{ hence } \quad \frac{\mathrm{D}(\varphi_1, \, \ldots, \, \varphi_k)}{\mathrm{D}(x_1, \, \ldots, \, x_\ell, \, y_1, \, \ldots, \, y_{k-\ell})} = \xi_1. \, \xi_2 \notin \mathscr{I}_{(0, \, 0)}.$$

By the jacobian criterion for regular points, the localized ring $(\mathcal{O}_{(0,0)})_{\mathscr{I}_{(0,0)}}$ is regular of dimension k and its maximal ideal is generated by $\varphi_1, \ldots, \varphi_k$. Hence there exists $\xi_3 \in \mathcal{O}_{(0,0)} \setminus \mathscr{I}_{(0,0)}$ such that: $\xi_3. \mathscr{I}_{(0,0)} \subset (\varphi_1, \ldots, \varphi_k)$.

Let ξ be analytic in a neighborhood of $(0, 0) \in \mathbb{R}^{n+p}$ and inducing the germ ξ_1, ξ_2, ξ_3 at the origin. Let \mathscr{J} be the sheaf of ideals generated, on a neighborhood of the origin of \mathbb{R}^{n+p} , by \mathscr{J} and ξ . For $(0, y) \in V(\mathscr{J})$, y small enough:

- There exists $\alpha \ge 0$ such that $\mathcal{J}^n_{(0,\,y)} = \mathcal{J}^n_{(0,\,y)} + \xi \,.\, \mathcal{O}^n_{(0,\,y)}$ verifies $\mathcal{L}(\alpha)$ (because ht $\mathcal{J}_{(0,\,0)} >$ ht $\mathcal{J}_{(0,\,0)}$ and we apply the induction hypothesis).
 - $\xi.\mathscr{I}^n_{(0,y)}$ is contained in the sub-ideal of $\mathscr{I}^n_{(0,y)}$ generated by $\varphi_1,\ldots,\varphi_\ell$.
 - Finally, ξ belongs to the ideal generated in $\mathcal{O}_{(0,y)}^n$ by the jacobian $\frac{\mathrm{D}(\varphi_1,\ldots,\varphi_\ell)}{\mathrm{D}(x_1,\ldots,x_\ell)}$.

So Theorem (2.3) is an immediate consequence of the following lemma (Tougeron and Merrien [2], prop. 3, chap. II):

Lemma (2.5). — Let \Im be a finitely generated ideal of the ring \mathscr{E}_n of germs at the origin in \mathbf{R}^n of \mathbf{C}^{∞} functions with real values. Let $\varphi_1, \ldots, \varphi_\ell \in \Im$ and ξ belonging to the ideal generated

in \mathscr{E}_n by $\varphi_1, \ldots, \varphi_\ell$ and all the jacobians $\frac{\mathrm{D}(\varphi_1, \ldots, \varphi_\ell)}{\mathrm{D}(x_{i1}, \ldots, x_{i\ell})}$, so that $\xi.\mathfrak{I}\subset (\varphi_1, \ldots, \varphi_\ell)$. Then if $\mathfrak{J}=\mathfrak{I}+\xi.\mathscr{E}_n$ verifies $\mathscr{L}(\alpha)$, the ideal \mathfrak{I} verifies $\mathscr{L}(\sup(2\alpha, \alpha+1))$.

Remark (2.6). — Let $\Phi = (\Phi_1, \ldots, \Phi_p)$ be a C^{∞} mapping from Ω_n to Ω_p . Let $\mathscr E$ be the sheaf of C^{∞} functions with real values on Ω_n (or Ω_p); let $\mathscr E$ be the sheaf of ideals generated on Ω_n by all the jacobians $\frac{D(\Phi_1, \ldots, \Phi_p)}{D(x_{i_1}, \ldots, x_{i_p})}$: the set $V(\mathscr F)$ of zeros of $\mathscr F$ is the set of singular points of the mapping Φ .

Let us consider the following condition:

 $(H') \ \forall x \in V(\mathcal{I}), \ \mathscr{E}_x/\mathscr{I}_x \ is \ (by \ \Phi) \ a \ module \ of finite \ type \ over \ the \ ring \ \mathscr{E}_y \ (we \ set \ y = \Phi(x)), \ i.e. \ by \ the \ Malgrange \ preparation \ theorem \ (Malgrange \ [1]):$

$$(\mathscr{E}_x/\mathscr{I}_x)\otimes_{\mathscr{E}_y}(\mathscr{E}_y/\mathfrak{m}_y)=\mathscr{E}_x/(\mathscr{I}_x+\mathfrak{m}_y.\mathscr{E}_x)$$

is a real vector space of finite dimension (\mathfrak{m}_{ν} : maximal ideal of \mathscr{E}_{ν}).

The condition (H') is a very strong one; nevertheless, it is a generic one, i.e. it is verified on an open dense subset of the space of C^{∞} mappings from Ω_n to Ω_p , this space being provided with the Whitney topology. Besides, (H') implies (H).

Indeed, let X and Y be compact sets in Ω_n and Ω_p respectively. By hypothesis, there exists an $\alpha \geq 0$ such that, $\forall (x^0, y^0) \in X \times Y$, the ideal generated by $\Phi_1(x) - y_1, \ldots, \Phi_p(x) - y_p$ and all the jacobians $\frac{D(\Phi_1, \ldots, \Phi_p)}{D(x_{i1}, \ldots, x_{ip})}$ in $\mathscr{E}^n_{(x^0, y^0)}$ (ring of germs at (x^0, y^0) in $\mathbb{R}^n \times \{y^0\}$ of \mathbb{C}^∞ functions with real values), verifies $\mathscr{L}(\alpha)$. By Lemma (2.5), the ideal generated by $\Phi_1(x) - y_1, \ldots, \Phi_p(x) - y_p$ in $\mathscr{E}^n_{(x^0, y^0)}$ verifies $\mathscr{L}(\alpha')$, with an α' independent of the point $(x^0, y^0) \in X \times Y$. Clearly, the condition (H) follows.

3. Proof of theorem 1.1.

With the notations of § 1, we must show that: $\overline{\Psi(M)} = \widehat{\Psi(M)}$.

(3.1) We have:
$$\overline{\Psi(\mathbf{M})} \subset \widehat{\Psi(\mathbf{M})}$$
.

Let $F \in \Psi(M)$ and let $y \in \Omega_p$. A finite subset X_m of $\Phi^{-1}(y)$ will be called *m-essential* (m is a positive integer), if $\ker \Psi^m_{\Phi^{-1}(y)} = \ker \Psi^m_{X_m}$; clearly, there always exist *m*-essential sets X_m such that $\operatorname{card} X_m \leq \operatorname{card} (\mathscr{F}_y^m)^q$.

Let X be a finite subset of $\Phi^{-1}(y)$ containing such an X_m . By hypothesis, $T_X^m F$ is in the closure of the finite dimensional real space $\Psi_X^m(T_y^m M)$, and therefore belongs to it. So there exist G^m with $G_X^m \in T_y^m M$ such that: $T_X^m F = \Psi_X^m(G_X^m)$ and $T_{X_m}^m F = \Psi_{X_m}^m(G^m)$. Obviously, $G^m - G_X^m \in \ker \Psi_{X_m}^m = \ker \Psi_X^m$; thus: $T_X^m F = \Psi_X^m(G^m)$, and X being arbitrary: $T_{\Phi^{-1}(y)}^m F = \Psi_{\Phi^{-1}(y)}^m(G^m)$.

So, $W^m = (\Psi^m_{\Phi^{-1}(y)})^{-1} (T^m_{\Phi^{-1}(y)} F) \cap T^m_y M$ is a finite dimensional and non empty affine space. The inverse limit $W = \varprojlim_{\Phi^{-1}(y)} W^m$ is then non empty and contained in $\varprojlim_{\Psi} T^m_y M = T_y M$; besides, $T_{\Phi^{-1}(y)} F = \varprojlim_{\Phi^{-1}(y)} T^m_{\Phi^{-1}(y)} F \in \Psi_{\Phi^{-1}(y)}(W)$; hence, we have (3.1).

(3.2) We have
$$\widehat{\Psi(\mathbf{M})} \subset \overline{\Psi(\mathbf{M})}$$
.

Let $F \in \widehat{\Psi}(\widehat{M})$ and let X' be a compact subset of Ω_n . Let X be a compact neighborhood of X' in Ω_n and let us put $Y = \Phi(X)$ and $\Phi_0 = \Phi \mid \widehat{X}$. Finally let ε be a number > 0 and μ be a positive integer. We have only to prove the following result:

(3.3) There exist $g \in \mathscr{E}(\Omega_p)$ with g = 1 in a neighborhood of Y, and $G \in M$, such that: $|\Phi^*(g)F - \Psi(G)|_u^{X'} < \varepsilon$.

This easily results from two lemmas. We first give a definition:

Definition (3.4). — A subset K of Y is (α, m) -elementary if the following conditions are verified:

1) There exists a constant C>0 such that, $\forall x \in X$ and $\forall y \in K$:

$$|\Phi(x)-y| \ge C \cdot d(x, \Phi^{-1}(y))^{\alpha}$$
.

2) The dimension of the real vector space $\Psi^m_{\Phi^{-1}(y)}(T^m_y M)$ is constant, for $y \in K$.

Lemma (3.5). — Let us suppose that Φ verifies the condition (H) and let Z be a compact and non empty subset of Y. Then, there exists a closed set $E(Z) \subseteq Z$ such that each compact set in Z - E(Z) is (α, m) -elementary (m is an arbitrary integer, but α is the real number associated to X and Y by the condition (H)).

Proof. — With the notations of (1.1), the function: $Y \ni y \mapsto \Gamma(y)$ is lower semi-continuous (because, for a fixed x, the mapping $Y \ni y \mapsto d(x, \Phi^{-1}(y))$ is lower semi-continuous). So there exists an open dense set Z_0 in Z, such that this function is bounded on each compact set in Z_0 .

Let $y^0 \in \mathbb{Z}_0$: if x^0 belongs to the fiber $\Phi_0^{-1}(y^0)$, we have: $\lim_{\begin{subarray}{c} y \to y^0 \\ y \in \mathbb{Z}_0\end{subarray}} d(x^0, \Phi_0^{-1}(y)) = 0.$

(Indeed, by hypothesis, there exists a constant C>0 such that, for each $y \in \mathbb{Z}_0$ in a neighborhood of y^0 , we have $|y^0-y| \ge C \cdot d(x^0, \Phi^{-1}(y))^{\alpha}$.

Let $X(y^0) = \{x^1(y^0), \ldots, x^s(y^0)\}$ be an *m*-essential subset of the fiber $\Phi_0^{-1}(y^0)$ for $y^0 \in Z_0$. We can associate to each $y \in Z_0$ a subset $X(y) = \{x^1(y), \ldots, x^s(y)\}$ of $\Phi_0^{-1}(y)$, so that $\lim_{y \to y^0} x^i(y) = x^i(y^0)$ for $i = 1, \ldots, s$. Clearly, we have the following inequalities, for $|y - y^0|$ small enough:

$$\dim_{\mathbf{R}} \Psi^m_{\Phi^{-1}_0(y)}(T^m_y\mathbf{M}) \geq \dim_{\mathbf{R}} \Psi^m_{\mathbf{X}(y)}(T^m_y\mathbf{M}) \geq \dim_{\mathbf{R}} \Psi^m_{\mathbf{X}(y^o)}(T^m_y\mathbf{M}) = \dim_{\mathbf{R}} \Psi^m_{\Phi^{-1}_0(y^o)}(T^m_y\mathbf{M}).$$

So the function $Z_0 \ni y \mapsto \dim_{\mathbf{R}} \Psi^m_{\Phi_0^{-1}(y)}(T_y^m \mathbf{M})$ is lower semi-continuous, bounded with integer values. Therefore, there exists an open and non empty subset Z_1 of Z_0 in which this function is constant. Then it suffices to put $E(Z) = Z - Z_1$.

Lemma (3.6). — Let K be a compact and (α, m) -elementary subset of Y, and let us suppose that $m \ge \mu \alpha$. Then we can find $g \in \mathscr{E}(\Omega_p)$ with g = 1 in a neighborhood of K, and $G \in M$, such that:

$$|\Phi^*(g)\mathbf{F} - \Psi(\mathbf{G})|_{\mu}^{\mathbf{X}'} \leq \varepsilon.$$

Proof. — The following proof takes inspiration from the proof of the spectral theorem (B. Malgrange [1], lemma (1.4), chap. II).

Let $y^0 \in K$. By hypothesis, there exists a neighborhood V_{y^0} of y^0 and G_1, \ldots, G_k in M such that for $y \in V_{y^0} \cap K$, $\Psi^m_{\Phi_0^{-1}(y)}(T^m_y G_1), \ldots, \Psi^m_{\Phi_0^{-1}(y)}(T^m_y G_k)$ is a basis of the real vector space $\Psi^m_{\Phi_0^{-1}(y)}(T^m_y M)$. Hence there exist continuous functions $\lambda_1, \ldots, \lambda_k$ on $V_{y^0} \cap K$, such that:

$$T^m_{\Phi_0^{-1}(y)}F = \Psi^m_{\Phi_0^{-1}(y)}(\sum_{i=1}^k \lambda_i(y).T^m_yG_i)$$

for all $y \in V_{y^0} \cap K$. Using a partition of unity, we can find $G_1, \ldots, G_\ell \in M$, continuous functions $\lambda_1, \ldots, \lambda_\ell$ on K, and a constant C, such that, for all $y \in K$:

$$\mathbf{T}_{\Phi_{0}^{-1}(y)}^{m}\mathbf{F} = \Psi_{\Phi_{0}^{-1}(y)}^{m}(\sum_{i=1}^{\ell}\lambda_{i}(y) \cdot \mathbf{T}_{y}^{m}\mathbf{G}_{i})$$

$$\sup_{\mathbf{X}\in \mathbf{P}}|\lambda_{i}(y)| \leq \mathbf{C}$$

and

$$\sup_{\substack{1\leq i\leq \ell\\y\in K}}|\lambda_i(y)|\leq C.$$

Let us put $G_y = \sum_{i=1}^{\ell} \lambda_i(y) G_i$; clearly, $F - \Psi(G_y)$ is m-flat on $\overline{\Phi_0^{-1}(y)}$. Let ω be a modulus of continuity on the compact set X for F, $\Psi(G_1), \ldots, \Psi(G_{\ell})$: there exists a constant $C_1 > 0$ such that $C_1 \cdot \omega$ is a modulus of continuity on X for all functions $F - \Psi(G_y)$, $y \in K$.

Let $x \in X'$ and $a \in \overline{\Phi_0^{-1}(y)}$ such that $d(x, \Phi_0^{-1}(y)) = d(x, a)$. The function $F - \Psi(G_y)$ being *m*-flat at a, we have:

$$|\operatorname{D}^k \mathrm{F}(x) - \operatorname{D}^k \mathrm{\Psi}(\mathrm{G}_y)(x)| = |(\mathrm{R}_a^m (\mathrm{F} - \mathrm{\Psi}(\mathrm{G}_y)))^k(x)| \leq \mathrm{C}_1 \cdot d(x, \ \Phi_0^{-1}(y))^{m-|k|} \cdot \omega(d(x, \ \Phi_0^{-1}(y))).$$

Clearly, there exists a constant C_1 such that $d(x, \Phi_0^{-1}(y)) \leq C_1$. $d(x, \Phi^{-1}(y))$ for all $x \in X'$ and $y \in K$. Hence, the compact K being (α, m) -elementary and $m \geq \mu \alpha$, we see that there exist a constant C_2 and a modulus of continuity ω' such that:

(3.6.1)
$$|D^kF(x)-D^k\Psi(G_y)(x)| \le C_2 |\Phi(x)-y|^{\mu-|k|} \cdot \omega'(|\Phi(x)-y|)$$

for all *n*-integers *k* such that $|k| \le \mu$, all $x \in X'$ and all $y \in K$.

Let d be a real number > 0. The open cubes of side 2d, centered at the points (j_1d, \ldots, j_pd) $(j_1, \ldots, j_p$ are integers) constitute an open covering \mathfrak{I} of \mathbf{R}^p . Let g_i $(i \in \mathfrak{I})$ be a partition of unity subordinate to \mathfrak{I} such that, for $|k| \leq \mu$,

(3.6.2)
$$\sum_{i \in \Im} |D^k g_i(y)| \leq \frac{C_3}{d^{|k|}} \quad \text{for all } y \in \mathbb{R}^p$$

 $(C_3$ is a constant only depending on μ and p). Let \mathfrak{I}' be the finite family of those cubes L in \mathfrak{I} which meet K. For $L \in \mathfrak{I}'$, let y_L be a point in $L \cap K$. Let us put:

$$g = \sum_{\mathbf{L} \in \mathfrak{I}'} g_{\mathbf{L}}, \qquad \mathbf{G} = \sum_{\mathbf{L} \in \mathfrak{I}'} g_{\mathbf{L}}.\mathbf{G}_{y_{\mathbf{L}}}.$$

Obviously, g=1 in a neighborhood of K and:

$$|\Phi^{\star}(g)\mathbf{F} - \Psi(\mathbf{G})|_{\mu}^{\mathbf{X}'} \leq \sum_{\mathbf{L} \in \mathfrak{D}'} \sup_{\substack{x \in \mathbf{X}' \\ |k| \leq \mu}} |\mathbf{D}^{k}(\Phi^{\star}(g_{\mathbf{L}})(\mathbf{F} - \Psi(\mathbf{G}_{y_{\mathbf{L}}})))(x)|$$

and so, by Leibniz's formula and (3.6.1), (3.6.2):

$$|\Phi^*(g)\mathbf{F} - \Psi(\mathbf{G})|_{u}^{\mathbf{X}'} \leq \mathbf{C}_{\mathbf{A}}.\omega'(d)$$

where C_4 is independent of d. Hence if we choose d sufficiently small, the lemma follows.

Proof of (3.3). — First let us decompose the compact set Y with the help of Lemma (3.5). Let α be the real number associated to X and Y by the condition (H) and let m be an integer $\geq \mu\alpha$.

Let T be a well ordered set. We construct, by transfinite induction, a mapping $T\ni \tau\mapsto Y_\tau$ with values in the set of compact subsets of Y. If I denotes the first element of T, we put $Y_1=Y$. Suppose the mapping is defined in the interval $[I,\tau_1[:\text{we put}\ Y_{\tau_1}=\bigcap_{\tau<\tau_1}Y_\tau,\ \text{if }\tau_1\text{ has no predecessor; on the other hand, if }\tau_1=\tau+I,\ \text{we put:}\ Y_{\tau+1}=E(Y_\tau)$ if $Y_\tau\ne\emptyset$ and $Y_{\tau+1}=\emptyset$ if $Y_\tau=\emptyset$.

If the cardinal of T is sufficiently large, there exist some τ such that $Y_{\tau} = \emptyset$. Let ν_1 be the smallest element τ of T such that $Y_{\tau} = \emptyset$: we have $\nu_1 = \nu + \tau$ for a $\nu \in T$ (otherwise, we should have $\bigcap_{\tau < \nu_1} Y_{\tau} = \emptyset$, which is absurd, because the Y_{τ} , $\tau < \nu_1$, are compact and non empty sets such that $Y_{\tau+1} \subset Y_{\tau}$ for each τ). Let us consider the following assertion:

 (H_{τ}) There exist g_{τ} in $\mathscr{E}(\Omega_p)$ with $g_{\tau} = I$ in a neighborhood V_{τ} of Y_{τ} , and G_{τ} in M, such that $|\Phi^*(g_{\tau})F - \Psi(G_{\tau})|_{\mathfrak{u}}^{X'} < \varepsilon$.

The set of all τ such that (H_{τ}) is true is non empty: Indeed, by (3.6), it contains ν (because Y_{ν} is a compact and (α, m) -elementary set). Let τ_1 be the smallest element of this set: we have to show that $\tau_1 = 1$.

Indeed, suppose that $\tau_1 > 1$. Necessarily, $\tau_1 = \tau + 1$ for an element $\tau \in T$ (otherwise, we should have $Y_{\tau_1} = \bigcap_{\tau < \tau_1} Y_{\tau}$ and therefore $Y_{\tau} \subset V_{\tau_1}$, hence (H_{τ}) , for a $\tau < \tau_1$, which is absurd).

We have $|\Phi^*(g_{\tau_1})F - \Psi(G_{\tau_1})|_{\mu}^{X'} \le \varepsilon' < \varepsilon$, with $g_{\tau_1} = \mathfrak{l}$ in an open neighborhood V_{τ_1} of Y_{τ_1} . Let us put $K = Y_{\tau} - V_{\tau_1}$: K is a compact and (α, m) -elementary subset of Ω_p . By (3.6), applied to $\Phi^*(\mathfrak{l} - g_{\tau_1})F$ instead of F, there exist $h \in \mathscr{E}(\Omega_p)$ with $h = \mathfrak{l}$ in a neighborhood of K, and $G \in M$, such that:

$$|\Phi^*(h(\mathbf{I}-g_{\tau_1})).F-\Psi(G)|_{\mu}^{X'} < \varepsilon - \varepsilon'.$$

Let us put $g_{\tau} = g_{\tau_1} + h - h \cdot g_{\tau_1}$ and $G_{\tau} = G + G_{\tau_1}$. Clearly, $g_{\tau} \in \mathscr{E}(\Omega_p)$, $g_{\tau} = 1$ in a neighborhood of Y_{τ} , $G_{\tau} \in M$ and $|\Phi^*(g_{\tau}) \cdot F - \Psi(G_{\tau})|_{\mu}^{X'} < \varepsilon$. Hence condition (H_{τ}) is fulfilled, which is absurd.

Remark (3.7). — I do not know if Theorem (1.1) is always true without the hypothesis (H): unfortunately, I have no counter-example.

4. A refinement of theorem 1.2 when Φ is polynomial.

Let us recall the following definition: a set in \mathbb{R}^n is semi-algebraic if it is a finite union of subsets X_i , each X_i being defined by a finite number of polynomial equalities or inequalities.

The image of a semi-algebraic set by a polynomial mapping $\Phi : \mathbf{R}^n \to \mathbf{R}^p$ is semi-algebraic (this is a fundamental result of Seidenberg and Tarski, cf. [3]); if X and Y are semi-algebraic sets in \mathbf{R}^n and if $\mathbf{X} \subset \mathbf{Y}$, the closure of X in Y and Y\X are semi-algebraic. Finally, it is obvious that finite unions or finite intersections of semi-algebraic sets are semi-algebraic.

Let Φ be a polynomial mapping from $\Omega_n = \mathbf{R}^n$ to $\Omega_p = \mathbf{R}^p$ and let X and Y be compact and semi-algebraic sets in \mathbf{R}^n and $\Phi(\mathbf{R}^n)$ respectively. The following theorem improves (1.2):

Theorem (4.1). — There exists a closed and semi-algebraic set D(Y) in Y, such that $Y \setminus D(Y)$ is dense in Y, and constants C > 0, $\alpha > 0$, $\beta > 0$ such that, for all $x \in X$ and $y \in Y$:

$$|\Phi(x) - y| \ge C \cdot d(x, \Phi^{-1}(y))^{\alpha} \cdot d(y, D(Y))^{\beta}.$$

Proof. — By (1.2), there exists an $\alpha \ge 0$ (we suppose that α is an integer, which is always possible) such that, $\forall y \in Y$:

$$\Gamma(y) = \sup_{x \in X \setminus \Phi^{-1}(y)} (d(x, \Phi^{-1}(y))^{\alpha} / |\Phi(x) - y|) < \infty.$$

Let us put

$$D(Y) = \{ y \in Y | \Gamma \text{ is not bounded in every neighborhood of } y \}.$$

Clearly, D(Y) is closed and $Y \setminus D(Y)$ is dense in Y (because the mapping $Y \ni y \mapsto \Gamma(y)$ is lower semi-continuous). Let us verify that D(Y) is semi-algebraic.

First, the set

$$A_1 = \{(x, y, \tau) \in X \times Y \times \mathbf{R}^+ \mid |\Phi(x) - y| > \tau \cdot d(x, \Phi^{-1}(y))^{\alpha} \}$$

is semi-algebraic. Indeed, A1 is the image of the semi-algebraic set

$$A_0 = \{(x, x', y, \tau) \in X \times \mathbb{R}^n \times Y \times \mathbb{R}^+ \mid \Phi(x') = y \text{ and } |\Phi(x) - y| > \tau \cdot |x - x'|^{\alpha} \}$$

by the projection: $X \times \mathbf{R}^n \times Y \times \mathbf{R}^+ \to X \times Y \times \mathbf{R}^+$. Now the set

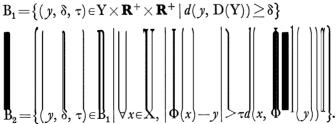
$$A_2 = \{(y, \tau) \in Y \times \mathbb{R}^+ | \exists x \in X \text{ such that } |\Phi(x) - y| \leq \tau \cdot d(x, \Phi^{-1}(y))^{\alpha} \}$$

is semi-algebraic, because it is the image of $(X \times Y \times \mathbf{R}^+) \setminus A_i$ by the projection: $X \times Y \times \mathbf{R}^+ \to Y \times \mathbf{R}^+$. Clearly, we have

$$D(Y)\!\times\!\!\big\{\mathrm{o}\big\}\!=\!\overline{A}_{\!2}\!\cap\!Y\!\times\!\!\big\{\mathrm{o}\big\}\!,$$

and therefore D(Y) is semi-algebraic.

Let us prove inequality (4.1.1) (the proof is similar to that of Lemma 1 in [4]). Let us put:



INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES

	Éléments de géométrie algébrique, par A. Grothendieck, rédigés avec la collaboration de J. Dieudonné.	 Éléments de géométrie algébrique, par A. Grothendieck, rédigés avec la collaboration de J. Dieudonné.
	IV. Étude locale des schémas et des morphismes de schémas (Première Partie).	IV. Étude locale des schémas et des morphismes de schémas (Troisième Partie).
	Un volume (22 \times 27 cm) de 260 pages 35 F.	Un volume (22 $ imes$ 27 cm) de 256 pages \dots 36 F.
21.	Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, par André	29. Connectedness of the Hilbert scheme, by R. Hartshorne.
	Néron. Un volume $(22 \times 27 \text{ cm})$ de 128 pages 18 F.	Relations entre deux méthodes d'interpo- lation, par J. PEETRE.
22.	K-Theory and stable algebra, by H. Bass. The Whitehead group of a polynomial extension, by H. Bass, A. Heller and R. G. Swan.	Compléments à un article de Hans Grauert sur la conjecture de Mordell, par P. SAMUEL. Ample vector bundles, by R. HARTSHORNE. On the de Rham cohomology of algebraic varieties, by A. Grothendieck.
	Un volume $(22 \times 27 \text{ cm})$ de 92 pages 15 F.	
23.	On contravariant functors from the category of preschemes over a field into the category	Un volume (22 $ imes$ 27 cm) de 106 pages 17 F.
	of abelian groups, by J. P. Murre. Sur une classe de sous-groupes compacts	 30. On the structure of the GL₂ of a ring, by P. M. Cohn. Rational surfaces over perfect fields (errusse), by Ju. I. Manin. Some arithmetical results on semi-simple Lie algebras, by T. A. Springer.
	maximaux des groupes de Chevalley sur un corps p-adique, par Fr. Bruhat.	
	La classification des immersions combina- toires, par A. Haefliger et V. Poenaru.	
	Un volume $(22 \times 27 \text{ cm})$ de 92 pages 15 F.	Un volume (22 $ imes$ 27 cm) de 144 pages \dots 30 F.
24.	Éléments de géométrie algèbrique, par A. Grothendieck, rédigés avec la collaboration de J. Dieudonné.	31. Sur les corps liés aux algèbres envelop- pantes des algèbres de Lie, par I. M. Gelfand et A. A. Kirillov.
	IV. Étude locale des schémas et des morphismes de schémas (Seconde Partie).	Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples,
	Un volume (22 × 27 cm) de 232 pages 35 F.	par J. Tits. Rational points in Henselian discrete valua-
25.	On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, by N. IWAHORI and H. MAT-	tion rings, by Marvin J. Greenberg. Un volume $(22 \times 27 \text{ cm})$ de 64 pages 15 F.
	SUMOTO. Regular elements of semi-simple algebraic groups, by R. STEINBERG.	32. Éléments de géométrie algébrique, par A. Grothendieck, rédigés avec la collaboration de J. Dieudonné.
	Carleman estimates for the Laplace-Beltrami equation on complex manifolds, by A. Andreotti and Ed. Vesentini.	IV. Étude locale des schémas et des morphisme de schémas (Quatrième Partie).
	Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionen-	Un volume (22 $ imes$ 27 cm) de 360 pages 74 F.
	körper, von H. Grauert.	33. Die de Rham Kohomologie algebraischer
	Un volume (22 \times 27 cm) de 152 pages 24 F.	Mannigfaltigkeiten über einem bewerteten Körper, von R. Kiehl.
26.	Groupes analytiques p-adiques, par Michel Lazard.	Singularities of differentiable maps, by J. M. BOARDMAN.
	Un volume (22 \times 27 cm) de 220 pages 34 F.	Solution of the congruence subgroup problem for SL_n $(n \ge 3)$ and Sp_{2n} $(n \ge 2)$, by
27.	Invariant eigendistributions on a semi- simple Lie algebra, by Harish-Chandra.	H. Bass, J. Milnor and JP. Serre. Algebraic equations for nonsmoothable
	Groupes réductifs, par A. Borel et J. Tits.	8-manifolds, by N. H. Kuiper.
	Un volume (22 \times 27 cm) de 156 pages 25 F.	Un volume (22 \times 27 cm) de 156 pages 33 F.