PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

HARISH-CHANDRA

Invariant eigendistributions on a semisimple Lie algebra

Publications mathématiques de l'I.H.É.S., tome 27 (1965), p. 5-54 http://www.numdam.org/item?id=PMIHES 1965 27 5 0>

© Publications mathématiques de l'I.H.É.S., 1965, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

INVARIANT EIGENDISTRIBUTIONS ON A SEMISIMPLE LIE ALGEBRA

by HARISH-CHANDRA

§ 1. INTRODUCTION

Let g be a semisimple Lie algebra over \mathbf{R} and \mathbf{T} an invariant distribution on g which is an eigendistribution of all invariant differential operators on g with constant coefficients. Then the first result of this paper (Theorem 1) asserts that \mathbf{T} is a locally summable function \mathbf{F} which is analytic on the regular set \mathbf{g}' of \mathbf{g} (cf. Lemma 1 of $[\mathbf{g}(g)]$). The second result (Theorem 5) can be stated as follows. Let \mathbf{D} be an invariant analytic differential operator on \mathbf{g} such that $\mathbf{D}f = \mathbf{o}$ for every invariant \mathbf{C}^{∞} function f on \mathbf{g} . Then $\mathbf{D}\mathbf{S} = \mathbf{o}$ for any invariant distribution \mathbf{S} on \mathbf{g} (cf. $[\mathbf{g}(g), \text{Lemma 3}]$). This will be needed in the next paper of this series, in order to lift the first result, from \mathbf{g} to the corresponding group \mathbf{G} (see $[\mathbf{g}(g), \text{Theorem 1}]$), by means of the exponential mapping.

Proof of Theorem 1 proceeds by induction on dim g. In § 2 we show that there exists an analytic function F on g' such that T=F on g'. Moreover we verify that F is locally summable on g and therefore it defines a distribution T_F on g. Thus it remains to prove that $\theta=T-T_F$ is actually zero. The results of § 3 enable us to reduce this to the verification of the fact that no semisimple element H of g lies in Supp θ . If $H \neq 0$, this follows easily from [3 (i), Theorem 2] and the induction hypothesis. Hence we conclude (see Corollary 1 of Lemma 8) that Supp $\theta \subset \mathcal{N}$ where \mathcal{N} is the set of all nilpotent elements of g. Let ω be the Killing form of g. Then $\partial(\omega)T=cT$ ($c \in \mathbf{C}$). Since $T=\theta+T_F$, we get

$$(\partial(\omega)-c)\theta=J$$

where $J = -(\partial(\omega) - c)T_F$. By making use of [3 (j), Theorem 4], one proves that J = 0 and therefore it follows from [3 (h), Theorem 5] that $\theta = 0$.

In § 8 we study the function F in greater detail. Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and $\pi^{\mathfrak{a}}$ the product of all the positive roots of $(\mathfrak{g}, \mathfrak{a})$. Define $g_{\mathfrak{a}}(H) = \pi^{\mathfrak{a}}(H)F(H)$ for $H \in \mathfrak{a}' = \mathfrak{a} \cap \mathfrak{g}'$. Then we show that $\partial(\pi^{\mathfrak{a}})g_{\mathfrak{a}}$ can be extended to a continuous function $h_{\mathfrak{a}}$ on \mathfrak{a} and if \mathfrak{b} is another Cartan subalgebra of \mathfrak{g} , then $h_{\mathfrak{a}} = h_{\mathfrak{b}}$ on $\mathfrak{a} \cap \mathfrak{b}$ (Theorem 3). These results will be used in subsequent papers for a detailed study of the irreducible characters of a semisimple Lie group. In § 10 we apply Theorem 3 to give a new and simpler proof of the main result of $[\mathfrak{g},\mathfrak{e})]$.

The rest of this paper is devoted to the proof of the second result mentioned at the beginning. It depends, in an essential way, on Theorem 1 and the theory of Fourier transforms for distributions. However, since the given distribution S is not assumed to be tempered, one has to construct a method of reducing the problem to the tempered case. This is done by means of Lemma 29. The last seven sections (§§ 15-21) are devoted to the proof of this lemma.

This work was partially supported by grants from the Sloan and the National Science Foundations.

§ 2. BEHAVIOUR OF T ON THE REGULAR SET

We use the terminology of [3 (h)] and [3 (i)]. Let g be a reductive Lie algebra over **R** and g' the set of all regular elements of g. Let $I(g_e)$ denote the subalgebra of all invariants in $S(g_e)$ (see $[3 (i), \S g]$). Fix a Euclidean measure dX on g.

Lemma 1. — Let T be a distribution on an open subset Ω of \mathfrak{g} . Assume that:

- 1) T is locally invariant;
- 2) There exists an ideal \mathfrak{U} in $I(\mathfrak{g}_c)$ such that $\dim(I(\mathfrak{g}_c)/\mathfrak{U}) < \infty$ and $\partial(u)T = 0$ for $u \in \mathfrak{U}$. Then there exists an analytic function F on $\Omega' = \Omega \cap \mathfrak{g}'$ such that

$$T(f) = \int f F dX$$

for all $f \in \mathbf{C}_c^{\infty}(\Omega')$.

Fix a point $H_0 \in \Omega'$. It is obviously enough to show that T coincides with an analytic function around H_0 . Fix a connected Lie group G with Lie algebra g and let \mathfrak{h} and A be the centralizers of H_0 in g and G respectively. Then \mathfrak{h} is a Cartan subalgebra of g and A is the corresponding Cartan subgroup of G [3(j)], Lemma 8]. Let $x \to x^*$ denote the natural projection of G on $G^* = G/A$. As usual we define $x^*H = xH$ ($x \in G, H \in \mathfrak{h}$). Then if $n = \dim \mathfrak{g}$ and $\mathfrak{h}' = \mathfrak{h} \cap \mathfrak{g}'$, the mapping $\varphi : (x^*, H) \to x^*H$ has rank n everywhere on $G^* \times \mathfrak{h}'$ [3(i)], Lemma 15]. Therefore we can select open connected neighborhoods G_0 and g_0 of 1 and g_0 and g_0 is open in g and g_0 defines an analytic diffeomorphism g_0 of $g_0^* \times \mathfrak{h}_0$ onto g_0 .

Fix a Euclidean measure dH on \mathfrak{h} and let σ_T denote the distribution on \mathfrak{h}_0 which corresponds to T under Lemma 17 of [3(i)]. As usual let π denote the product of all the positive roots of $(\mathfrak{g}, \mathfrak{h})$. Then if $\sigma = \pi \sigma_T$, we conclude from Theorem 2 of [3(i)] that $\partial(u_{\mathfrak{h}})\sigma = 0$ for $u \in \mathfrak{U}$. Let $\mathfrak{U}_{\mathfrak{h}}$ denote the image of \mathfrak{U} under the homomorphism $p \to p_{\mathfrak{h}}$ of $I(\mathfrak{g}_c)$ into $S(\mathfrak{h}_c)$. Put $\mathfrak{B} = S(\mathfrak{h}_c)\mathfrak{U}_{\mathfrak{h}}$. Since $\dim(I(\mathfrak{g}_c)/\mathfrak{U}) < \infty$, it follows from Lemma 19 of [3(i)] that $\dim(S(\mathfrak{h}_c)/\mathfrak{B}) < \infty$. Moreover it is obvious that $\partial(v)\sigma = 0$ for $v \in \mathfrak{B}$. Therefore from the corollary of [3(b), Lemma 27], we get the following result.

Lemma 2. — We can choose linear functions λ_i and polynomial functions p_i on \mathfrak{h}_c ($1 \leq i \leq r$) such that

$$\sigma(\beta) = \int \beta g d\mathbf{H} \qquad (\beta \in \mathbf{C}_c^{\infty}(\mathfrak{h}_0))$$

where

$$g(\mathbf{H}) = \sum_{1 \le i \le r} p_i(\mathbf{H}) e^{\lambda_i(\mathbf{H})}$$
 (\mathbf{H} \in \mathbf{h}_c).

This shows that

$$\mathbf{T}(f_{\alpha}) = \int \beta_{\alpha} \pi^{-1} g d\mathbf{H} \qquad (\alpha \in \mathbf{C}_{c}^{\infty}(\mathbf{G}_{0} \times \mathfrak{h}_{0}))$$

in the notation of [3(i), Lemma 17].

Since φ_0 is an analytic diffeomorphism, we can now define an analytic function F on Ω_0 as follows:

$$F(x^*H) = g(H)\pi(H)^{-1}$$
 $(x^* \in G_0^*, H \in \mathfrak{h}_0).$

Then if $\alpha \in C_c^{\infty}(G_0 \times \mathfrak{h}_0)$, we have

$$\int f_{\alpha} F dX = \int \alpha(x : H) F(xH) dx dH = \int \beta_{\alpha} \pi^{-1} g dH = T(f_{\alpha}).$$

Since the mapping $\alpha \to f_{\alpha}$ of $C_c^{\infty}(G_0 \times \mathfrak{h}_0)$ into $C_c^{\infty}(\Omega_0)$ is surjective [3(h), Theorem 1], this implies that T = F on Ω_0 and so Lemma 1 is proved.

Lemma 3. — The function F of Lemma 1 is locally summable on Ω .

Let $l=\operatorname{rank} \mathfrak{g}$ and t an indeterminate. We denote by $\eta(\mathbf{X})$ $(\mathbf{X} \in \mathfrak{g}_c)$ the coefficient of t^l in $\det(t-\operatorname{ad} \mathbf{X})$. Then we know (see $[\mathfrak{g}(j),\operatorname{Corollary}\ \mathfrak{g}$ of Lemma 30]) that $|\eta|^{-1/2}$ is locally summable on \mathfrak{g} . Since the singular set of \mathfrak{g} is of measure zero, it would be enough to show that there exists a neighborhood V (in Ω) of any given point $X_0 \in \Omega$, such that $|\eta|^{1/2}|F|$ is bounded on $V \cap \Omega'$.

Fix X_0 in Ω and a positive-definite quadratic form Q on g. For $\epsilon > 0$, let Ω_ϵ be the set of all $X \in g$ such that $Q(X - X_0) < \epsilon^2$. Then $\Omega_\epsilon \subset \Omega$ if ϵ is sufficiently small. Put

$$p(X) = (Q(X - X_0) - \varepsilon^2) \eta(X) \qquad (X \in \mathfrak{g}).$$

Then p is a polynomial function on g. Let g'' be the set of all points $X \in g$ where $p(X) \neq o$. By a theorem of Whitney [4, Theorem 4, p. 547] g'' has only a finite number of connected components. It is obvious that any connected component of $\Omega'_{\varepsilon} = \Omega_{\varepsilon} \cap g'$ is also a connected component of g''. Hence Ω'_{ε} has only a finite number of connected components (1). So it would be enough to show that $|\eta|^{1/2}|F|$ remains bounded on a connected component Ω^0 of Ω'_{ε} .

We now fix an element $H_0 \in \Omega^0$ and use the notation of the proof of Lemma 1. In particular φ is the mapping $(x^*, H) \to x^*H$ of $G^* \times \mathfrak{h}'$ into \mathfrak{g}' . Let U denote the connected component of $(\mathfrak{1}^*, H_0)$ in $\varphi^{-1}(\Omega^0)$. We claim that $\varphi(U) = \Omega^0$. Since φ is everywhere regular, $\varphi(U)$ is open in Ω^0 . Therefore since Ω^0 is connected, it would be enough to show that $\varphi(U)$ is closed in Ω^0 . So let (x_k^*, H_k) $(k \ge \mathfrak{1})$ be a sequence in U such that $X_k = x_k^* H_k$ converges to some point $X \in \Omega^0$. Then $\varphi(H_k) = \varphi(x_k^* H_k) \to \varphi(X) \neq 0$.

⁽¹⁾ This proof was pointed out to me by A. Borel.

Moreover $X_k \in \Omega^0 \subset \Omega_{\varepsilon}$. Since Ω_{ε} is a bounded set in \mathfrak{g} , we can conclude from Lemma 23 of $[\mathfrak{g}(j)]$ that H_k remains bounded. Hence by selecting a subsequence, we can arrange that H_k converges to some $H' \in \mathfrak{h}$. But then $\eta(H') = \eta(X) \neq 0$ and therefore $H' \in \mathfrak{h}'$. Hence $[\mathfrak{g}(j)]$, Lemma 8] A is the centralizer of H' in G and therefore $[\mathfrak{g}(j)]$, Lemma 7] x_k^* remains within a compact subset of G^* . So again by selecting a subsequence we can assume that $x_k^* \to x^*$ for some $x^* \in G^*$. Then $(x_k^*, H_k) \to (x^*, H')$ in $G^* \times \mathfrak{h}'$. Since $X_k \to X$, it follows that $x^*H' = X \in \Omega^0$ and therefore $(x^*, H') \in \varphi^{-1}(\Omega^0)$. But U, being a connected component of $\varphi^{-1}(\Omega^0)$, is closed in $\varphi^{-1}(\Omega^0)$. Hence $(x^*, H') \in U$ and $X = x^*H' \in \varphi(U)$. This proves that $\varphi(U)$ is closed in Ω^0 and therefore $\varphi(U) = \Omega^0$.

Now choose G_0 , \mathfrak{h}_0 as in the proof of Lemma 1. We may assume that $G_0^* \times \mathfrak{h}_0 \subset U$. Moreover we recall (see Lemma 2) that g is defined and analytic on \mathfrak{h} . Consider the function $v:(x^*,H)\to F(x^*H)-\pi(H)^{-1}g(H)$ on U. It is obviously analytic and it vanishes identically on $G_0^* \times \mathfrak{h}_0$. Therefore, since U is connected, v=0. This shows that

$$|\eta(x^*H)|^{1/2}|F(x^*H)| = |g(H)|$$

for $(x^*, H) \in U$. However $\varphi(U) = \Omega^0$ is contained in the bounded set Ω_{ε} . Therefore if V is the projection of U on \mathfrak{h} , it follows from $[\mathfrak{Z}(j), Lemma 2\mathfrak{Z}]$ that V is bounded. Hence g is bounded on V and therefore $|\eta|^{1/2}|F|$ is bounded on $\varphi(U) = \Omega^0$. This proves Lemma \mathfrak{Z} .

Corollary. — Let $p \in I(\mathfrak{g}_c)$. Then $\partial(p)F$ is also locally summable on Ω .

Since F is analytic and T = F on Ω' , it is clear that $\partial(p)T = \partial(p)F$ on Ω' . However the distribution $\partial(p)T$ obviously also satisfies all the conditions of Lemma 1. Therefore our assertion follows by applying Lemma 3 to $(\partial(p)T, \partial(p)F)$ in place of (T, F).

 Φ being a locally summable function on Ω , define the distribution T_{Φ} on Ω by

$$\mathbf{T}_{\Phi}(f) = \int f \Phi d\mathbf{X} \qquad (f \in \mathbf{C}_{c}^{\infty}(\Omega)).$$

We intend to show (under some mild extra conditions) that $T = T_F$.

Let Ω_a be the set of all points $X \in \Omega$ such that T coincides around X with an analytic function. Clearly Ω_a is open and there exists an analytic function F_a on Ω_a such that $T = F_a$ on Ω_a . Moreover $\Omega_a \supset \Omega'$ from Lemma 1 and therefore $F_a = F$ on Ω' . But then, since the singular set of g has measure zero, it is obvious that $T_{F_a} = T_F$. Hence we shall write F instead of F_a .

We say that an element $H \in g$ is of compact type if 1) ad H is semisimple and 2) the derived algebra of the centralizer 3 of H in g is compact. (It follows from 1) that 3 is reductive in g and therefore [3, 3] is semisimple.)

Lemma 4. — Every element of Ω of compact type lies in Ω_a .

Fix an element H_0 in Ω of compact type and let 3 denote the centralizer of H_0 in g. Then it is clear that 3 satisfies the conditions of $[3(i), \S 2]$. Define ζ and 3' as in $[3(i), \S 2]$. Let Ξ be the analytic subgroup of G corresponding to 3 and $x \to x^*$ the natural mapping of G on $G^* = G/\Xi$. Since 3 is reductive, Ξ is unimodular and therefore there exists an invariant measure dx^* on G^* . Select open neighborhoods G_0 and g_0

of I and H_0 in G and 3' respectively such that $\mathfrak{F}_0^{G_0} \subset \Omega$ and G_0 is connected. Let G_0^* denote the image of G_0 in G^* . Then if G_0 and \mathfrak{F}_0 are sufficiently small, the following conditions hold (see [3(e), pp. 654-655]).

- 1) There exists an analytic mapping ψ of G_0^* into G such that $(\psi(x^*))^* = x^* (x^* \in G_0^*)$ and ψ is regular on G_0^* .
- 2) The mapping $\varphi: (x^*, Z) \to \psi(x^*)Z$ of $G_0^* \times \mathfrak{z}_0$ into Ω is univalent. Put $\Omega_0 = \varphi(G_0^* \times \mathfrak{z}_0)$. Then Ω_0 is open in Ω and φ is an analytic diffeomorphism of $G_0^* \times \mathfrak{z}_0$ onto Ω_0 . Moreover since $\mathfrak{z}_1 = [\mathfrak{z}, \mathfrak{z}]$ is compact, $\mathfrak{z}_{00} = \bigcap_{\xi \in \Xi} \mathfrak{z}_0^{\xi}$ is open. Hence by replacing \mathfrak{z}_0 by \mathfrak{z}_{00} , we can assume that $\mathfrak{z}_0^\Xi = \mathfrak{z}_0$.

Let $\sigma_{\mathbb{T}}$ be the distribution on \mathfrak{z}_0 which corresponds to T under Lemma 17 of $[\mathfrak{z}(i)]$. Since $|\zeta|^{1/2}$ is an analytic function on \mathfrak{z}_0 , $\sigma = |\zeta|^{1/2}\sigma_{\mathbb{T}}$ is also a distribution on \mathfrak{z}_0 . Moreover since $\zeta^2 > 0$ on \mathfrak{z}_0 it follows from Theorem 2 of $[\mathfrak{z}(i)]$ that $\partial(u_{\mathfrak{z}})\sigma = 0$ for $u \in \mathfrak{U}$. Let $\mathfrak{U}_{\mathfrak{z}}$ denote the image of \mathfrak{U} in $I(\mathfrak{z}_c)$ under the mapping $p \to p_{\mathfrak{z}}$ of $I(\mathfrak{g}_c)$ into $I(\mathfrak{z}_c)$. Put $\mathfrak{B} = I(\mathfrak{z}_c)\mathfrak{U}_{\mathfrak{z}}$. Then $\partial(v)\sigma = 0$ for $v \in \mathfrak{B}$ and it follows from Lemma 19 of $[\mathfrak{z}(i)]$ that $\dim(I(\mathfrak{z}_c)/\mathfrak{B}) < \infty$.

Let c_3 be the center and \mathfrak{z}_1 the derived algebra of \mathfrak{z} . We identify \mathfrak{z}_1 with its dual under the Killing form ω_1 of \mathfrak{z}_1 . Select a base H_1, \ldots, H_r for \mathfrak{c}_3 over \mathbf{R} and put

$$\omega = H_1^2 + \ldots + H_r^2 - \omega_1$$
.

Then $\omega \in I(\mathfrak{z}_c)$ and since \mathfrak{z}_1 is compact, $\square = \partial(\omega)$ is an elliptic differential operator on \mathfrak{z} . Let $N = \dim(I(\mathfrak{z}_c)/\mathfrak{B})$. Then we can choose complex numbers c_1, \ldots, c_N such that

$$\omega^{N} + c_{1}\omega^{N-1} + \ldots + c_{N} \in \mathfrak{B}.$$

Hence

$$(\square^{N} + c_1 \square^{N-1} + \ldots + c_N) \sigma = 0.$$

This shows that σ satisfies an elliptic differential equation with constant coefficients. Therefore there exists an analytic function g on \mathfrak{z}_0 such that

$$\sigma(\beta) = \int \beta g dZ \qquad (\beta \in \mathbf{C}_c^{\infty}(\mathfrak{z}_0)).$$

Since ζ is invariant under Ξ , it follows from [3(i), Lemma 17] that g is locally invariant (with respect to 3). Therefore since Ξ is connected and $\mathfrak{F}_0^{\Xi} = \mathfrak{F}_0$, it follows that g is invariant under Ξ .

Now consider the analytic function F_0 on Ω_0 defined by

$$F_0(\varphi(x^*, Z)) = |\zeta(Z)|^{-1/2} g(Z)$$
 $(x^* \in G_0^*, Z \in g_0)$

Then if $\alpha \in C_c^{\infty}(G_0 \times \mathfrak{z}_0)$, we have (see [3(i), § 7])

$$\int f_{\alpha} \mathbf{F}_{0} d\mathbf{X} = \int \alpha(x : \mathbf{Z}) \mathbf{F}_{0}(x\mathbf{Z}) dx d\mathbf{Z}.$$

However if $x \in G_0$, it is clear that $x = \psi(x^*)\xi$ where $\xi \in \Xi$. Therefore

$$F_0(xZ) = F_0(\varphi(x^*, \xi Z)) = |\zeta(Z)|^{-1/2} g(Z)$$
 (Z \in 30)

613

since ζ and g are invariant under Ξ . This shows that

$$\int f_{\alpha} \mathbf{F}_{0} d\mathbf{X} = \int \alpha(x : \mathbf{Z}) |\zeta(\mathbf{Z})|^{-1/2} g(\mathbf{Z}) dx d\mathbf{Z}$$
$$= \int \beta_{\alpha} |\zeta|^{-1/2} g d\mathbf{Z} = \sigma_{\mathbf{T}}(\beta_{\alpha}) = \mathbf{T}(f_{\alpha})$$

from Lemma 17 of [3(i)]. Hence $T = F_0$ on Ω_0 and this proves that $H_0 \in \Omega_a$.

§ 3. SOME PROPERTIES OF COMPLETELY INVARIANT SETS

We keep to the above notation. An element $H \in \mathfrak{g}$ is called semisimple if ad H is semisimple. Moreover $X \in \mathfrak{g}$ is called nilpotent if $X \in \mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}]$ and ad X is nilpotent. It is obvious that if X is both semisimple and nilpotent then X = 0.

Lemma 5. — Any element $Y \in g$ can be written uniquely in the form Y = H + X where H is a semisimple and X a nilpotent element of g and [H, X] = o.

Let \mathfrak{c} be the center of \mathfrak{g} . Since $\mathfrak{g} = \mathfrak{c} + \mathfrak{g}_1$, the lemma follows from well-known facts about semisimple Lie algebras (see Bourbaki [2, p. 79]). H and X respectively are called the semisimple and the nilpotent components of Y.

Lemma 6. — Let 3 be a subalgebra of g which is reductive in g. An element Z of 3 is semisimple (or nilpotent) in 3, if and only if the same holds in g.

Let c_3 be the center of 3. Since 3 is reductive in g, every element of c_3 is semisimple in g. The lemma follows easily from this (see [2, p. 79]).

Corollary. — Let $Z \in \mathfrak{z}$. Then the semisimple component of Z in \mathfrak{z} is the same as in \mathfrak{g} . Similarly for the nilpotent component.

This is obvious from Lemma 5.

Lemma 7. — Let U_1 be a neighborhood of zero in g_1 and X a nilpotent element of g. Then we can choose $x \in G$ such that $xX \in U_1$.

We may assume that $X \neq 0$. Then by the Jacobson-Morosow theorem [3(h), Lemma 24], we can choose $H \in \mathfrak{g}_1$ such that [H, X] = 2X. Put $a_t = \exp(-tH) \in G$ $(t \in \mathbb{R})$. Then $a_t X = e^{-2t} X$ and therefore $a_t X \in U_1$ if t is positive and sufficiently large.

Corollary. — Let H denote the semisimple component of an element $Z \in \mathfrak{g}$. Then (1) $H \in Cl(Z^G)$.

Let X be the nilpotent component of Z so that Z=H+X. Consider the centralizer 3 of H in g. Then 3 is reductive in g and $X \in 3$. Hence X is nilpotent in 3 (Lemma 6). Let Ξ be the analytic subgroup of G corresponding to 3. Then by Lemma 7, applied to 3, we have

$$H \in H + Cl(X^{\Xi}) = Cl(Z^{\Xi}) \subset Cl(Z^{G})$$
.

Let Ω be a subset of g. We say that Ω is completely invariant if it has the following property: C being any compact subset of Ω , $Cl(C^G) \subset \Omega$.

⁽¹⁾ CIS denotes the closure of S.

Lemma 8. — Let Ω be a completely invariant subset of \mathfrak{g} and Z an element in Ω . Then if H is the semisimple component of Z, $H \in \Omega$.

This is obvious from the corollary of Lemma 7.

Let \mathcal{N} be the set of all nilpotent elements of g.

Corollary 1. — Let S be the set of all semisimple elements of Ω and Φ an invariant subset of Ω which is closed in Ω . Then $\Phi \cap S = \emptyset$ implies that $\Phi = \emptyset$. Similarly $\Phi \cap S \subseteq \{0\}$ implies that $\Phi \subseteq \Omega \cap \mathcal{N}$.

For suppose $Z \in \Phi$. Then if H is the semisimple component of Z, $H \in Cl(Z^G) \subseteq \Omega$. Since Φ is invariant and closed in Ω , it follows that $H \in \Phi \cap S$. The two statements of the corollary are now obvious.

Corollary 2. — Let Ω_0 be an open and invariant subset of Ω . Assume that $S \subset \Omega_0$. Then $\Omega_0 = \Omega$.

This follows from Corollary 1 by taking Φ to be the complement of Ω_0 in Ω .

Let $\mathfrak c$ be the center of $\mathfrak g$. Fix an open and completely invariant subset Ω of $\mathfrak g$ and a point $X_0=C_0+Z_0$ ($C_0\in\mathfrak c$, $Z_0\in\mathfrak g_1$) in Ω . Select a relatively compact and open neighborhood $\mathfrak c_0$ of C_0 in $\mathfrak c$ such that $\operatorname{Cl}(\mathfrak c_0)+Z_0\subset\Omega$.

Lemma 9. — Let Ω_1 be the set of all $Z \in \mathfrak{g}_1$ such that $Z + \operatorname{Clc}_0 \subset \Omega$. Then Ω_1 is an open and completely invariant neighborhood of Z_0 in \mathfrak{g}_1 .

It is obvious that Ω_1 is an open neighborhood of Z_0 in \mathfrak{g}_1 . Fix a compact set Q in Ω_1 . Then $\operatorname{Clc}_0 + Q$ is a compact subset of Ω and therefore

$$Cl(Clc_0 + Q)^G = Clc_0 + Cl(Q^G) \subset \Omega,$$

since Ω is completely invariant. This shows that $Cl(Q^G) \subset \Omega_1$ and therefore Ω_1 is also completely invariant.

Lemma 10. — The following three conditions on Ω are equivalent:

- I) $\Omega \cap \mathcal{N} \neq \emptyset$;
- 2) $0 \in \Omega$;
- 3) $\mathcal{N} \subset \Omega$.

Let $X \in \Omega \cap \mathcal{N}$. By Lemma 8, $o \in \Omega$. Hence 1) implies 2). Now assume $o \in \Omega$. Then if $X \in \mathcal{N}$, it follows from Lemma 7 that $X^x \in \Omega$ for some $x \in G$. Since Ω is invariant, this means that $X \in \Omega$. Therefore 2) implies 3). It is obvious that 3) implies 1).

\S 4. THE MAIN PART OF THE PROOF OF THEOREM 1

We shall now begin the proof of the following theorem (cf. [3(g), Lemma 1]). Theorem 1. — Let $\mathfrak g$ be a reductive Lie algebra over $\mathbf R$, Ω an open and completely invariant subset of $\mathfrak g$ and T a distribution on Ω . Assume that:

- 1) T is invariant;
- 2) There exists an ideal \mathfrak{U} in $I(\mathfrak{g}_c)$ such that $\dim(I(\mathfrak{g}_c)/\mathfrak{U}) < \infty$ and $\partial(u)T = 0$ for $u \in \mathfrak{U}$. Then T is a locally summable function on Ω which is analytic on $\Omega' = \Omega \cap \mathfrak{g}'$.

We use induction on dim g. Let F be the analytic function on Ω' corresponding to Lemma 1. Then by Lemma 3, F is locally summable on Ω and we have to show that $T = T_F$.

Let $\mathfrak c$ be the center and $\mathfrak g_1$ the derived algebra of $\mathfrak g$. First assume that $\mathfrak c \not= \{ o \}$. Fix a point $X_0 = C_0 + Z_0$ ($C_0 \in \mathfrak c$, $Z_0 \in \mathfrak g_1$) in Ω . We have to prove that $T = T_F$ around X_0 . Select an open and relatively compact neighborhood $\mathfrak c_0$ of C_0 in $\mathfrak c$ such that $(Cl\mathfrak c_0) + Z_0 \subset \Omega$. Let Ω_1 be the set of all elements $Z \in \mathfrak g_1$ such that $Cl\mathfrak c_0 + Z \subset \Omega$. Then by Lemma 9, Ω_1 is also completely invariant.

Fix Euclidean measures dC and dZ on \mathfrak{c} and \mathfrak{g}_1 respectively such that dX = dCdZ for X = C + Z ($C \in \mathfrak{c}$, $Z \in \mathfrak{g}_1$) and, for any $\alpha \in C_e^{\infty}(\mathfrak{c}_0)$, consider the distribution θ_{α} on Ω_1 given by

$$\theta_{\alpha}(\beta) = T(\alpha \times \beta)$$
 $(\beta \in C_c^{\infty}(\Omega_1)).$

Then if G_1 is the analytic subgroup of G corresponding to g_1 , it is clear that θ_{α} is invariant under G_1 . Moreover $I(g_c) = S(\mathfrak{c}_c)I(g_{1c})$ since $g = \mathfrak{c} + g_1$. Put $\mathfrak{U}_1 = \mathfrak{U} \cap I(g_{1c})$. Then it is obvious that

$$\dim(\mathbf{I}(\mathfrak{g}_{1c})/\mathfrak{U}_1) \leq \dim(\mathbf{I}(\mathfrak{g}_c)/\mathfrak{U}) < \infty$$

and $\partial(u)\theta_{\alpha} = 0$ for $u \in \mathfrak{U}_1$. Therefore, since dim $g_1 < \dim g$, it follows by the induction hypothesis that θ_{α} coincides on Ω_1 with a locally summable function g_{α} . Put $\Omega'_1 = \Omega_1 \cap g'_1$ where g'_1 is the set of those elements of g_1 which are regular in g_1 . Since $g' = \mathfrak{c} + g'_1$, it is clear that $\mathfrak{c}_0 + \Omega'_1 \subset \Omega'$. Moreover since $T = T_F$ on Ω' , it follows that

$$\theta_{\alpha}(\beta) = T(\alpha \times \beta) = T_{F}(\alpha \times \beta) = \int \alpha(C) \beta(Z) F(C + Z) dC dZ$$

for $\beta \in C_c^{\infty}(\Omega_1')$. Since g_{α} is analytic on Ω_1' (by the induction hypothesis), it is clear from the above relation that

$$g_{\alpha}(\mathbf{Z}) = \int \alpha(\mathbf{C}) \mathbf{F}(\mathbf{C} + \mathbf{Z}) d\mathbf{C}$$
 ($\mathbf{Z} \in \Omega_1'$).

But since g_{α} and F are locally summable on Ω_1 and Ω respectively, we can now conclude that

$$T(\alpha \times \beta) = \theta_{\alpha}(\beta) = \int \beta(Z)\alpha(C)F(C+Z)dCdZ = T_{F}(\alpha \times \beta)$$

for $\beta \in C_c^{\infty}(\Omega_1)$. This proves (see [3(h), Lemma 3]) that $T = T_F$ on $\mathfrak{c}_0 + \Omega_1$.

So now we can assume that $\mathfrak{c} = \{ o \}$ and therefore \mathfrak{g} is semisimple. Fix a semisimple element $H_0 \neq 0$ in Ω . We shall first prove that $T = T_F$ around H_0 . Let \mathfrak{g} be the centralizer of H_0 in \mathfrak{g} and Ξ the analytic subgroup of G corresponding to \mathfrak{g} . Define ζ and \mathfrak{g}' as in $[\mathfrak{g}(i), \S 2]$. Then $\zeta(H_0) \neq 0$. Let $\Omega_{\mathfrak{g}}$ be the set of all $Z \in \mathfrak{g} \cap \Omega$ such that $|\zeta(Z)| > |\zeta(H_0)|/2$. Then $\Omega_{\mathfrak{g}}$ is an open neighborhood of H_0 in \mathfrak{g}' . Moreover since ζ is invariant under Ξ , it follows easily that $\Omega_{\mathfrak{g}}$ is completely invariant in \mathfrak{g} . Let σ_T be the distribution on $\Omega_{\mathfrak{g}}$ corresponding to T under $[\mathfrak{g}(i), Lemma 17]$ with $G_0 = G$ and $\mathfrak{g}_0 = \Omega_{\mathfrak{g}}$. Then by Corollary 1 of $[\mathfrak{g}(i), Lemma 17]$, σ_T is invariant under Ξ . Now $\zeta^2 > 0$ on $\Omega_{\mathfrak{g}}$. Hence $\sigma = |\zeta|^{1/2} \sigma_T$ is also an invariant distribution on $\Omega_{\mathfrak{g}}$ and

it follows from Theorem 2 of [3(i)] that $\partial(u_3)\sigma=0$ for $u\in \mathfrak{U}$. Let \mathfrak{U}_3 denote the image of \mathfrak{U} under the homomorphism $p\to p_3$ of $I(\mathfrak{g}_c)$ into $I(\mathfrak{z}_c)$. Then if $\mathfrak{B}=I(\mathfrak{z}_c)\mathfrak{U}_3$, it is clear from Lemma 19 of [3(i)] that $\dim(I(\mathfrak{z}_c)/\mathfrak{B})<\infty$. On the other hand $\dim\mathfrak{z}<\dim\mathfrak{g}$ since \mathfrak{g} is semisimple and $H_0\neq 0$. Therefore the induction hypothesis is applicable to $(\sigma,\Omega_3,\mathfrak{B})$ in place of (T,Ω,\mathfrak{U}) . Let Ω'_3 be the set of all points in Ω_3 which are regular in \mathfrak{z} . Then σ coincides with a locally summable function g on Ω_3 which is analytic on Ω'_3 . This shows that

$$\mathbf{T}(f_{\alpha}) = \sigma_{\mathbf{T}}(\beta_{\alpha}) = \int \beta_{\alpha} |\zeta|^{-1/2} g dZ \qquad (\alpha \in \mathbf{C}_{c}^{\infty}(\mathbf{G} \times \Omega_{\mathfrak{z}}))$$

in the notation of [3(i), Lemma 17]. On the other hand since $\Omega_3 \subset \mathfrak{F}_3$, it is clear that $\Omega_3' \subset \Omega'$. Moreover $T = T_F$ on Ω' . Therefore

$$T(f_{\alpha}) = T_{F}(f_{\alpha}) = \int \alpha(x : Z)F(xZ)dxdZ$$

for $\alpha \in C_c^{\infty}(G \times \Omega_3)$. However T is invariant and therefore the same holds for F. Hence

$$T(f_{\alpha}) = \int \beta_{\alpha}(Z)F(Z)dZ.$$

This proves that $g(Z) = |\zeta(Z)|^{1/2} F(Z)$ for $Z \in \Omega_3'$. Now fix $\alpha \in C_c^{\infty}(G \times \Omega_3)$. Then

$$\begin{split} \mathbf{T}(f_{\alpha}) &= \int \beta_{\alpha} |\zeta|^{-1/2} g d\mathbf{Z} = \int_{\Omega_{\delta}'} \beta_{\alpha} |\zeta|^{-1/2} g d\mathbf{Z} \\ &= \int_{\mathbb{G} \times \Omega_{\delta}'} \alpha(x:\mathbf{Z}) \mathbf{F}(x\mathbf{Z}) dx d\mathbf{Z} = \mathbf{T}_{\mathbf{F}}(f_{\alpha}) \end{split}$$

from Corollary 2 of [3(h), Theorem 1]. This proves that $T = T_F$ around H_0 .

Put $\theta = T - T_F$. Then θ is an invariant distribution on Ω .

Lemma 11. — Let N be the set of all nilpotent elements of g. Then

Supp
$$\theta \subset \mathcal{N} \cap \Omega$$
.

It follows from the above proof that no semisimple element of Ω , other than zero, can lie in Supp θ . Therefore our assertion follows immediately by taking $\Phi = \text{Supp }\theta$ in Corollary 1 of Lemma 8.

As usual we identify g_c with its dual under the Killing form ω of g.

Lemma 12. — Assume that there exists a complex number c and an integer $r \ge 0$ such that $(\partial(\omega)-c)^rT=0$. Then $T=T_F$.

We shall prove this by induction on r. If r=0 then T=0 and our statement is true. So assume that $r\geq 1$. Put $T_0=(\partial(\omega)-c)T$. Then T_0 satisfies all the conditions of Theorem 1 and $(\partial(\omega)-c)^{r-1}T_0=0$. Moreover since T=F on Ω' and F is analytic on Ω' , it is obvious that $T_0=(\partial(\omega)-c)F$ on Ω' . Therefore it follows by the induction hypothesis that $T_0=T_{F_0}$ where $F_0=(\partial(\omega)-c)F$ (see also the corollary of Lemma 3). Hence

$$(\partial(\omega)-c)(\theta+T_{\rm F})=T_{\rm F_0}$$

and therefore

$$(\partial(\omega)-c)\theta=T_{\partial(\omega)F}-\partial(\omega)T_{F}.$$

Lemma 13. — $T_{\partial(\omega)F}\partial$ — $(\omega)T_F = 0$.

Assuming this for a moment, we shall complete the proof of Lemma 12. For then we have $(\partial(\omega)-c)\theta=0$ and therefore we conclude from [3(h), Theorem 5] that $\theta=0$. Hence $T=T_F$.

The proof of Lemma 13 is based on Theorem 4 of [3(j)] and requires some preparation. Select a system of generators (1) (p_1, \ldots, p_m) for the algebra $I(\mathfrak{g}_c)$ over \mathbb{C} .

Lemma 14. — Fix $X_0 \in \mathfrak{g}$ and for any $\varepsilon > 0$, let $U_{X_0}(\varepsilon)$ denote the set of all $X \in \mathfrak{g}$ such that $|p_i(X) - p_i(X_0)| < \varepsilon \ (1 \le i \le m)$. Then $U_{X_0}(\varepsilon)$ is open and completely invariant.

 $U_{X_o}(\epsilon)$ is obviously open. Let C be a compact subset of $U_{X_o}(\epsilon)$. Then it is clear that we can choose a (0 \leq $a\leq$ ϵ) such that

$$\sup_{\mathbf{X} \in \mathbb{C}} |p_i(\mathbf{X}) - p_i(\mathbf{X}_0)| \leq a \qquad (1 \leq i \leq m).$$

Since p_i is invariant, it is obvious that $|p_i(Y)-p_i(X_0)| \le a$ for any $Y \in Cl(\mathbb{C}^G)$ and therefore $U_{X_0}(\varepsilon)$ is completely invariant.

Now put $J_0=T_{\partial(\omega)F}-\partial(\omega)T_F$ and fix $X_0\in\Omega$. We have to prove that $J_0=0$ around X_0 . Define $\Omega(\epsilon)=\Omega\cap U_{X_0}(\epsilon)$ for $\epsilon>0$. Then $\Omega(\epsilon)$ is an open and completely invariant neighborhood of X_0 . We shall now use the notation of [3(j), Theorem 4]. Put $\Phi_i(\epsilon)=\mathfrak{h}_i\cap\Omega(\epsilon)$ and $\Phi_i=\bigcap_{\epsilon>0}\Phi_i(\epsilon)$ ($1\leq i\leq r$). If $H\in\Phi_i$, it is clear that $p(H)=p(X_0)$ for $p\in I(\mathfrak{g}_e)$. Hence it follows from Chevalley's theorem [3(e), Lemma 9] that Φ_i is a finite set. For each $H\in\Phi_i$, choose two open convex neighborhoods U_H , V_H of H in \mathfrak{h}_i such that $ClU_H\subset V_H\subset\Phi_i(1)$ and $V_H\cap V_{H'}=\emptyset$ for $H\neq H'$ $(H,H'\in\Phi_i)$. Then ClV_H is compact (see the proof of Lemma 23 of [3(j)]). Put

$$\mathbf{U}_{i} = \bigcup_{\mathbf{H} \in \Phi_{i}} \mathbf{U}_{\mathbf{H}}, \quad \mathbf{V}_{i} = \bigcup_{\mathbf{H} \in \Phi_{i}} \mathbf{V}_{\mathbf{H}}$$

and select $\alpha_H \in C_c^{\infty}(V_H)$ such that $\alpha_H = \tau$ on $U_H (H \in \Phi_i)$. Define

$$\alpha_i = \sum_{\mathrm{H} \in \Phi_i} \alpha_{\mathrm{H}}.$$

Let F_i denote the restriction of F on $\Omega' \cap \mathfrak{h}_i = \Omega \cap \mathfrak{h}_i'$. Fix i and let P_c be the set of all complex positive roots of \mathfrak{h}_i . Let Q be a connected component of $\mathfrak{h}_i'(S)$ and Q_1 the set consisting of all regular and semiregular points of Q. If β is a root of (g, \mathfrak{h}_i) which vanishes at some point H_0 in Q_1 , then it is clear that β is compact and therefore H_0 is of compact type in g. Obviously Q_1 is open in \mathfrak{h}_i . Therefore by Lemma 4, F_i can be extended to an analytic function on $Q_1 \cap \Omega$ which we again denote by F_i .

Now fix $H \in \Phi_i$ and consider $Q_1 \cap V_H$. Then $Q_1 \cap V_H$ is connected (see the corollary of [3(j), Lemma 19]). Also $V_H \subset \Omega$ and therefore F_i is analytic on the connected set $Q_1 \cap V_H$. Hence by Lemma 2, there exists an analytic function h_H on h_i such that $\pi_i F_i = h_H$ on $Q_1 \cap V_H$. Then $\alpha_H \pi_i F_i = \alpha_H h_H$ on $Q_1 \cap \Omega$ and therefore

$$\alpha_i \pi_i \mathbf{F}_i = \sum_{\mathbf{H} \in \Phi_i} \alpha_{\mathbf{H}} h_{\mathbf{H}}$$

⁽¹⁾ Since $\mathfrak g$ is semisimple, it follows from the theory of invariants that $I(\mathfrak g_c)$ is finitely generated.

on $Q_1 \cap \Omega$. Put $g_i' = \alpha_i \pi_i F_i$. Then the above result shows that g_i' is of class C^{∞} on $Cl(Q_1) = Cl(Q)$.

Choose $\varepsilon > 0$ so small that $\Phi_i(\varepsilon) \subset U_i$ ($1 \le i \le r$). Then from Corollary 1 of [3(j), 1] Lemma 30 we can choose numbers c_i ($1 \le i \le r$) such that

$$\int fud\mathbf{X} = \sum_{1 \leq i \leq r} c_i \int_{\mathfrak{h}_i} \psi_{f,i} \, \varepsilon_{\mathbf{R},i} \pi_i u_i d_i \mathbf{H} \qquad (f \in \mathbf{C}_c^{\infty}(\Omega))$$

for any invariant and locally summable function u on Ω . (Here u_i is the restriction of u on $\Omega \cap \mathfrak{h}_i$.) Now suppose $f \in C_c^{\infty}(\Omega(\varepsilon))$. Since $\Omega(\varepsilon)$ is completely invariant, it follows from [3(j), Lemma 22] that

Supp
$$\psi_{i,i} \subset \Omega(\varepsilon) \cap \mathfrak{h}_i = \Phi_i(\varepsilon) \subset U_i$$
.

Hence

$$\int fud\mathbf{X} = \sum_{1 \leq i \leq r} c_i \int \psi_{l,i} \varepsilon_{\mathbf{R},i} \alpha_i \pi_i u_i d_i \mathbf{H}.$$

Now take u = F. Then $c_i \varepsilon_{R,i} \alpha_i \pi_i u_i = c_i \varepsilon_{R,i} g_i' = g_i$ (say). On the other hand, by the corollary of Lemma 3, we can also take $u = \partial(\omega)F$. Then it follows from $[3(\epsilon), Lemma 3]$ that $u_i = \pi_i^{-1} \partial(\omega_i)(\pi_i F_i)$ on $\mathfrak{h}_i' \Omega$ and therefore

$$c_i \varepsilon_{\mathbf{R},i} \alpha_i \pi_i u_i = \partial(\omega_i) g_i$$

on $U_i \cap \mathfrak{h}'_i$. Therefore

$$\begin{split} \mathbf{J_0}(f) = & \int (\mathbf{F}\,\partial(\mathbf{\omega})f - \partial(\mathbf{\omega})\mathbf{F}\,.f) d\mathbf{X} \\ = & \sum_{1 < i < r} \int_{\mathfrak{h}_i} (\partial(\mathbf{\omega}_i)\psi_{f,i}\,.g_i - \psi_{f,i}\,.\,\partial(\mathbf{\omega}_i)g_i) d_i \mathbf{H} \end{split}$$

from [3(d), Theorem 3]. Now define J as in [3(j), Theorem 4], corresponding to the above functions g_i ($1 \le i \le r$). Then the above result shows that $J = J_0$ on $\Omega(\varepsilon)$. Since g_i is obviously of class C^{∞} on the closure of each connected component of $\mathfrak{h}'_i(S)$, Theorem 4 of [3(j)] is applicable. Fix an open and relatively compact neighborhood V of X_0 in $\Omega(\varepsilon)$. Then since $\Omega(\varepsilon)$ is completely invariant, $\operatorname{Cl}(V^G) \subset \Omega(\varepsilon)$. Let $\mathscr S$ denote the set of all semiregular elements of $\Omega(\varepsilon)$ of noncompact type. Then in order to prove that $J_0 = 0$ on V, it is enough, from [3(j), Theorem 4], to verify that $\operatorname{Supp} J_0 \cap \mathscr S = \emptyset$. However $J_0 = (\partial(\omega) - \varepsilon)\theta$ and so it follows from Lemma 11 that

Supp
$$J_0 \subset \text{Supp } \theta \subset \mathcal{N} \cap \Omega$$
.

Since zero is the only semisimple element in \mathcal{N} , it is clear that $\mathcal{N} \cap \mathcal{S} \subset \{0\}$. Therefore we may assume that \mathcal{S} contains zero. But then it follows from $[3(j), \S 4]$ that \mathfrak{g} is isomorphic to the three dimensional noncompact semisimple algebra \mathfrak{I} of $[3(j), \S 2]$. We shall consider this case in detail in the next section.

§ 5. SOME COMPUTATIONS ON I

So we now assume that g = I and $o \in \Omega$. Then we have to show that $J_0 = o$ around zero. Hence we take $X_0 = o$ (see § 4). Then it follows from Lemma 10 that $\mathscr{N} \subset \Omega(\varepsilon)$. Now \mathscr{N} is also the singular set of g in the present case. Therefore Supp $J \subset \mathscr{N}$. However $J = J_0$ on $\Omega(\varepsilon)$ and so it is obvious that $J = J_0$ on Ω .

Lemma 15. — We can choose complex numbers a, a⁺ and a⁻ such that

$$J(f) = af(0) + a^{+}c^{+}(f) + a^{-}c^{-}(f)$$
 $(f \in C_{c}^{\infty}(g))$

in the notation of [3(j), Lemma 34].

This is obvious from [3(j), Lemmas 2, 3 and 26].

Corollary. — $\omega J = 0$.

Since $\omega = 0$ on \mathcal{N} , this is an immediate consequence of Lemma 15.

We have seen in § 4 that Supp $J_0 \subset \mathcal{N}$. Fix an element $X \neq 0$ in \mathcal{N} . We shall first prove that $J_0 = 0$ around X. By the Jacobson-Morosow theorem [3(h), Lemma 24], we can select H, Y in g such that

$$[H, X] = 2X,$$
 $[H, Y] = -2Y,$ $[X, Y] = H.$

Then $\mathfrak{z}_X = \mathbf{R}X$ is the centralizer of X in g and $\mathfrak{g}_X = [X, \mathfrak{g}] = \mathbf{R}H + \mathbf{R}X$. Take $U = \mathbf{R}Y$ and $V = \mathbf{R}H + \mathbf{R}Y$ so that $\mathfrak{g} = U + \mathfrak{g}_X = \mathfrak{z}_X + V$. We now use the notation of $[\mathfrak{g}(h), \S 7]$. Then $4\omega = 2^{-1}H^2 + 2XY$, $\omega(X + tY) = 8t$ and

$$\Gamma_{\!X+tY}(Y^2\!\otimes\! \mathbf{1})\!=\!H^2\!-\!\mathbf{2}Y, \qquad \Gamma_{\!X+tY}(H\!\otimes\! Y)\!=\!\mathbf{2}(XY\!-\!Y\!-\!tY^2)$$

for $t \in \mathbf{R}$. Hence

$$\Gamma_{X+tY}\left(\frac{1}{2}Y^2\otimes I + H\otimes Y + I\otimes(3Y+2tY^2)\right) = 4\omega.$$

This means that

$$4\Delta(\partial(\omega)) = 3D + 2tD^2$$

on U' in the notation of $[3(h), \S 8]$. (Here D = d/dt.) On the other hand $(\partial(\omega) - c)\theta = J_0$ and θ and J_0 are both invariant distributions. Hence

$$(\Delta - c)\sigma_{\theta} = \sigma_{I_{\bullet}}$$

in the notation of [3(h), Theorem 3] where $\Delta = \Delta(\partial(\omega))$.

Since Supp $\theta \subset \mathcal{N}$, we can regard σ_{θ} as a distribution on an open neighborhood U_0 of the origin in **R** and assume that Supp $\sigma_{\theta} \subset \{0\}$ (see [3(h), Lemma 23]). If $\sigma_{\theta} = 0$, it follows from [3(h), Theorem 2] that $\theta = 0$ around X and therefore the same holds for J_0 . Hence we may assume that $o \in \text{Supp } \sigma_{\theta}$. Then (see [3(h), Lemma 20])

$$\sigma_{\theta} = \sum_{0 \le k \le m} a_k \mathbf{D}^k \delta$$

where δ denotes the Dirac distribution $\beta \to \beta(0)$ ($\beta \in C_c^{\infty}(U_0)$) and a_k are complex numbers $(a_m \neq 0)$. Now $\omega J = \omega J_0 = 0$ on Ω . Since $\omega(X + tY) = 8t$, it follows that $t\sigma_{J_0} = 0$ on U_0 . Hence

$$\sum_{0 < k < m} a_k t (3D + 2tD^2 - 4c)D^k \delta = 0.$$

But it is easy to verify that

$$tD^k\delta = -kD^{k-1}\delta,$$

 $t^2D^k\delta = k(k-1)D^{k-2}\delta$ $(k \ge 0)$

where $D^{\nu}\delta$ should be interpreted to mean zero if $\nu < 0$. Therefore

$$\sum_{0 \le k \le m} a_k \{ (k+1)(2k+1)D^k \delta + 4ckD^{k-1} \delta \} = 0.$$

But since the distributions $D^k\delta$ $(k \ge 0)$ on U_0 are linearly independent, we conclude that $(m+1)(2m+1)a_m=0$. However this is impossible since $m\ge 0$ and $a_m \ne 0$. This contradiction shows that $\sigma_0 = 0$ and therefore $\theta = J_0 = 0$ around X. This proves that Supp $\theta \subset \{0\}$ and Supp $J_0 \subset \{0\}$.

Now $J=J_0$ on Ω . Hence it follows (see [3(e), p. 685]) that $a^+=a^-=0$ in Lemma 15 and therefore $J_0=J=a\delta_0$ on Ω . Here δ_0 is the Dirac distribution $f\to f(0)$ ($f\in C_c^\infty(\mathfrak{g})$) on \mathfrak{g} . But since Supp $\mathfrak{g}\subset\{0\}$, we conclude from [3(h), Lemma 20] that $\theta=\partial(p)\delta_0$ where $p\in S(\mathfrak{g}_c)$. On the other hand $(\partial(\omega)-c)\theta=J_0=a\delta_0$ on Ω . Therefore $(\omega-c)p=a$ again from [3(h), Lemma 20]. Since ω is homogeneous of degree 2, this is possible only if p=a=0. Therefore $\theta=J_0=0$ and so Lemma 13 is now proved.

§ 6. COMPLETION OF THE PROOF OF THEOREM 1

It remains to complete the proof of Theorem 1 in case g is semisimple. Let \mathfrak{T} be the vector space of all distributions on Ω of the form $\partial(p)T$ $(p \in I(g_c))$. Then it is clear that

$$\dim \mathfrak{T} \leq \dim(\mathbf{I}(\mathfrak{q}_e)/\mathfrak{U}) \leq \infty$$

and every element of \mathfrak{T} satisfies all the conditions of Theorem 1. The mapping $S \to \partial(\omega)S$ ($S \in \mathfrak{T}$) is obviously an endomorphism of \mathfrak{T} . Hence we can choose a base T_j ($1 \le j \le N$) for \mathfrak{T} over \mathbf{C} with the following property. There exist complex numbers c_j and integers $r_j \ge 0$ such that

$$(\partial(\omega)-c_j)^r i \mathbf{T}_j = 0 \qquad (\mathbf{I} \leq j \leq \mathbf{N}).$$

Then Lemma 12 is applicable to T_j . Let F_j be the analytic function on Ω' such that $T_j = F_j$ on Ω' (Lemma 1). Then F_j is locally summable on Ω (Lemma 3) and $T_j = T_{F_j}$ (Lemma 12). Since (T_j) ($1 \le j \le N$) is a base for \mathfrak{T} , $T = \sum_j a_j T_j$ for some $a_j \in \mathbf{C}$. Then if $F = \sum_j a_j F_j$, it is obvious that $T = T_F$. This proves Theorem 1.

§ 7. SOME CONSEQUENCES OF THEOREM 1

We shall now derive some consequences of Theorem 1. Define $\mathfrak{I}(\mathfrak{g}_e)$ as in $[\mathfrak{Z}(i), \S 4]$. We keep to the notation of Theorem 1.

Lemma 16. — Fix $D \in \mathfrak{I}(\mathfrak{g}_c)$. Then the distribution DT also satisfies the conditions of Theorem 1. Hence DF is locally summable on Ω and $DT = T_{DF}$.

Corollary. — Let D* denote, as usual, the adjoint of D. Then

$$\int f \mathbf{D} \mathbf{F} d\mathbf{X} = \int \mathbf{D}^* f \cdot \mathbf{F} d\mathbf{X} \qquad (f \in \mathbf{C}_c^{\infty}(\Omega)).$$

This is merely a restatement of the relation $DT = T_{DF}$.

Since the distribution DT is obviously invariant, it is enough to verify that the dimension of the space of all distributions of the form $\partial(p)(DT)$ $(p \in I(\mathfrak{g}_c))$ is finite. This requires some preparation.

Let us now use the notation of $[3(i), \S 3]$. For any $p \in S(E)$, let r_p and d_p denote the endomorphisms $D \to D \circ \partial(p)$ and (1) $D \to \{\partial(p), D\}$ $(D \in \mathfrak{D}(E))$ respectively of $\mathfrak{D}(E)$.

Lemma 17. — Fix $p \in S(E)$. Then for every $D \in \mathfrak{D}(E)$ we can choose an integer $N \ge 0$ such that $d_n^N D = 0$.

Let A be the set of all $p \in S(E)$ for which the lemma holds. We claim that A is a subalgebra of S(E). Observe that d_p , r_p , d_q , r_q $(p, q \in S(E))$ all commute with each other and

$$d_{pq} = d_p d_q + r_p d_q + d_p r_q.$$

Now fix p, q in A and $D \in \mathfrak{D}(E)$ and choose an integer $N \ge 0$ such that $d_p^N D = d_q^N D = 0$. Then it is obvious that $(d_p + d_q)^{2N} D = 0$ and

$$d_{pq}^{3N}$$
D = $(d_p d_q + r_p d_q + d_p r_q)^{3N}$ D = 0.

This shows that p+q and pq are both in A and therefore A is a subalgebra. On the other hand if $p \in P(E)$, $q \in S(E)$ and $X \in E$, it is obvious that

$$d_{\mathbf{x}}^{\mathbf{N}}(\mathbf{p}\partial(q)) = (d_{\mathbf{x}}^{\mathbf{N}}\mathbf{p})\partial(q) = \mathbf{0}$$

if $N > d^0 p$. This shows that $E \subseteq A$ and therefore A = S(E).

We now return to the proof of Lemma 16. Let \mathfrak{T} denote the space of all distributions of the form $\partial(p)T$ ($p \in I(\mathfrak{g}_c)$). Then dim $\mathfrak{T} < \infty$. Since the algebra $I(\mathfrak{g}_c)$ is abelian, we can choose a base T_1, \ldots, T_m for \mathfrak{T} over \mathbf{C} and homomorphisms χ_1, \ldots, χ_m of $I(\mathfrak{g}_c)$ into \mathbf{C} such that

$$(\partial(\boldsymbol{p}) - \gamma_i(\boldsymbol{p}))^m \mathbf{T}_i = \mathbf{0}$$
 (1 < i < m).

Since T is a linear combination of T_i , it would be enough to prove Lemma 16 under the additional assumption that

$$(\partial(p) - \chi(p))^m T = 0 \qquad (p \in I(\mathfrak{g}_c))$$

⁽¹⁾ As usual $\{D_1,D_2\}=D_1\circ D_2-D_2\circ D_1$ for two differential operators $D_1,\ D_2$

for some integer $m \ge 0$ and some homomorphism χ of $I(\mathfrak{g}_c)$ into \mathbb{C} . Now fix $p \in I(\mathfrak{g}_c)$ and choose $N \ge 0$ so large that $d_p^N D = 0$ (in the notation of Lemma 17 with $E = \mathfrak{g}_c$). Then

$$\begin{split} (\partial(p) - \chi(p))^{\mathbf{N} + m} \circ \mathbf{D} &= (d_p + r_p - \chi(p))^{\mathbf{N} + m} \mathbf{D} \\ &= \sum_{0 \le k \le \mathbf{N} + m} \mathbf{C}_k^{\mathbf{N} + m} (r_p - \chi(p))^{\mathbf{N} + m - k} d_p^{\ k} \mathbf{D}, \end{split}$$

where C_k^{N+m} stands for the usual binomial coefficient. Now consider

$$((r_p - \chi(p))^{N+m-k} d_p^k D) T = (d_p^k D) ((\partial(p) - \chi(p))^{N+m-k} T).$$

If
$$k \ge N$$
, $d_p^k D = o$ and if $k \le N$, $(\partial(p) - \chi(p))^{N+m-k} T = o$. Hence
$$(\partial(p) - \chi(p))^{N+m} (DT) = o.$$

Choose p_1, \ldots, p_l in $I(g_e)$ such that $I(g_e) = \mathbb{C}[p_1, \ldots, p_l]$. Then we can choose an integer $M \ge 0$ such that

$$(\partial(p_i) - \chi(p_i))^{\mathbf{M}} \mathbf{D} \mathbf{T} = \mathbf{0}$$
 (1\leq i\leq l).

But this implies that the space of all distributions of the form $\partial(p)\mathrm{DT}\ (p\in\mathrm{I}(\mathfrak{g}_c))$ has dimension at most M^l . This proves that Theorem 1 is applicable to DT.

It is obvious that DT = DF on Ω' . Hence by applying Theorem 1 to DT we conclude that DF is locally summable on Ω and $DT = T_{DF}$.

§ 8. FURTHER PROPERTIES OF F

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let us use the notation of $[\mathfrak{g}(j), \S 4]$. Define the analytic function g on $\mathfrak{h}' \cap \Omega$ by

$$g(\mathbf{H}) = \pi(\mathbf{H})\mathbf{F}(\mathbf{H})$$
 $(\mathbf{H} \in \mathfrak{h}' \cap \Omega).$

Theorem 2. — g can be extended to an analytic function on $\mathfrak{h}'(R) \cap \Omega$.

Fix an element $H_0 \in \mathfrak{h}'(R) \cap \Omega$. It is enough to show that there exists an analytic function g_1 on an open neighborhood U of H_0 in $\mathfrak{h}'(R) \cap \Omega$ such that $g_1 = g$ on $U \cap \mathfrak{h}'$. First assume that H_0 is semiregular. Let β be the unique positive root of \mathfrak{h} which vanishes at H_0 . Then clearly β is imaginary. If β is compact, the required result follows immediately from Lemma 4. Hence we may assume that β is singular. Define \mathfrak{a} and \mathfrak{b} as in $[3(j), \S 7]$ corresponding to H_0 . Then it follows from [3(j), Lemmas 12 and 13] that we may assume that $\mathfrak{h} = \mathfrak{b}$.

Let 3 be the centralizer of H_0 in g. Define ζ and 3' as usual $[3(i), \S\S 2, 7]$. We now use the notation of $[3(j), \S 7]$. Let \mathfrak{z}_0 be the set of all $Z \in \mathfrak{z} \cap \Omega$ such that $|\zeta(Z)| > |\zeta(H_0)|/2$. Then \mathfrak{z}_0 is an open neighborhood of H_0 in 3' which is completely invariant (with respect to 3). Now σ is the center of 3. Fix an open and convex neighborhood σ_0 of H_0 in σ such that $Cl\sigma_0$ is compact and contained in \mathfrak{z}_0 . Let Ω_I denote the set of all $Z \in I$ such that $Cl\sigma_0 + Z \subset \mathfrak{z}_0$. Then by Lemma 9, Ω_I is a completely invariant and open neighborhood of zero in I.

Now apply Lemma 17 of [3(i)] with $G_0 = G$ and put $T_3 = |\zeta|^{1/2} \sigma_T$. Then it follows from Theorem 2 of [3(i)] that $\partial(u_3)T_3 = o$ ($u \in \mathcal{U}$). Put $\mathfrak{B} = I(\mathfrak{Z}_c)\mathcal{U}_3$ where \mathcal{U}_3 is the image of \mathfrak{U} in $I(\mathfrak{Z}_c)$ under the mapping $p \to p_3$ ($p \in I(\mathfrak{G}_c)$). Then by [3(i), Lemma 19], dim $(I(\mathfrak{Z}_c)/\mathfrak{B}) < \infty$. Let ω_I denote the Killing form of I. Then, if we identify I with its dual under ω_I , we have $\omega_I \in I(\mathfrak{I}_c) \subset I(\mathfrak{Z}_c)$. Hence we can choose complex numbers c_1, \ldots, c_r such that

$$\sum_{0 \le k \le r} c_k \omega^{r-k} \in \mathfrak{V}$$

where $c_0 = 1$. This proves that

$$\sum_{0\,<\,k\,<\,r}\!\!c_k\partial(\omega_{\rm I})^{r\,-\,k}{\rm T}_{\mathfrak z}\!=\!{\rm o.}$$

Now fix $\gamma \in C_c^{\infty}(\sigma_0)$ and let τ_{γ} denote the distribution

$$\tau_{\gamma}: f \to T_{\mathfrak{z}}(\gamma \times f) \qquad (f \in \mathbf{C}_{\mathfrak{c}}^{\infty}(\Omega_{\mathfrak{l}}))$$

on Ω_I . Obviously τ_{γ} is invariant under L and it is clear from the above relation that

$$\sum_{0 \leq k \leq r} c_k \partial(\omega_{\mathbf{I}})^{r-k} \tau_{\gamma} = 0.$$

Since $I(I_c) = \mathbf{C}[\omega_I]$, Theorem I and Lemma 16 are both applicable to $(I, \Omega_I, \tau_{\gamma})$ in place of (g, Ω, T) . Let Ω'_I be the set of those points of Ω_I which are regular in I. Fix a Euclidean measure dI on I. Then we can choose an analytic function φ_{γ} on Ω'_I which is locally summable on Ω_I and such that

$$\tau_{\mathbf{Y}}(f) = \int f \varphi_{\mathbf{Y}} d\mathbf{I}$$
 $(f \in \mathbf{C}_{c}^{\infty}(\Omega_{\mathbf{I}})).$

Hence it follows from Lemma 16 that

$$\int \{ \partial (\omega_{\mathfrak{l}})^{k} f. \varphi_{\gamma} - f. \partial (\omega_{\mathfrak{l}})^{k} \varphi_{\gamma} \} d\mathfrak{l} = 0$$

for $k \ge 0$ and $f \in C_c^{\infty}(\Omega_l)$. For any $\varepsilon > 0$, let $\Omega_I(\varepsilon)$ denote the set of all $Z \in I$ with $|\omega_I(Z)| < 8\varepsilon^2$. If ε is sufficiently small, it is obvious that tH' and t(X'-Y') both lie in Ω_I whenever $|t| \le \varepsilon \ (t \in \mathbb{R})$. Since Ω_I is completely invariant under L, we can conclude (see [3(e), p. 681]) that $Cl\Omega_I(\varepsilon) \subset \Omega_I$. It follows from Lemma 2 that there exist three analytic functions g_{γ} , g_{γ}^+ , g_{γ}^- on \mathbb{R} such that

$$g_{\mathbf{y}}(t) = t\varphi_{\mathbf{y}}(t\mathbf{H}')$$
 (0 < $t \le \varepsilon$)

$$g_{\mathbf{y}}^{+}(\theta) = \theta \varphi_{\mathbf{y}}(\theta(\mathbf{X}' - \mathbf{Y}')) \qquad (o < \theta \leq \varepsilon)$$

$$g_{\Upsilon}^{-}(\theta) = \theta \phi_{\Upsilon}(\theta(X' - Y')) \qquad (-\epsilon \leq \theta \leq 0).$$

Now define the distributions T_k $(k \ge 0)$ on I as in Corollary I of [3(j), Lemma 35] with (g, g^+, g^-) replaced by $(g_{\gamma}, g_{\gamma}^+, g_{\gamma}^-)$. Then it follows from [3(e), Lemma 16] and [3(e), Theorem I] that

$$\mathbf{T}_{k}(f) = c \int \{ \partial(\omega_{\mathbf{I}})^{k} f. \, \phi_{\mathbf{Y}} - f \partial(\omega_{\mathbf{I}})^{k} \phi_{\mathbf{Y}} \} d\mathbf{I} = \mathbf{0}$$

for $f \in C_c^{\infty}(\Omega_{\mathfrak{l}}(\varepsilon/2))$. (Here c is a positive constant.) Therefore we conclude from the corollaries of [3(j), Lemma 35] that $g_{\gamma}^+ = g_{\gamma}^-$ and

$$(-1)^{k} (d^{2k+1}g_{\mathbf{y}}/dt^{2k+1})_{\mathbf{0}} = (d^{2k+1}g_{\mathbf{y}}^{+}/d\theta^{2k+1})_{\mathbf{0}}$$
 (k\ge 0)

where the subscript o denotes the value at zero.

On the other hand let F_3 denote the restriction of F to \mathfrak{z}_0 . Then by Corollary 2 of $[\mathfrak{z}(h),$ Theorem 1], F_3 is locally summable on \mathfrak{z}_0 and since F is obviously invariant under G, we have

$$\mathbf{T}(f_{\alpha}) = \int f_{\alpha} \mathbf{F} d\mathbf{X} = \int \beta_{\alpha} \mathbf{F}_{\mathfrak{F}} d\mathbf{Z} \qquad (\alpha \in \mathbf{C}_{c}^{\infty}(\mathfrak{F}_{0}))$$

in the notation of [3(i), Lemma 17]. This proves that $\sigma_T = F_3$ and therefore $T_3 = |\zeta|^{1/2} F_3$. Now $\mathfrak{a} = \sigma + \mathbf{R} H'$ and $\mathfrak{b} = \mathfrak{h} = \sigma + \mathbf{R} (X' - Y')$. Let τ and λ be the unique positive roots of \mathfrak{a} and \mathfrak{b} respectively which vanish at H_0 . We may assume that $\tau(H') = 2$, $\lambda(X' - Y') = -2(-1)^{1/2}$ and the positive roots of \mathfrak{a} go into positive roots of \mathfrak{b} under the automorphism ν of $[3(j), \S 7]$. Put $\pi_\tau^{\mathfrak{a}} = \tau^{-1}\pi^{\mathfrak{a}}$, $\pi_\lambda^{\mathfrak{b}} = \lambda^{-1}\pi^{\mathfrak{b}}$. Then it is clear that

$$|\zeta(\mathbf{H})|^{1/2} = |\pi_{\tau}^{\mathfrak{a}}(\mathbf{H})| \tag{H} \in \mathfrak{a}),$$

$$|\zeta(\mathbf{H})|^{1/2} = |\pi_{\lambda}^{\mathfrak{b}}(\mathbf{H})|$$
 ($\mathbf{H} \in \mathfrak{b}$).

Let I denote the open interval $(-\varepsilon, \varepsilon)$ in **R**. Put $\mathfrak{a}(\varepsilon) = \sigma_0 + IH'$ and $\mathfrak{b}(\varepsilon) = \sigma_0 + I(X' - Y')$. Then $\mathfrak{a}(\varepsilon)$ and $\mathfrak{b}(\varepsilon)$ are both connected sets. Since $\mathfrak{a}(\varepsilon) \subset \mathfrak{z}_0$, it is obvious that no positive root of $(\mathfrak{g}, \mathfrak{a})$ other than τ can vanish anywhere on $\mathfrak{a}(\varepsilon)$. Hence $|\pi_{\tau}^{\mathfrak{a}}(H)|/\pi_{\tau}^{\mathfrak{a}}(H)$ is a continuous function on $\mathfrak{a}(\varepsilon)$. But since its fourth power is I (see $[\mathfrak{z}(j), \text{ Lemma 9}]$), it must be a constant. Put $\varepsilon = |\pi_{\tau}^{\mathfrak{a}}(H_0)|/\pi_{\tau}^{\mathfrak{a}}(H_0)$. Since $\pi_{\lambda}^{\mathfrak{b}} = (\pi_{\tau}^{\mathfrak{a}})^{\nu}$ and H_0 remains fixed under ν , it is clear that

$$c = |\pi_{\lambda}^{b}(\mathbf{H}_{0})|/\pi_{\lambda}^{b}(\mathbf{H}_{0}).$$

Hence we conclude by a similar argument that

$$|\pi_{\lambda}^{\mathfrak{b}}(\mathbf{H})| = c\pi_{\lambda}^{\mathfrak{b}}(\mathbf{H})$$
 $(\mathbf{H} \in \mathfrak{b}(\varepsilon)).$

This shows that

$$t |\zeta(H + tH')|^{1/2} = 2^{-1}c\pi^{\alpha}(H + tH')$$
 (|t|<\varepsilon)

$$\theta |\zeta(H + \theta(X' - Y'))|^{1/2} = 2^{-1}(-1)^{1/2} c \pi^b(H + \theta(X' - Y')) \qquad (|\theta| < \epsilon)$$

for $H \in \sigma_0$. Now put

$$g^{\mathfrak{a}}(\mathbf{H}) = \pi^{\mathfrak{a}}(\mathbf{H})\mathbf{F}(\mathbf{H})$$
 $(\mathbf{H} \in \mathfrak{a}' \cap \Omega),$

$$g^{\mathfrak{b}}(\mathbf{H}) = \pi^{\mathfrak{b}}(\mathbf{H})\mathbf{F}(\mathbf{H})$$
 $(\mathbf{H} \in \mathfrak{b}' \cap \Omega).$

and fix a Euclidean measure $d\sigma$ on σ such that $d\sigma dI$ is equal to the Euclidean measure dZ on 3 used above. Since $T_3 = |\zeta|^{1/2} F_3$, it is obvious that

$$\varphi_{\mathbf{Y}}(\mathbf{Y}) = \int_{\mathbf{Y}} (\mathbf{H}) |\zeta(\mathbf{H} + \mathbf{Y})|^{1/2} F(\mathbf{H} + \mathbf{Y}) d\sigma \qquad (\mathbf{Y} \in \Omega_{\mathbf{I}}').$$

625

Hence

$$g_{\gamma}(t) = 2^{-1}c \int g^{\alpha}(\mathbf{H} + t\mathbf{H}')\gamma(\mathbf{H})d\sigma$$
 (0

$$g_{\gamma}^{+}(\theta) = 2^{-1}(-\operatorname{I})^{1/2} c \! \int \! g^{b}(H + \theta(X' - Y')) \gamma(H) d\sigma \qquad (o \! < \! \theta \! < \! \epsilon),$$

$$g_{\gamma}^{-}(\theta) = 2^{-1}(-1)^{1/2}\epsilon \int \!\! g^b(H + \theta(X' - Y'))\gamma(H) d\sigma \qquad \qquad (-\epsilon < \theta < 0).$$

On the other hand if J is the open interval $(0, \varepsilon)$ in \mathbf{R} , it is clear that $\sigma_0 \pm JH'$ are connected sets contained in $\mathfrak{a}' \cap \Omega$. Let \mathfrak{a}^{\pm} denote the connected component of $\mathfrak{a}' \cap \Omega$ containing $\sigma_0 \pm JH'$. Similarly let \mathfrak{b}^{\pm} be the connected component of $\mathfrak{b}' \cap \Omega$ containing $\sigma_0 \pm J(X'-Y')$. Then by Lemmas 1 and 2, there exist analytic functions $g^{\mathfrak{a}}_{\pm}$ and $g^{\mathfrak{b}}_{\pm}$ on \mathfrak{a} and \mathfrak{b} respectively such that $g^{\mathfrak{a}} = g^{\mathfrak{a}}_{+}$ on \mathfrak{a}^{+} , $g^{\mathfrak{a}} = g^{\mathfrak{a}}_{-}$ on \mathfrak{a}^{-} , $g^{\mathfrak{b}} = g^{\mathfrak{b}}_{+}$ on \mathfrak{b}^{+} and $g^{\mathfrak{b}} = g^{\mathfrak{b}}_{-}$ on \mathfrak{b}^{-} . It is then obvious that

$$g_{\gamma}(t) = 2^{-1}c \int g_{+}^{\alpha}(\mathbf{H} + t\mathbf{H}')\gamma(\mathbf{H})d\sigma$$
 $(t \in \mathbf{R}),$

$$g_{\gamma}^{\pm}(\theta) = 2^{-1}(-1)^{1/2} c \int g_{\pm}^b (H + \theta(X' - Y')) \gamma(H) d\sigma \qquad (\theta \in \mathbf{R}).$$

On the other hand we have seen above that $g_{\Upsilon}^+ = g_{\Upsilon}^-$ for every $\gamma \in C_c^{\infty}(\sigma_0)$. Therefore it is clear that $g_+^b = g_-^b$. This shows that $g = g^b = g_+^b$ on $\mathfrak{b}(\varepsilon) \cap \mathfrak{b}'$. Since $\mathfrak{b}(\varepsilon)$ is a neighborhood of H_0 in \mathfrak{b} , our assertion is proved in this case.

Moreover since

$$(d^{2k+1}g_{\gamma}/dt^{2k+1})_0 = (-1)^k (d^{2k+1}g_{\gamma}^+/d\theta^{2k+1})_0 \qquad (k \ge 0)$$

and $\nu(H') = (-1)^{1/2}(X'-Y')$, we find in the same way that

$$g_+^{\mathfrak{a}}(H; \partial(H')^{2k+1}) = g_+^{\mathfrak{b}}(H; \partial(\nu(H'))^{2k+1})$$

for $H \in \sigma$.

We now use the notation of $[3(j), \S 8]$.

Lemma 18. — Let s_{τ} be the Weyl reflexion in a corresponding to τ . Then $(g^{\alpha})^{s_{\tau}} = -g^{\alpha}$. If D is an element in $\mathfrak{D}(\mathfrak{a}_{e})$ such that $D^{s_{\tau}} = -D$, then Dg^{α} can be extended to a continuous function on $\mathfrak{a}(\varepsilon)$ and (1)

$$g^{\alpha}(H; D) = g^{b}(H; D^{\nu})$$

for $H \in \sigma_0$.

Since τ is real we know from [3(j), Lemma 6] that $s_{\tau} \in W_{G}^{\alpha}$. Therefore since F is invariant under G, it is obvious that $(g^{\alpha})^{s_{\tau}} = -g^{\alpha}$ and hence $(Dg^{\alpha})^{s_{\tau}} = Dg^{\alpha}$. This implies that $(Dg_{+}^{\alpha})^{s_{\tau}} = Dg_{-}^{\alpha}$ and therefore $Dg_{+}^{\alpha} = Dg_{-}^{\alpha}$ on σ . It is now clear that Dg^{α} can be extended to a continuous function on $\mathfrak{a}(\varepsilon)$. So it remains to show that

$$g_+^{\mathfrak{a}}(\mathbf{H}; \mathbf{D}) = g^{\mathfrak{b}}(\mathbf{H}; \mathbf{D}^{\mathfrak{v}})$$

for $H \in \sigma_0$. Since $\mathfrak{D}(\mathfrak{a}_c) = \mathfrak{D}(\sigma_c) \mathfrak{D}(\mathbf{C}H')$ and since s_{τ} leaves σ pointwise fixed, it is sufficient to consider the case when $D = \Delta \circ \tau^i \partial (H')^j$. Here $\Delta \in \mathfrak{D}(\sigma_c)$ and i+j is odd.

⁽¹⁾ $g^{\mathfrak{a}}(H; D)$ denotes, as usual, the value of the continuous function $Dg^{\mathfrak{a}}$ at H. Similarly in other cases.

Now Δ and τ commute. Therefore, if $i \ge 1$, our assertion is obvious from the fact that τ and λ are both zero on σ . So we may assume that i = 0 so that j is odd. It is enough to verify that

$$g_+^{\mathfrak{a}}(\mathbf{H}; \partial(\mathbf{H}')^j) = g^{\mathfrak{b}}(\mathbf{H}; \partial(\mathbf{v}(\mathbf{H}'))^j)$$
 $(\mathbf{H} \in \sigma_0)$

since the required relation would then follow by applying the differential operator Δ to this equation. However $g^b = g_+^b$ on $b(\epsilon)$ and so this follows from the result proved above.

Now we return to the proof of Theorem 2. Fix a point $H_0 \in \mathfrak{h}'(R) \cap \Omega$ and an open convex neighborhood U of H_0 in $\mathfrak{h}'(R) \cap \Omega$. Let U_1 be the set consisting of all regular and semiregular elements of U. Then U_1 is open, and if β is a root of (g, \mathfrak{h}) which vanishes at some point of U_1 , it is clear that β is imaginary. Hence it follows from the above proof that there exists an analytic function g_1 on U_1 such that $g_1 = g$ on $U_1 \cap \mathfrak{h}'$. Now fix a connected component U_2 of $U_1 \cap \mathfrak{h}' = U \cap \mathfrak{h}'$. Then by Lemma 2 there exists an analytic function g_2 on \mathfrak{h} such that $g = g_2$ on U_2 . Since U_1 is connected (see the corollary of [3(j), Lemma 19]), we conclude that $g_1 = g_2$ and therefore $g = g_2$ on $U \cap \mathfrak{h}'$. Since g_2 is analytic on \mathfrak{h} , we have shown that g can be extended to an analytic function on U. Thus Theorem 2 is proved.

We denote the extended analytic function on $\mathfrak{h}'(R) \cap \Omega$ again by g.

Lemma 19 (1). — Let H_0 be a point in $\mathfrak{h} \cap \Omega$ and D an element in $\mathfrak{D}(\mathfrak{h}_c)$ such that $D^{s_{\alpha}} = -D$ for every real root α of $(\mathfrak{g}, \mathfrak{h})$ which vanishes at H_0 . Then $D\mathfrak{g}$ can be extended to a continuous function around H_0 .

Fix an open, convex and relatively compact neighborhood U of H_0 in $\Omega \cap \mathfrak{h}$. By taking it sufficiently small we can arrange that no real root α of $(\mathfrak{g}, \mathfrak{h})$ vanishes anywhere on U unless $\alpha(H_0) = 0$. Let U_0 be the set consisting of all regular and semiregular elements of U. Then, as before, U_0 is open and connected and it follows from Theorem 2 and Lemma 18 that there exists a continuous function g_0 on U_0 such that $Dg = g_0$ on $U_0 \cap \mathfrak{h}'(R)$. The set $U \cap \mathfrak{h}'$ has only a finite number of connected components, say U_1, \ldots, U_r . By Lemma 2 we can choose an analytic function g_i on \mathfrak{h} such that $g = g_i$ on U_i ($i \le i \le r$). This shows that $i \in I$ is of class $i \in I$ therefore $i \in I$ is also of class $i \in I$ on $i \in I$ is a Euclidean norm on $i \in I$ and put

$$v(g_0) = \sup |g_0(H_1; \partial(H_2))|$$

where H_1 , H_2 vary in $U \cap \mathfrak{h}'$ and \mathfrak{h} respectively under the sole restriction that $||H_2|| \leq 1$. Then it is obvious from what we have said above that $\nu(g_0) < \infty$. Moreover (see $[3(j), \S 10]$)

$$|g_0(\mathbf{H_1}) - g_0(\mathbf{H_2})| \le v(g_0) ||\mathbf{H_1} - \mathbf{H_2}||$$

for any two points H_1 , H_2 in $U \cap \mathfrak{h}'$. Obviously this means that Dg can be extended to a continuous function on U.

⁽¹⁾ Cf. [3(j), Theorem 1].

Corollary. — Let D be an element of $\mathfrak{D}(\mathfrak{h}_c)$ such that $D^{s\alpha} = -D$ for every real root α of \mathfrak{h} . Then Dg can be extended to a continuous function on $\mathfrak{h} \cap \Omega$.

This is obvious from the above lemma. We denote the extended function again by Dg. Moreover g(H; D) $(H \in \mathfrak{h} \cap \Omega)$ will stand for the value of Dg at H.

Put $\varpi = \prod_{\alpha>0} H_{\alpha}$ where α runs over all positive roots of $(\mathfrak{g}, \mathfrak{h})$. Then $\varpi \in S(\mathfrak{h}_c)$ and $\varpi^{s_\alpha} = -\varpi$ for every root α . Hence $\partial(\varpi)g$ is a continuous function on $\mathfrak{h} \cap \Omega$. Since the differential operator $\partial(\varpi)\circ\pi$ is obviously independent of the choice of positive roots of \mathfrak{h} , it is clear that the function $\partial(\varpi)g$ also does not depend on this choice. Corresponding to any Cartan subalgebra \mathfrak{a} of \mathfrak{g} , we define ϖ^α , g^α and $\partial(\varpi^\alpha)g^\alpha$ in an analogous way.

Theorem 3. — Let a and b be two Cartan subalgebras of g. Then

$$\partial(\varpi^{\mathfrak{a}})g^{\mathfrak{a}} = \partial(\varpi^{\mathfrak{b}})g^{\mathfrak{b}}$$

on anbo Ω .

Before giving the proof we derive a consequence of this theorem. Let $g_{\rm T}$ denote the function g of Theorem 2 corresponding to the distribution T. For any ${\rm D} \in \mathfrak{J}(\mathfrak{g}_c)$, DT also fulfills the conditions of Theorem 1 (Lemma 16). Hence we can consider the corresponding function $g_{\rm DT}$. It follows from $[\mathfrak{Z}(i),$ Theorem 1] that $g_{\rm DT} = \delta_{\mathfrak{g}/\mathfrak{h}}({\rm D})g_{\rm T}$. Therefore

$$\partial(\mathbf{w})g_{\mathrm{DT}} = (\partial(\mathbf{w}) \circ \delta_{\mathbf{a}/\mathbf{b}}(\mathbf{D}))g$$

can also be extended to a continuous function on $\mathfrak{h} \cap \Omega$.

Corollary. — $(\partial(\varpi^a)\circ\delta_{g/a}(D))g^a=(\partial(\varpi^b)\circ\delta_{g/b}(D))g^b$ on $a \cap b \cap \Omega$ for any $D \in \mathfrak{J}(\mathfrak{g}_c)$. This follows by applying Theorem 3 to DT instead of T.

We shall prove Theorem 3 by induction on dim g. Fix a point $H_0 \in \mathfrak{a} \cap \mathfrak{b} \cap \Omega$. We have to show that $g^{\mathfrak{a}}(H_0; \partial(\varpi^{\mathfrak{a}})) = g^{\mathfrak{b}}(H_0; \partial(\varpi^{\mathfrak{b}}))$. Let \mathfrak{c} be the center and \mathfrak{g}_1 the derived algebra of \mathfrak{g} and first suppose that $\mathfrak{c} = \{0\}$. Let $H_0 = C_0 + H_1$ where $C_0 \in \mathfrak{c}$ and $H_1 \in \mathfrak{g}_1$. Then it is clear that $H_1 \in \mathfrak{a}_1 \cap \mathfrak{b}_1$ where $\mathfrak{h}_1 = \mathfrak{h} \cap \mathfrak{g}_1$ ($\mathfrak{h} = \mathfrak{a}$ or \mathfrak{b}). Choose an open and relatively compact neighborhood \mathfrak{c}_0 of C_0 in \mathfrak{c} and let Ω_1 be the set of all $Z \in \mathfrak{g}_1$ such that $\operatorname{Cl}\mathfrak{c}_0 + Z \subset \Omega$. Then (Lemma 9) Ω_1 is an open and completely invariant neighborhood of H_1 in \mathfrak{g}_1 , if \mathfrak{c}_0 is sufficiently small. Fix $\mathfrak{a} \in C_{\mathfrak{c}}^{\infty}(\mathfrak{c}_0)$ and consider the distribution

$$\tau_{\alpha}: f \to \mathbf{T}(\alpha \times f) \qquad (f \in \mathbf{C}_{c}^{\infty}(\Omega_{1}))$$

on Ω_1 . Put $\mathfrak{U}_1 = \mathfrak{U} \cap I(\mathfrak{g}_{1e})$. Then it is clear that

$$\dim (I(\mathfrak{g}_{1c})/\mathfrak{U}_1) \leq \dim (I(\mathfrak{g}_c)/\mathfrak{U}) \leq \infty$$

and $\partial(u_1)\tau_{\alpha} = 0$ for $u_1 \in \mathfrak{U}_1$. Hence Theorem 1 also holds if we replace $(\mathfrak{g}, \Omega, T)$ by $(\mathfrak{g}_1, \Omega_1, \tau_{\alpha})$. Since dim $\mathfrak{g}_1 < \dim \mathfrak{g}$, Theorem 3 applies to τ_{α} by the induction hypothesis. Put

$$g_{\alpha}^{\mathfrak{h}}(\mathbf{H}) = \int \alpha(\mathbf{C})g^{\mathfrak{h}}(\mathbf{C} + \mathbf{H})d\mathbf{C}$$
 $(\mathbf{H} \in \mathfrak{h}' \cap \Omega_1)$

where dC is a Euclidean measure on c. Then we conclude that

$$g_{\alpha}^{\mathfrak{a}}(\mathbf{H}; \partial(\varpi^{\mathfrak{a}})) = g_{\alpha}^{\mathfrak{b}}(\mathbf{H}; \partial(\varpi^{\mathfrak{b}}))$$

for $H \in \mathfrak{a} \cap \mathfrak{b} \cap \Omega_1$. Since this is true for every $\alpha \in C_c^{\infty}(\mathfrak{c}_0)$, it is clear that $\partial(\varpi^{\alpha})g^{\alpha}$ and $\partial(\varpi^{b})g^{b}$ coincide around H_0 on $\alpha \cap \mathfrak{b} \cap \Omega$.

So now we can assume that $\mathfrak{c} = \{0\}$ and therefore \mathfrak{g} is semisimple. Then we identify \mathfrak{g} and \mathfrak{h} with their respective duals by means of the Killing form (see $[\mathfrak{g}(i), \S 6]$) so that $\varpi^{\mathfrak{h}} = \pi^{\mathfrak{h}}$ ($\mathfrak{h} = \mathfrak{a}$ or \mathfrak{b}). First assume that $H_0 \neq 0$ and let \mathfrak{g} be the centralizer of H_0 in \mathfrak{g} . Then $\dim \mathfrak{g} < \dim \mathfrak{g}$ and we can identify \mathfrak{g} with its dual by means of the restriction (to \mathfrak{g}) of the Killing form of \mathfrak{g} . Define ζ and \mathfrak{g}' as in $[\mathfrak{g}(i), \S 2]$ and put $\Omega_{\mathfrak{g}} = \mathfrak{g}' \cap \Omega$. Then $\Omega_{\mathfrak{g}}$ is an open neighborhood of H_0 in \mathfrak{g} which is completely invariant (with respect to \mathfrak{g}). Take $G_0 = G$ and $\mathfrak{g}_0 = \Omega_{\mathfrak{g}}$ in Lemma 17 of $[\mathfrak{g}(i)]$ and let σ_T denote the corresponding distribution on $\Omega_{\mathfrak{g}}$. Then

$$\sigma_{\mathrm{T}}(\beta_{\alpha}) = \mathrm{T}(f_{\alpha}) = \int f_{\alpha} \mathrm{F} d\mathrm{X}$$
 $(\alpha \in \mathrm{C}_{c}^{\infty}(\mathrm{G} \times \Omega_{3})).$

But since F is invariant under G, we conclude from Corollary 2 of [3(h), Theorem 1] that the function $F_3: Z \to F(Z)$ ($Z \in \Omega_3$) is locally summable on Ω_3 and

$$\int f_{\alpha} F dX = \int \beta_{\alpha} F_{\mathfrak{z}} dZ.$$

This shows that $\sigma_T = F_3$.

Let $\mathfrak{h}=\mathfrak{a}$ or \mathfrak{b} . Then $\mathfrak{h}\subset\mathfrak{J}$. Define \mathfrak{q} as in $[\mathfrak{J}(i),\ \S\ 2]$. $P^{\mathfrak{h}}$ being the set of all positive roots of $(\mathfrak{g},\ \mathfrak{h})$, let $P_{\mathfrak{J}}^{\mathfrak{h}}$ and $P_{\mathfrak{q}}^{\mathfrak{h}}$ denote the subsets of those $\alpha\in P^{\mathfrak{h}}$ for which X_{α} lies in \mathfrak{J}_{c} and \mathfrak{q}_{c} respectively. Let $\pi_{\mathfrak{J}}^{\mathfrak{h}}$ and $\pi_{\mathfrak{q}}^{\mathfrak{h}}$ be the products of all roots in $P_{\mathfrak{J}}^{\mathfrak{h}}$ and $P_{\mathfrak{q}}^{\mathfrak{h}}$ respectively. Then $\pi^{\mathfrak{h}}=\pi_{\mathfrak{J}}^{\mathfrak{h}}\pi_{\mathfrak{q}}^{\mathfrak{h}}$ and it is clear that $(\pi_{\mathfrak{q}}^{\mathfrak{h}})^{s_{\alpha}}=\pi_{\mathfrak{q}}^{\mathfrak{h}}$ for all $\alpha\in P_{\mathfrak{J}}^{\mathfrak{h}}$. Hence, by Chevalley's theorem $[\mathfrak{J}(c), Lemma\ \mathfrak{g}]$, there exists an invariant polynomial function p on \mathfrak{J} such that $p(H)=\pi_{\mathfrak{q}}^{\mathfrak{q}}(H)$ for $H\in\mathfrak{a}$. But

$$\zeta(H) = (-1)^q (\pi_{\mathfrak{q}}^{\mathfrak{a}}(H))^2 \tag{H \in \mathfrak{a}}$$

where $q = 2^{-1}$ dim q is the number of roots in P_q^a . Therefore $\zeta = (-1)^q p^2$ again by Chevalley's theorem. Let $p_{\mathfrak{h}}$ denote the restriction of p to \mathfrak{h} . Then since ζ coincides with $(-1)^q (\pi_q^b)^2$ on \mathfrak{h} , it is clear that $p_{\mathfrak{h}} = \varepsilon \pi_q^b$ where $\varepsilon = \pm 1$.

Now put $T_3 = p\sigma_T$. Then it follows from Theorem 2 of [3(i)] (see also § 4) that Theorem 1 still holds if we replace (g, Ω, T) by $(3, \Omega_3, T_3)$. Put

$$g_{\mathfrak{z}}^{\mathfrak{h}}(\mathbf{H}) = \pi_{\mathfrak{z}}^{\mathfrak{h}}(\mathbf{H}) p(\mathbf{H}) \mathbf{F}(\mathbf{H}) \qquad (\mathbf{H} \in \mathfrak{h}' \cap \Omega_{\mathfrak{z}}).$$

Since dim 3<dim g, both Theorem 3 and its corollary are applicable to T_3 . Moreover $\delta_{3/5}(\partial(p)) = \partial(p_5)$ [3(c), Theorem 1] and so we conclude that

$$\partial(\pi_3^{\mathfrak{a}}\boldsymbol{p}_{\mathfrak{a}})g_3^{\mathfrak{a}} = \partial(\pi_3^{\mathfrak{b}}\boldsymbol{p}_{\mathfrak{b}})g_3^{\mathfrak{b}}$$

on $\Omega_{\mathfrak{z}} \cap \mathfrak{a} \cap \mathfrak{b}$. However $\pi_{\mathfrak{z}}^{\mathfrak{a}} p_{\mathfrak{a}} = \pi^{\mathfrak{a}}$ and $\pi_{\mathfrak{z}}^{\mathfrak{b}} p_{\mathfrak{b}} = \varepsilon \pi^{\mathfrak{b}}$. Therefore $g_{\mathfrak{z}}^{\mathfrak{a}} = g^{\mathfrak{a}}$ and $g_{\mathfrak{z}}^{\mathfrak{b}} = \varepsilon g^{\mathfrak{b}}$ on $\Omega_{\mathfrak{z}} \cap \mathfrak{a}'$ and $\Omega_{\mathfrak{z}} \cap \mathfrak{b}'$ respectively. So it follows that $\partial(\pi^{\mathfrak{a}})g^{\mathfrak{a}} = \partial(\pi^{\mathfrak{b}})g^{\mathfrak{b}}$ on $\Omega_{\mathfrak{z}} \cap \mathfrak{a} \cap \mathfrak{b}$. Since $H_0 \in \Omega_{\mathfrak{z}} \cap \mathfrak{a} \cap \mathfrak{b}$, our assertion is proved in this case.

So it remains to consider the case when $H_0 = 0$. Hence we may assume that $o \in \Omega$. For any Cartan subalgebra \mathfrak{h} of \mathfrak{g} , put $c(\mathfrak{h}) = g^{\mathfrak{h}}(o; \partial(\pi^{\mathfrak{h}}))$.

Lemma 20. — Let $\mathfrak a$ and $\mathfrak b$ be two Cartan subalgebras of $\mathfrak g$. Then, if $\mathfrak a \cap \mathfrak b \neq \{0\}$, $c(\mathfrak a) = c(\mathfrak b)$.

Since Ω is an open neighborhood of zero in g, we can choose $H \neq 0$ in $\mathfrak{a} \cap \mathfrak{b}$ such that $tH \in \mathfrak{a} \cap \mathfrak{b} \cap \Omega$ for $0 \leq t \leq 1$. Then in view of what we have proved above, it is clear that

$$g^{\mathfrak{a}}(tH; \partial(\pi^{\mathfrak{a}})) = g^{\mathfrak{b}}(tH; \partial(\pi^{\mathfrak{b}}))$$
 (0

Making t tend to zero we get $c(\mathfrak{a}) = c(\mathfrak{b})$.

Lemma 21. — Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . Then $c(\mathfrak{h}) = c(\mathfrak{h}^x)$ for any x in G. Let $\mathfrak{a} = \mathfrak{h}^x$. Without loss of generality we may assume that $\pi^{\mathfrak{a}} = (\pi^{\mathfrak{h}})^x$. Then it is clear that

$$g^{\mathfrak{a}}(\mathbf{H}^{x}) = g^{\mathfrak{h}}(\mathbf{H})$$
 $(\mathbf{H} \in \Omega \cap \mathfrak{h}')$

and therefore

$$g^{\alpha}(\mathbf{H}^x; \partial(\pi^{\alpha})) = g^{\mathfrak{h}}(\mathbf{H}; \partial(\pi^{\mathfrak{h}}))$$

for $H \in \Omega \cap \mathfrak{h}'$. We obtain the required result by making H tend to zero.

Fix a Cartan involution θ of g and let $g = \mathfrak{k} + \mathfrak{p}$ be the corresponding Cartan decomposition. If \mathfrak{h} is a Cartan subalgebra of g which is stable under θ , we put

$$l_+(\mathfrak{h})\!=\!\dim(\mathfrak{h}\!\cap\!\mathfrak{p}), \qquad l_-(\mathfrak{h})\!=\!\dim(\mathfrak{h}\!\cap\!\mathfrak{k}).$$

Then $l_+(\mathfrak{h})+l_-(\mathfrak{h})=\dim\mathfrak{h}=l$ where $l=\mathrm{rank}\,\mathfrak{g}$. Let $l_+=\sup_{\mathfrak{h}}l_+(\mathfrak{h}),\ l_-=\sup_{\mathfrak{h}}l_-(\mathfrak{h})$ where \mathfrak{h} runs over all Cartan subalgebras stable under θ . Fix two Cartan subalgebras \mathfrak{h}_+ , \mathfrak{h}_- , both stable under θ , such that $l_+=l_+(\mathfrak{h}_+),\ l_-=l_-(\mathfrak{h}_-)$.

Lemma 22. — Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} which is stable under θ . Then $c(\mathfrak{h}) = c(\mathfrak{h}_+)$ if $l_+(\mathfrak{h}) > 0$ and $c(\mathfrak{h}) = c(\mathfrak{h}_-)$ if $l_-(\mathfrak{h}) > 0$.

Let K be the analytic subgroup of G corresponding to \mathfrak{k} . Then $\mathfrak{h}_+ \cap \mathfrak{p}$ and $\mathfrak{h}_- \cap \mathfrak{k}$ are maximal abelian subspaces of \mathfrak{p} and \mathfrak{k} respectively. Since any two maximal abelian subspaces of \mathfrak{p} (or \mathfrak{k}) are conjugate under K, it is clear that we can choose $k_1, k_2 \in K$ such that

$$(\mathfrak{h} \cap \mathfrak{p})^{k_1} \subset \mathfrak{h}_+ \cap \mathfrak{p}, \qquad (\mathfrak{h} \cap \mathfrak{k})^{k_2} \subset \mathfrak{h}_- \cap \mathfrak{k}.$$

Then

$$\dim(\mathfrak{h}^{k_1} \cap \mathfrak{h}_+) \ge \dim(\mathfrak{h} \cap \mathfrak{p})^{k_1} = l_+(\mathfrak{h})$$

and similarly

$$\dim(\mathfrak{h}^{k_2} \cap \mathfrak{h}_-) > l_-(\mathfrak{h}).$$

Hence our assertion follows from Lemmas 20 and 21.

Lemma 23. —
$$c(\mathfrak{h}_+) = c(\mathfrak{h}_-)$$
.

We may obviously assume that $l \ge 1$. If $l_-(\mathfrak{h}_+) + l_+(\mathfrak{h}_-) \ge 1$, our statement follows from Lemma 22. Hence we may assume that $\mathfrak{h}_+ \subset \mathfrak{p}$ and $\mathfrak{h}_- \subset \mathfrak{k}$. Then \mathfrak{h}_+ is not fundamental in \mathfrak{g} and so there exists a positive real root α of $(\mathfrak{g}, \mathfrak{h}_+)$ (see $[\mathfrak{g}(d), \mathfrak{h}_+)$) (see $[\mathfrak{g}(d), \mathfrak{h}_+)$) (see

Lemma 33]). We assume, as we may (see [3(d), Lemma 46]), that $\theta(X_{\alpha}) = -X_{-\alpha}$ and X_{α} , $X_{-\alpha}$ are in g. Take $H' = a^{-2}H_{\alpha}$, $X' = a^{-1}X_{\alpha}$, $Y' = a^{-1}X_{-\alpha}$ where $a = (\alpha(H_{\alpha})/2)^{1/2}$. Define the automorphism ν of \mathfrak{g}_c as in $[3(j), \S 7]$. Then $\theta(X') = -Y'$ and $\mathfrak{b} = \nu((\mathfrak{h}_+)_c) \cap \mathfrak{g} = \sigma_{\alpha} + \mathbf{R}(X' - Y')$ is a Cartan subalgebra of \mathfrak{g} which is stable under θ . Here σ_{α} is the hyperplane consisting of all points $H \in \mathfrak{h}_+$ where $\alpha(H) = 0$. Since $\mathfrak{b} \cap \mathfrak{p} = \sigma_{\alpha}$ and $\mathfrak{b} \cap \mathfrak{t} = \mathbf{R}(X' - Y')$, it is obvious that $l_+(\mathfrak{b}) = l - \mathfrak{t}$ and $l_-(\mathfrak{b}) = \mathfrak{t}$. Hence, if $l \geq 2$, it follows from Lemma 22 that $c(\mathfrak{h}_+) = c(\mathfrak{b}) = c(\mathfrak{h}_-)$. On the other hand if $l = \mathfrak{t}$, zero is a semiregular element of \mathfrak{g} and our assertion follows immediately from Lemmas 18 and 21.

We shall now finish the proof of Theorem 3. Choose x, y in G such that \mathfrak{a}^x and \mathfrak{b}^y are stable under θ (see [3(b), p. 100]). Then it is clear from Lemmas 21, 22 and 23 that $c(\mathfrak{a}) = c(\mathfrak{b})$. The proof of Theorem 3 is now complete.

\S 9. THE DIFFERENTIAL OPERATOR ∇_g AND THE FUNCTION $\nabla_g F$

Lemma 24. — There exists a unique differential operator $\nabla_{\mathfrak{g}}$ on \mathfrak{g}' with the following two properties:

- 1) ∇_{α} is invariant under G.
- 2) Let h be a Cartan subalgebra of g. Then

$$f(\mathbf{H}; \nabla_{\mathbf{g}}) = f(\mathbf{H}; \partial(\boldsymbol{\varpi}^{\mathfrak{h}}) \circ \boldsymbol{\pi}^{\mathfrak{h}})$$

for $f \in C^{\infty}(\mathfrak{g})$ and $H \in \mathfrak{h}'$. Moreover $\nabla_{\mathfrak{q}}$ is analytic.

Since two distinct Cartan subalgebras cannot have a regular element in common, the uniqueness is obvious. The existence is proved as follows. Fix a Cartan subalgebra \mathfrak{a} of \mathfrak{g} and define $\mathfrak{g}_{\mathfrak{a}} = (\mathfrak{a}')^{\mathfrak{G}}$. Then $\mathfrak{g}_{\mathfrak{a}}$ is an open subset of \mathfrak{g} . Let A be the Cartan subgroup of G corresponding to \mathfrak{a} and $x \to x^*$ the natural projection of G on $G^* = G/A$. Then the mapping $\varphi : (x^*, H) \to x^*H$ of $G^* \times \mathfrak{a}'$ onto $\mathfrak{g}_{\mathfrak{a}}$ (in the notation of $\S 2$) is everywhere regular. Define $W_G = \widetilde{A}/A$ where \widetilde{A} is the normalizer of \mathfrak{a} in G. Then W_G operates on G^* and \mathfrak{a} as follows. Fix $s \in W_G$ and choose $y \in \widetilde{A}$ lying in the coset s. Then

$$sH = H^y$$
, $x^*s = (xy)^*$

for $H \in \mathfrak{q}$ and $x \in G$. It is clear that the complete inverse image under φ of a point $x^*H \in \mathfrak{g}_{\mathfrak{q}}$ ($x^* \in G^*$, $H \in \mathfrak{q}'$) consists of the elements $(x^*s, s^{-1}H)$ ($s \in W_G$), which are all distinct. Since φ is locally an analytic diffeomorphism and since $\partial(\varpi^{\mathfrak{q}}) \circ \pi^{\mathfrak{q}}$ is obviously invariant under W_G , it is clear that there exists an analytic differential operator ∇ on $\mathfrak{g}_{\mathfrak{q}}$ such that

$$f(x^*H; \nabla) = f(x^*: H; \partial(\varpi^{\mathfrak{a}}) \circ \pi^{\mathfrak{a}}) \qquad (x^* \in G^*, H \in \mathfrak{a}')$$

for $f \in C^{\infty}(\mathfrak{g}_{\mathfrak{a}})$. Here $f(x^* : H) = f(x^* H)$ as usual. It is easy to verify that ∇ satisfies the two conditions of the lemma on $\mathfrak{g}_{\mathfrak{a}}$.

Now select a maximal set $\mathfrak{h}_1, \ldots, \mathfrak{h}_r$ of Cartan subalgebras of \mathfrak{g} , no two of which are conjugate under G. Put $\mathfrak{g}_i = (\mathfrak{h}_i')^G$ and define a differential operator ∇_i on \mathfrak{g}_i as above corresponding to $\mathfrak{a} = \mathfrak{h}_i$. Since \mathfrak{g}' is the disjoint union of the open sets $\mathfrak{g}_1, \ldots, \mathfrak{g}_r$, we can define $\nabla_{\mathfrak{g}}$ by setting $\nabla_{\mathfrak{g}} = \nabla_i$ on \mathfrak{g}_i ($1 \le i \le r$).

Lemma 25. — For any $D \in \mathfrak{F}(\mathfrak{g}_c)$, $(\nabla_{\mathfrak{g}} \circ D)F$ can be extended to a continuous function on Ω . We shall use induction on dim \mathfrak{g} . In view of Lemma 16, it is enough to consider the case when $D=\mathfrak{l}$. Define \mathfrak{c} and \mathfrak{g}_1 as in § 4 and first assume that $\mathfrak{c} \neq \{0\}$. Fix a point $X_0 = C_0 + Z_0$ ($C_0 \in \mathfrak{c}$, $Z_0 \in \mathfrak{g}_1$) in Ω . We have to show that $\nabla_{\mathfrak{g}}F$ can be extended to a continuous function around X_0 . Select an open, connected and relatively compact neighborhood \mathfrak{c}_0 of C_0 in \mathfrak{c} such that $(Cl\mathfrak{c}_0) + Z_0 \subset \Omega$. Define Ω_1 to be the set of all $Z \in \mathfrak{g}_1$ such that $Cl\mathfrak{c}_0 + Z \subset \Omega$. Then, by Lemma 9, Ω_1 is also open and completely invariant in \mathfrak{g}_1 . Since $S(\mathfrak{c}_c) \subset I(\mathfrak{g}_c)$, it is clear that

$$\dim(S(\mathfrak{c}_e)/\mathfrak{U}\cap S(\mathfrak{c}_e))\leq \dim(I(\mathfrak{g}_e)/\mathfrak{U})<\infty.$$

Let E be the space of all analytic functions χ on \mathfrak{c}_0 such that $\partial(u)\chi = 0$ for $u \in \mathfrak{U} \cap S(\mathfrak{c}_e)$. Then (see the proof of Lemma 13 of $[\mathfrak{g}(e)]$) dim $E < \infty$. Let χ_j ($1 \le j \le N$) be a base for E over \mathbb{C} . Fix $Z \in \Omega_1' = \Omega_1 \cap \mathfrak{g}'$. Then it is obvious that $F(Z + C; \partial(u)) = 0$ for $u \in \mathfrak{U} \cap S(\mathfrak{c}_e)$ and $C \in \mathfrak{c}_0$. Therefore

$$F(C+Z) = \sum_{1 < j < N} \chi_j(C) F_j(Z)$$
 (C \in c_0)

where $F_j(Z) \in \mathbb{C}$. Since F is analytic on Ω' , it is obvious that F_j $(1 \le j \le N)$ are analytic functions on Ω'_1 .

Fix Euclidean measures dC and dZ on \mathfrak{c} and \mathfrak{g}_1 respectively such that dX = dCdZ for X = C + Z ($C \in \mathfrak{c}$, $Z \in \mathfrak{g}_1$) and for any $\alpha \in C_c^{\infty}(\mathfrak{c}_0)$ define the distribution θ_{α} on Ω_1 by $\theta_{\alpha}(\beta) = T(\alpha \times \beta)$ $(\beta \in C_c^{\infty}(\Omega_1)).$

Then, as we have seen in § 4, the induction hypothesis is applicable to $(g_1, \theta_{\alpha}, \Omega_1)$ in place of (g, T, Ω) . Put

$$\mathbf{F}_{\alpha}(\mathbf{Z}) = \sum_{1 < j < \mathbf{N}} \mathbf{F}_{j}(\mathbf{Z}) \int \chi_{j}(\mathbf{C}) \alpha(\mathbf{C}) d\mathbf{C}$$
 (Z \in \Omega_{1}').

Then $\nabla_{\mathfrak{g}_1}F_{\alpha}$ can be extended to a continuous function on Ω_1 . Since this is true for every $\alpha \in C_e^{\infty}(\mathfrak{c}_0)$, the same holds for $\nabla_{\mathfrak{g}_1}F_j$, $1 \leq j \leq N$ (see [3(e), Lemma 20]). But it is obvious that

$$F(C+Z;\nabla_{g}) = \sum_{1 \leq j \leq N} \chi_{j}(C) F_{j}(Z;\nabla_{g_{j}})$$

for $C \in \mathfrak{c}_0$ and $Z \in \Omega_1'$. Hence $\nabla_g F$ extends to a continuous function on $\mathfrak{c}_0 + \Omega_1$, which proves our assertion.

So now we may assume that g is semisimple. Let Ω^0 be the set of all points $X_0 \in \Omega$ such that $\nabla_g F$ can be extended to a continuous function around X_0 . Clearly Ω^0 is an open and invariant subset of Ω . Therefore, in view of Corollary 2 of Lemma 8, it would be enough to show that every semisimple element of Ω lies in Ω^0 .

Fix a semisimple element $H_0 \in \Omega$. First assume that $H_0 \neq 0$. Let 3 be the centralizer of H_0 in g. Define q and ζ as in $[3(i), \S 2]$. Then as we have seen during the proof of Theorem 3, there exists an invariant polynomial function p on 3 such that $\zeta = (-1)^q p^2$ where $q = (\dim \mathfrak{q})/2$. Let \mathfrak{h} be a Cartan subalgebra of 3. We identify \mathfrak{g} , 3, \mathfrak{h} with their respective duals by means of the Killing form of \mathfrak{g} . Define π_3 and π_q as in the proof of Theorem 3. Since $\zeta = (-1)^q \pi_q^2$ on \mathfrak{h} , it follows from [3(c), Theorem 1] that

$$\delta'_{3/5}(\partial(p)\circ p) = \pi_3^{-1}\partial(\pi_q)\circ \pi.$$

Hence if $H \in \mathfrak{h} \cap \Omega'$, we get

$$\begin{split} \mathbf{F}(\mathbf{H}\,;\,\nabla_{\!\mathbf{g}}) &= \mathbf{F}(\mathbf{H}\,;\,\partial(\pi)\circ\pi) \\ &= \mathbf{F}(\mathbf{H}\,;\,\partial(\pi_{\!3})\circ\pi_{\!3}\circ\delta_{3/\!5}'(\partial(\mathbf{p})\circ\mathbf{p})). \end{split}$$

On the other hand define Ω_3 , σ_T and F_3 as before (see the proof of Theorem 3) and put $T_3 = p\sigma_T$. Then by [3(i), Theorem 2 and Lemma 19], the induction hypothesis is applicable to $(3, \Omega_3, T_3)$ in place of $(\mathfrak{g}, \Omega, T)$. On the other hand we have seen during the proof of Theorem 3 that $\sigma_T = F_3$. Therefore $T_3 = pF_3$ and so by the induction hypothesis $(\nabla_3 \circ \partial(p))(pF_3)$ extends to a continuous function g_3 on Ω_3 .

Let Ξ denote the analytic subgroup of G corresponding to \mathfrak{F} and $x \to x^*$ the natural projection of G on $G^* = G/\Xi$. Select open connected neighborhoods G_0 and \mathfrak{F}_0 of \mathfrak{F}_0 and H_0 in G and H_0 are sufficiently small, we can define H_0 and H_0 as in the proof of Lemma 4. Define a function H_0 on H_0 as follows:

$$g(\varphi(x^*, Z)) = g_3(Z)$$
 $(x^* \in G_0^*, Z \in g_0).$

Since φ is an analytic diffeomorphism of $G_0^* \times \mathfrak{z}_0$ with Ω_0 , g is obviously continuous. Fix $X \in \Omega_0 \cap \mathfrak{g}'$. We claim that $g(X) = F(X; \nabla_g)$. Let $X = \varphi(x^*, H)$ $(x^* \in G_0^*, H \in \mathfrak{z}_0)$. Then it is clear that g(X) = g(H). Similarly, since $\nabla_g F$ is invariant under G, it follows that $F(X; \nabla_g) = F(H; \nabla_g)$. Hence it would be enough to show that $g(H) = F(H; \nabla_g)$. Obviously H is regular in both g and g. Let g be the centralizer of g in g. Then g is a Cartan subalgebra of g and g and g is a Cartan subalgebra of g is a Cartan subalgebra o

$$F(H; \nabla_{a}) = F(H; \partial(\pi_{a}) \circ \pi_{a} \circ \delta'_{a/b}(\partial(p) \circ p)).$$

Put $F_3' = (\partial(p) \circ p) F_3$. Since F_3 is invariant under Ξ and $\partial(p) \circ p \in \mathfrak{I}(\mathfrak{z}_e)$, it follows from $[\mathfrak{Z}(i), \text{ Lemma 14}]$ that

$$F_{3}'(H') = F_{3}(H'; \delta_{3/b}'(\partial(p)\circ p)) \qquad (H' \in \mathfrak{h}' \cap \Omega_{3}),$$

and therefore

$$\begin{split} g_{\mathfrak{z}}(\mathbf{H}) &= \mathbf{F}_{\mathfrak{z}}'(\mathbf{H}\,;\,\nabla_{\mathfrak{z}}) = \mathbf{F}_{\mathfrak{z}}(\mathbf{H}\,;\,\partial(\pi_{\mathfrak{z}}) \circ \pi_{\mathfrak{z}} \circ \delta_{\mathfrak{z}/\mathfrak{h}}'(\partial(\boldsymbol{p}) \circ \boldsymbol{p})) \\ &= \mathbf{F}(\mathbf{H}\,;\,\nabla_{\mathfrak{q}}) \end{split}$$

from the definition of ∇_3 . This proves that $\nabla_g F = g$ on $\Omega_0 \cap g'$ and therefore $H_0 \in \Omega^0$. So in order to complete the proof of Lemma 25, we may assume that $o \in \Omega$. Then, by Lemma 10, $\mathcal{N} \subseteq \Omega$ and it follows from Corollary 1 of Lemma 8 that $\nabla_g F$ can be

extended to a continuous function g on (1) $\Omega \cap {}^e \mathcal{N}$. Hence it would be sufficient to prove the following result.

Lemma 26. — There exists a number c with following property. If (X_k) $(k \ge 1)$ is a sequence in Ω' which converges to some element X in \mathcal{N} , then $g(X_k) \to c$.

Define \mathfrak{h}_i and \mathfrak{g}_i ($1 \le i \le r$) as in the proof of Lemma 24 and $c(\mathfrak{h}_i)$ as in § 8. Then $c(\mathfrak{h}_1) = \ldots = c(\mathfrak{h}_r) = c$ (say) from the results of § 8. Since \mathfrak{g}' is the union of $\mathfrak{g}_1, \ldots, \mathfrak{g}_r$ we can select, for each k, an index i_k and elements $x_k \in G$, $H_k \in \mathfrak{h}'_{i_k}$ such that $X_k = x_k H_k$. Since $X_k \to X$, it is clear (see the proof of $[\mathfrak{g}(j), Lemma 2\mathfrak{g}]$) that $H_k \to \mathfrak{o}$. Hence it follows from the definition of $\nabla_{\mathfrak{g}}$ and c that

$$g(\mathbf{H}_k) = \mathbf{F}(\mathbf{H}_k; \nabla_{\mathbf{q}}) \rightarrow c$$
.

But since $g = \nabla_{\mathfrak{q}} F$ is invariant under G, $g(X_k) = g(H_k)$ and therefore $g(X_k) \rightarrow c$.

§ 10. A DIGRESSION

We shall now apply Theorem 3 to give a new proof of the main result of [3(e)]. We keep to the notation of Theorem 1.

Lemma 27. — Assume that F is locally constant on Ω' . Then T is locally constant on Ω . Given any point $H_0 \in \Omega$, we have to show that T coincides with a constant around H_0 . In view of Corollary 2 of Lemma 8, it would be sufficient to consider the case when H_0 is semisimple. However we first prove the following lemma.

Lemma 28. — There exists a number a>0 such that

$$\partial(\varpi^{\mathfrak{h}})\pi^{\mathfrak{h}}=a$$

for every Cartan subalgebra h of g.

Take T = I and $\Omega = g$ in Theorem 1. Then $\partial(\varpi^{\mathfrak{h}})g^{\mathfrak{h}} = \partial(\varpi^{\mathfrak{h}})\pi^{\mathfrak{h}}$ in the notation of Theorem 3. But $\partial(\varpi^{\mathfrak{h}})\pi^{\mathfrak{h}}$ is obviously a constant which we denote by $a(\mathfrak{h})$. Since zero belongs to every Cartan subalgebra \mathfrak{h} , it follows from Theorem 3 that $a(\mathfrak{h})$ is actually independent of \mathfrak{h} . Hence we may denote it by a. On the other hand we know (see $[\mathfrak{g}(c),\mathfrak{p}]$, $[\mathfrak{g}(c),\mathfrak{g}(c)]$) that $a(\mathfrak{h})>0$. This proves the lemma (2).

Let us now return to the proof of Lemma 27. Since F is locally constant on Ω' , it follows from Lemma 28 that $\nabla_{\!g} F = aF$. Therefore we conclude from Lemma 25 that F can be extended to a continuous function on Ω . Since $T = T_F$, this proves that T is locally constant on Ω .

Now we know that the distribution T' of [3(d)], Lemma 30] is locally constant on g' (see [3(d)], p. 235]). Hence from Lemma 27, it is a constant. This gives a new proof of Lemma 17 of [3(j)].

⁽¹⁾ S denotes the complement of any set S.

⁽²⁾ It is obviously possible to give a direct proof of Lemma 28.

§ 11. PROOF OF THEOREM 4

In order to prove that the irreducible unitary characters of G are actually functions [3(g), Theorem 1], we have to develop a method of lifting our results from g to G. The remainder of this paper is devoted to this task.

We use the notation of [3(i), Theorem 1].

Theorem 4. — Let Ω be a completely invariant open set in \mathfrak{g} and T an invariant distribution on Ω . Let D be a differential operator in $\mathfrak{I}(\mathfrak{g}_c)$ such that $D\mathfrak{p} = 0$ for all $\mathfrak{p} \in J(\mathfrak{g}_c)$. Then DT = 0.

We proceed by induction on dim g. Let $\mathfrak c$ be the center and $\mathfrak g_1$ the derived algebra of $\mathfrak g$ and first assume that $\mathfrak c \neq \{0\}$. Then $\mathfrak S(\mathfrak g_c) = \mathfrak D(\mathfrak c_c) \mathfrak S(\mathfrak g_{1c})$ (see $[3(i), \S 3]$). Hence $D = \sum_{1 \leq i \leq r} \xi_i D_i$ where $\xi_i \in \mathfrak D(\mathfrak c_c)$, $D_i \in \mathfrak S(\mathfrak g_{1c})$ and ξ_1, \ldots, ξ_r are linearly independent over $\mathbf C$.

Fix a point $X_0 \in \Omega$ and let $X_0 = C_0 + Z_0$ ($C_0 \in \mathfrak{c}$, $Z_0 \in \mathfrak{g}_1$). Define \mathfrak{c}_0 and Ω_1 as in the proof of Lemma 25. Since $J(\mathfrak{g}_c) = P(\mathfrak{c}_c)J(\mathfrak{g}_{1c})$, we conclude that

$$\sum_{i} (\xi_{i}q) (\mathbf{D}_{i}p_{1}) = 0$$

for all $q \in P(\mathfrak{c}_e)$ and $p_1 \in J(\mathfrak{g}_{1e})$. Fix $p_1 \in J(\mathfrak{g}_{1e})$. Then it follows from the above result that

$$\sum_{i} (\mathbf{D}_{i} \mathbf{p}_{1}) \boldsymbol{\xi}_{i} = \mathbf{0}$$

in $\mathfrak{D}(\mathfrak{g}_c)$. Therefore we can conclude (see [3(i), § 3]) that $D_i p_1 = o$ ($1 \le i \le r$). Now fix $\alpha \in C_c^{\infty}(\mathfrak{c}_0)$. Then if $\beta \in C_c^{\infty}(\Omega_1)$, we have

$$(\mathrm{DT})(\alpha \times \beta) = \sum_{i} \mathrm{T}(\xi_{i}^{*} \alpha \times \mathrm{D}_{i}^{*} \beta) = \sum_{i} (\mathrm{D}_{i} \mathrm{T}_{i})(\beta)$$

where $T_i(\beta) = T(\xi_i^* \alpha \times \beta)$. Since dim $g_1 < \dim g$, Theorem 4 holds for (Ω_1, T_i, D_i) in place of (Ω, T, D) by the induction hypothesis. Hence $D_i T_i = 0$. In view of [3(h), Lemma 3] this shows that DT = 0 on $\mathfrak{c}_0 + \Omega_1$ and therefore $X_0 \notin \operatorname{Supp} DT$. Since X_0 was an arbitrary point in Ω , this proves that DT = 0.

Hence we may now assume that $\mathfrak{c} = \{ o \}$ and therefore \mathfrak{g} is semisimple. Let $H_0 \neq \mathfrak{o}$ be a semisimple element in Ω . We intend to show that $H_0 \notin \operatorname{Supp} DT$. Let \mathfrak{g} be the centralizer of H_0 in \mathfrak{g} . Define ζ and \mathfrak{g}' as usual (see $[\mathfrak{g}(i), \S 2]$) and let $\Omega_{\mathfrak{g}}$ be the set of all $Z \in \Omega \cap \mathfrak{g}$ such that $|\zeta(Z)| > |\zeta(H_0)|/2$. Then $\Omega_{\mathfrak{g}}$ is open and completely invariant in \mathfrak{g} . Take $G_0 = G$ and $\mathfrak{g}_0 = \Omega_{\mathfrak{g}}$ in $[\mathfrak{g}(i), \text{Lemma 17}]$ and let σ_T be the corresponding distribution on $\Omega_{\mathfrak{g}}$. Let Ξ be the analytic subgroup of G corresponding to \mathfrak{g} . Then σ_T is invariant under Ξ (see Corollary 1 of $[\mathfrak{g}(i), \text{Lemma 17}]$). Now it follows from $[\mathfrak{g}(i), \text{Lemma 10}$ and Corollary 2 of Lemma 2] that $D_1 = \zeta^m \delta'_{\mathfrak{g}/\mathfrak{g}}(D) \in \mathfrak{I}(\mathfrak{F}_c)$, if m is a sufficiently large positive integer. Moreover

$$\sigma_{\mathrm{DT}} = \delta'_{\mathrm{g/3}}(\mathrm{D})\sigma_{\mathrm{T}}$$

by Corollary 2 of [3(i), Lemma 17]. Fix a Cartan subalgebra \mathfrak{h} of 3. Then

$$\delta'_{a/b}(D_1) = \zeta_b^m \delta'_{a/b}(D)$$

from [3(i), Lemma 11] where $\zeta_{\mathfrak{h}}$ is the restriction of ζ on \mathfrak{h} . Moreover we know from [3(i), Theorem 1] that $\delta'_{\mathfrak{g}/\mathfrak{h}}(D) = 0$. Therefore, by applying [3(i), Theorem 1] to \mathfrak{z}_c instead of \mathfrak{g}_c , we conclude that $D_1 p_1 = 0$ for all $p_1 \in J(\mathfrak{z}_c)$. Therefore, since dim $\mathfrak{z} < \dim \mathfrak{g}$, we conclude from the induction hypothesis that $D_1 \sigma_T = \zeta^m \sigma_{DT} = 0$. Since ζ is nowhere zero on $\Omega_{\mathfrak{z}}$, this implies that $\sigma_{DT} = 0$ and therefore DT = 0 around H_0 .

In view of the above result, it follows from Corollary 1 of Lemma 8 that Supp $DT \subset \Omega \cap \mathcal{N}$. Hence, in order to complete the proof of Theorem 4, we may assume that $\Omega \cap \mathcal{N} \neq \emptyset$. But then $\mathcal{N} \subset \Omega$ from Lemma 10.

Lemma 29. — We can select a function $f \in C^{\infty}(\mathfrak{g})$ such that:

- 1) f is invariant under G;
- 2) Supp $f \subset \Omega$;
- 3) f = 1 on some neighborhood of zero in g;
- 4) the distribution fT on g is tempered.

Notice that since $\operatorname{Supp} f \subset \Omega$, the distribution $f T : g \to T(fg) \ (g \in C_c^{\infty}(\mathfrak{g}))$ is well defined on \mathfrak{g} . The proof of this lemma is rather long and therefore, in order not to interrupt our main line of argument, we shall postpone it until later (see § 19).

We have seen above that $\operatorname{Supp} \operatorname{DT} \subset \mathcal{N}$. Choose an open neighborhood V of zero in Ω such that $f=\mathfrak{l}$ on V. Fix a point $X\in \mathcal{N}$. Then, by Lemma 7, we can choose $y\in G$ such that $y^{-1}X\in V$. Now T and fT are both invariant distributions which obviously coincide on V. Hence they also coincide on V^y . Therefore, in order to show that $\operatorname{DT}=\mathfrak{o}$ around X, it would be sufficient to verify that $\operatorname{D}(fT)=\mathfrak{o}$ around X. This means that in order to complete the proof of Theorem 4, it is enough to prove that $\operatorname{D}(fT)=\mathfrak{o}$. Therefore, replacing T by fT, we may now assume that T is an invariant and tempered distribution on \mathfrak{g} . Moreover we know from the above proof that $\operatorname{Supp} \operatorname{DT} \subset \mathcal{N}$.

Define the space $\mathscr{C}(\mathfrak{g})$ as in $[\mathfrak{Z}(\mathfrak{c}), \mathfrak{p}, \mathfrak{g}_1]$ and for any $f \in \mathscr{C}(\mathfrak{g})$ define its Fourier transform \hat{f} by

$$\hat{f}(\mathbf{Y}) = \int_{\mathfrak{g}} \exp((-\mathbf{I})^{1/2} \mathbf{B}(\mathbf{Y}, \mathbf{X})) f(\mathbf{X}) d\mathbf{X}$$
 (Y \in \mathbf{g})

where dX is a fixed Euclidean measure on \mathfrak{g} and $B(Y, X) = \operatorname{tr}(\operatorname{ad} Y \operatorname{ad} X) (X, Y \in \mathfrak{g}_c)$ as usual. If σ is any tempered distribution on \mathfrak{g} , its Fourier transform $\hat{\sigma}$ is also a tempered distribution on \mathfrak{g} given by $\hat{\sigma}(f) = \sigma(\hat{f})$ $(f \in \mathscr{C}(\mathfrak{g}))$. Since $f \to \hat{f}$ is a topological mapping of $\mathscr{C}(\mathfrak{g})$ onto itself, $\hat{\sigma} = 0$ implies that $\sigma = 0$.

As usual we identify \mathfrak{g}_c with its dual under B and use the notation of $[\mathfrak{Z}(i)]$, Lemma 12]. Then the mapping $\alpha: \Delta \to (\widehat{\Delta})^* (\Delta \in \mathfrak{D}(\mathfrak{g}_c))$ is an anti-automorphism of $\mathfrak{D}(\mathfrak{g}_c)$ and therefore α^2 is an automorphism. However it is easy to check that α^2 leaves $\mathfrak{g}_c + \partial(\mathfrak{g}_c)$ fixed pointwise and therefore it must be the identity. The relation

 $\alpha^2 \Delta = \Delta \left(\Delta \in \mathfrak{D}(\mathfrak{g}_c) \right)$ implies that $\Delta^* = (\alpha \Delta)^*$. On the other hand $(\alpha \Delta)^* = \hat{\Delta}$ from the definition of α . Therefore

$$\begin{split} (\Delta\sigma)^{\hat{}}(f) &= \sigma(\Delta^*\hat{f}) = \sigma(((\alpha\Delta)f)^{\hat{}}) \\ &= \hat{\sigma}((\alpha\Delta)f) = (\hat{\Delta}\hat{\sigma})(f) \end{split} \qquad (f \in \mathscr{C}(\mathfrak{g})),$$

for any tempered distribution σ . This proves that $(\Delta \sigma)^{\hat{}} = \hat{\Delta} \hat{\sigma}$. Similarly, since B is invariant under G, $(f^x)^{\hat{}} = (\hat{f})^x$ for $f \in \mathscr{C}(\mathfrak{g})$ and $x \in G$. Therefore $(\sigma^x)^{\hat{}} = (\hat{\sigma})^x$.

Thus $\hat{\mathbf{T}}$ is an invariant distribution on g and $(DT)^{\hat{}} = \hat{D}\hat{\mathbf{T}}$. Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Then it follows from $[\mathfrak{g}(i), \text{ Theorem 1}]$ and our hypothesis on D, that $\delta'_{\mathfrak{g}/\mathfrak{h}}(D) = \mathfrak{o}$. Therefore we conclude from $[\mathfrak{g}(i), \text{ Lemma 13}]$ that $\hat{\mathbf{D}} \in \mathfrak{F}(\mathfrak{g}_c)$ and $\hat{\mathbf{D}} p = \mathfrak{o}$ for every $p \in J(\mathfrak{g}_c) = I(\mathfrak{g}_c)$. So the above proof is also applicable to (\hat{D}, \hat{T}) instead of (D, T). Hence $\text{Supp } \hat{\mathbf{D}}\hat{\mathbf{T}} \subset \mathcal{N}$.

Now put $\sigma = DT$ and fix an element $p \in I(g_c)$ such that p vanishes at zero. Then it follows from Lemma 7 that p = 0 on \mathcal{N} . Hence (see [3(h), Lemma 21]) we can choose an integer $m \geq 0$ such that $p^m \sigma = 0$ around zero. Then, if we take $\Omega = g$ and $\Phi = \text{Supp}(p^m \sigma)$ in Corollary 1 of Lemma 8, we can conclude that $p^m \sigma = 0$. Choose a finite number of homogeneous elements p_1, \ldots, p_l of positive degrees in $I(g_c)$ such that $I(g_c) = \mathbf{C}[p_1, \ldots, p_l]$. Fix an integer $m \geq 0$ such that $p_i^m \sigma = 0$ ($1 \leq i \leq l$). Then, if \mathfrak{B} is the ideal in $I(g_c)$ generated by p_1^m, \ldots, p_l^m , it is obvious that $\dim(I(g_c)/\mathfrak{B}) \leq m^l$ and $v\sigma = 0$ for $v \in \mathfrak{B}$. On the other hand, by [3(i), Lemmas 12 and 13], $\Delta \to \hat{\Delta}(\Delta \in \mathfrak{D}(g_c))$ is an automorphism of $\mathfrak{D}(g_c)$ of order 4 which maps $I(g_c)$ onto $\partial(I(g_c))$. Therefore $\hat{\mathfrak{B}}$ is an ideal in $\partial(I(g_c))$ and $\hat{v}\hat{\sigma} = (v\sigma)^{\hat{\gamma}} = 0$ for $v \in \mathfrak{B}$. Hence we conclude from Theorem 1, applied to $\hat{\sigma}$ instead of T, that $\hat{\sigma}$ is a locally summable function on g. But $\hat{\sigma} = \hat{D}\hat{T}$ and therefore, as we have seen above, $\text{Supp } \hat{\sigma} \subset \mathcal{N}$. Since \mathcal{N} is of measure zero in g, it follows that $\hat{\sigma} = 0$ and therefore $DT = \sigma = 0$. This proves Theorem 4.

§ 12. ANALYTIC DIFFERENTIAL OPERATORS

For applications we have to generalize Theorem 4 to the case when D is an analytic differential operator on Ω . For this we need some preparation.

Let E be a vector space over **R** of finite dimension, Ω a non-empty open subset of E and $\mathfrak{D}_{\infty}(\Omega : E)$ the algebra of all differential operators on Ω . Then any such operator D can be written in the form

$$\mathbf{D} = \sum_{1 \leq i \leq r} f_i \partial(p_i)$$

where $f_i \in C^{\infty}(\Omega)$ and $p_i \in S(E)$. For any $X \in \Omega$, D_X denotes, as usual the local expression of D at X (see [3(c), p. 90]) so that

$$D_{X} = \sum_{i} f_{i}(X) \partial(p_{i}).$$

Let $\mathscr{A}(\Omega)$ be the algebra of all analytic functions on Ω . Then $\mathscr{A}(\Omega)$ is a subalgebra of $C^{\infty}(\Omega)$. We denote by $\mathfrak{D}_{a}(\Omega : E)$ the subalgebra of $\mathfrak{D}_{\infty}(\Omega : E)$ generated by $\mathscr{A}(\Omega) \cup \partial(S(E))$. If Ω is empty, we define $\mathfrak{D}_{\infty}(\Omega : E) = \mathfrak{D}_{a}(\Omega : E) = \{0\}$.

Let Ω_1 be an open subset of Ω . Then we get a homomorphism

$$j: \mathfrak{D}_{\infty}(\Omega: \mathcal{E}) \to \mathfrak{D}_{\infty}(\Omega_1: \mathcal{E})$$

as follows. If $D \in \mathfrak{D}_{\infty}(\Omega : E)$, then j(D) is the restriction of D on Ω_1 . It is clear that j maps $\mathfrak{D}_a(\Omega : E)$ into $\mathfrak{D}_a(\Omega_1 : E)$. We say that an element $D \in \mathfrak{D}_{\infty}(\Omega : E)$ is analytic on Ω_1 if $j(D) \in \mathfrak{D}_a(\Omega : E)$. In particular D is analytic if $D \in \mathfrak{D}_a(\Omega : E)$.

§ 13. EXTENSION OF SOME RESULTS TO ANALYTIC DIFFERENTIAL OPERATORS

Now let g be a reductive Lie algebra over **R** and Ω a non-empty open set in g. If Ω is invariant, G operates on $\mathfrak{D}_{\infty}(\Omega:\mathfrak{g})$ (see $[\mathfrak{g}(h),\S 5]$). We denote by $\mathfrak{F}_{\infty}(\Omega:\mathfrak{g})$ the subalgebra consisting of all invariant elements and put $\mathfrak{F}_a(\Omega:\mathfrak{g}) = \mathfrak{F}_{\infty}(\Omega:\mathfrak{g}) \cap \mathfrak{D}_a(\Omega:\mathfrak{g})$.

Fix \mathfrak{z} and define ζ and \mathfrak{z}' as in $[\mathfrak{z}(i), \S\S 2, 7]$. Put $\Omega_{\mathfrak{z}} = \Omega \cap \mathfrak{z}'$ and for any $D \in \mathfrak{D}_{\infty}(\Omega : \mathfrak{g})$ define an element $\Delta(D) \in \mathfrak{D}_{\infty}(\Omega_{\mathfrak{z}} : \mathfrak{z})$ as follows. Fix $Z \in \Omega_{\mathfrak{z}}$ and choose $p_{\mathbb{Z}} \in S(\mathfrak{g}_c)$ such that $D_{\mathbb{Z}} = \partial(p_{\mathbb{Z}})$. Then, corresponding to Corollary 1 of $[\mathfrak{z}(i), \text{Lemma 2}]$, $\alpha_{\mathbb{Z}}(p_{\mathbb{Z}}) \in S(\mathfrak{z}_c)$. It follows from Corollary 2 of $[\mathfrak{z}(i), \text{Lemma 2}]$ that there exists a unique element $\nabla \in \mathfrak{D}_{\infty}(\Omega_{\mathfrak{z}} : \mathfrak{z})$ such that $\nabla_{\mathbb{Z}} = \partial(\alpha_{\mathbb{Z}}(p_{\mathbb{Z}}))$ for $Z \in \Omega_{\mathfrak{z}}$. We define $\Delta(D) = \nabla$. (In case $\Omega_{\mathfrak{z}}$ is empty, $\Delta(D) = 0$ by definition.)

Let $\delta'_{\mathfrak{g}/\mathfrak{z}}$ denote the mapping $D \to \Delta(D)$ of $\mathfrak{D}_{\infty}(\Omega : \mathfrak{g})$ into $\mathfrak{D}_{\infty}(\Omega_{\mathfrak{z}} : \mathfrak{z})$ (cf. [3(i), § 4]).

Lemma 30. — $\delta'_{g/3}$ maps $\mathfrak{D}_a(\Omega:g)$ into $\mathfrak{D}_a(\Omega_3:g)$. Moreover, if Ω is invariant, $\delta'_{g/3}$ maps $\mathfrak{I}_{\infty}(\Omega:g)$ into $\mathfrak{I}_{\infty}(\Omega_3:g)$.

The first statement is obvious from Corollary 2 of [3(i), Lemma 2]. Moreover, if Ω is invariant, then Ω_3 is invariant in 3 and the second assertion follows from [3(i), Lemma 3].

Let h be a Cartan subalgebra of 3.

Lemma 31. — $\delta'_{\mathfrak{g}/\mathfrak{h}}(D) = \delta'_{\mathfrak{g}/\mathfrak{h}}(\delta'_{\mathfrak{g}/\mathfrak{h}}(D))$ for $D \in \mathfrak{D}_{\infty}(\Omega : \mathfrak{g})$.

The proof of this is the same as that of [3(i), Lemma 11].

Lemma 32. — Let f be a locally invariant C^{∞} function on an open subset Ω_0 of Ω . Then

$$f(\mathbf{Z}; \mathbf{D}) = f(\mathbf{Z}; \delta'_{\mathfrak{a}/3}(\mathbf{D}))$$

for $Z \in \Omega_0 \cap \mathfrak{F}'$ and $D \in \mathfrak{D}_{\infty}(\Omega : \mathfrak{g})$.

This is proved in the same way as Lemma 14 of [3(i)].

Lemma 33. — Let D be a differential operator on an open subset Ω of \mathfrak{g} . Then the following two conditions on D are equivalent.

- 1) For every Cartan subalgebra \mathfrak{h} of \mathfrak{g} , $\delta'_{\mathfrak{g}/\mathfrak{h}}(D) = 0$.
- 2) If Ω_0 is an open subset of Ω and f a locally invariant C^{∞} function on Ω_0 , then Df = 0.

Assume 1) holds and let f be a locally invariant C^{∞} function on Ω_0 . Since $\Omega'_0 = \Omega_0 \cap \mathfrak{g}'$ is dense in Ω_0 , it is enough to verify that Df = 0 on Ω'_0 . Fix $H_0 \in \Omega'_0$ and let \mathfrak{h} be the centralizer of H_0 in \mathfrak{g} . Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and since f is locally invariant, it follows from Lemma 32 that $f(H_0; D) = f(H_0; \delta'_{\mathfrak{g}/\mathfrak{h}}(D)) = 0$. This proves that Df = 0 on Ω'_0 .

Conversely assume that 2) holds. Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and a point $H_0 \in \Omega \cap \mathfrak{h}'$. Let A be the Cartan subgroup of G corresponding to \mathfrak{h} . We now use the notation of the proof of Lemma 1. Then φ defines an analytic diffeormorphism of $G_0^* \times \mathfrak{h}_0$ with Ω_0 . Fix $\beta \in C^{\infty}(\mathfrak{h}_0)$ and define $f \in C^{\infty}(\Omega_0)$ by the relation $f(x^*H) = \beta(H)$ ($x^* \in G_0^*$, $H \in \mathfrak{h}_0$). Then it is obvious that f is locally invariant and therefore

$$o = f(H; D) = f(H; \delta'_{g/\!\mathfrak{h}}(D)) = \beta(H; \delta'_{g/\!\mathfrak{h}}(D)) \tag{$H \in \mathfrak{h}_0$}$$

Since β was an arbitrary element of $C^{\infty}(\mathfrak{h}_{0})$, this implies that $\delta'_{g/\mathfrak{h}}(D) = 0$ on \mathfrak{h}_{0} . Hence in particular $(\delta'_{g/\mathfrak{h}}(D))_{H_{0}} = 0$. This shows that 2) implies 1).

Corollary. — Assume Ω is invariant. Then either one of the two conditions above is equivalent to the following.

3) For every invariant function f in $C^{\infty}(\Omega)$, Df = 0.

Obviously 2) implies 3). Now assume 3) holds. Fix a Cartan subalgebra \mathfrak{h} of g and a point $H_0 \in \Omega \cap \mathfrak{h}'$. Let \mathfrak{h}_0 be an open neighborhood of H_0 in $\mathfrak{h}' \cap \Omega$. We assume that \mathfrak{h}_0 is relatively compact in \mathfrak{h}' and $s\mathfrak{h}_0 \cap \mathfrak{h}_0 = \emptyset$ for $s \neq 1$ in W_G (see § 9 for the definition of W_G). Fix $\beta_0 \in C_c^{\infty}(\mathfrak{h}_0)$ and put

$$\beta(\mathbf{H}) = \sum_{s \in \mathbf{W}_{G}} \beta_{\mathbf{0}}(s\mathbf{H}) \tag{H} \in \mathfrak{h}.$$

Then $\beta^s = \beta$ $(s \in W_G)$ and the mapping $\varphi : G^* \times \mathfrak{h}' \to \mathfrak{g}$ is everywhere regular. Put $g_{\mathfrak{h}} = \varphi(G^* \times \mathfrak{h}') = (\mathfrak{h}')^G$. The group W_G operates on $G^* \times \mathfrak{h}'$ on the right as follows:

$$(x^*, H)s = (x^*s, s^{-1}H)$$
 $(s \in W_G)$

in the notation of the proof of Lemma 24. Since no point of $G^* \times \mathfrak{h}'$ is left fixed by s if $s \neq r$, it follows that φ defines an analytic diffeomorphism of the quotient manifold $(G^* \times \mathfrak{h}')/W_G$ with $g_{\mathfrak{h}}$. Now define a function F on $G^* \times \mathfrak{h}'$ by

$$F(x^*: H) = \beta(H) \qquad (x^* \in G^*, H \in \mathfrak{h}').$$

Then $F(x^*s:s^{-1}H) = \beta(s^{-1}H) = \beta(H) = F(x^*:H)$ and therefore F defines a C^{∞} function f on $g_{\mathfrak{h}}$. Since \mathfrak{h}_0 is relatively compact in \mathfrak{h}' it follows from [3(j), Lemma 7] that $Cl(\mathfrak{h}_0^G) \subset g_{\mathfrak{h}}$ and therefore we can extend f to a C^{∞} function on g by defining it to be zero outside $g_{\mathfrak{h}}$. Then it is clear that f is invariant and therefore Df = 0 on Ω by g. But

$$f(\mathbf{H}; \mathbf{D}) = f(\mathbf{H}; \delta'_{\mathsf{q/b}}(\mathbf{D})) = \beta_{\mathbf{0}}(\mathbf{H}; \delta'_{\mathsf{q/b}}(\mathbf{D})) \tag{H} \in \mathfrak{h}_{\mathbf{0}}$$

because $f = \beta = \beta_0$ on β_0 . Since β_0 was arbitrary in $C_c^{\infty}(\beta_0)$, this shows that $(\delta'_{g/\beta}(D))_{H_0} = 0$. Therefore 3) implies 1) and the corollary is proved.

§ 14. PROOF OF THEOREM 5

We shall now prove the following generalization of Theorem 4.

Theorem 5. — Let Ω be a completely invariant open set in $\mathfrak g$ and T an invariant distribution on Ω . Let D be an analytic and invariant differential operator on Ω such that $Df = \mathfrak o$ for every invariant C^{∞} function f on Ω . Then $DT = \mathfrak o$.

We again use induction on dim g. Define $\mathfrak c$ and $\mathfrak g_1$ as in § 4 and fix a semisimple element $H_0\in\Omega$ such that $H_0\notin\mathfrak c$. We shall prove that $\mathrm{DT}=\mathfrak o$ around H_0 . Let 3 denote the centralizer of H_0 in g and define ζ and 3' as in $[3(i),\S\,2]$. Then $\Omega_3=\Omega\cap\mathfrak f'$ is an open and completely invariant set in 3. Let σ_T and σ_{DT} be the distributions on Ω_3 corresponding to T and DT respectively under $[3(i), Lemma\ 17]$ with $G_0=G$ and $\mathfrak g_0=\Omega_3$. Then it would be enough to show that $\sigma_{DT}=\mathfrak o$. However it is easy to prove (cf. Corollary 2 of $[3(i), Lemma\ 17]$) that $\sigma_{DT}=\Delta\sigma_T$ where $\Delta=\delta'_{9/3}(D)$. Now σ_T is an invariant distribution on Ω_3 (see Corollary 1 of $[3(i), Lemma\ 17]$) and $\Delta\in\mathfrak I_a(\Omega_3:\mathfrak g)$ by Lemma 30. Therefore since dim $\mathfrak g<\dim\mathfrak g$, it follows by induction hypothesis that $\Delta\sigma_T=\mathfrak o$ (see Lemma 31 and the corollary of Lemma 33).

Now fix $C_0 \in \Omega$. We claim that T = 0 around C_0 . Applying the translation by $-C_0$ to the whole problem, we are reduced to the case when $C_0 = 0$. Let

$$D = \sum_{1 < i < r} a_i \, \partial(p_i)$$

where p_1, \ldots, p_r are linearly independent homogeneous elements in $S(g_e)$ and a_1, \ldots, a_r are analytic functions on Ω . Let V be the subspace of $S(g_e)$ spanned by p_i^x ($1 \le i \le r, x \in G$). Then obviously dim $V < \infty$ and we may, without loss of generality, assume that (p_1, \ldots, p_r) is a base for V. Then

$$p_i^x = \sum_j c_{ji}(x)p_j \qquad (x \in G)$$

where c_{ji} are analytic functions on G. Since $D = D^x$, it follows that $D_{xX} = (D_X)^x$ and therefore

$$\sum_{i} a_{i}(xX) \partial(p_{i}) = \sum_{i} a_{i}(X) \partial(p_{i}^{x})$$
 (X \in \Omega).

This shows that

$$a_i(x\mathbf{X}) = \sum_j c_{ij}(x) a_j(\mathbf{X}) \qquad (x \in \mathbf{G}, \ \mathbf{X} \in \Omega).$$

For any integer m, let \mathfrak{D}_m denote the subspace of $\mathfrak{D}(\mathfrak{g}_c)$ spanned by elements of the form $p\partial(q)$ where p and q are homogeneous elements in $P(\mathfrak{g}_c)$ and $S(\mathfrak{g}_c)$ respectively and $\deg p - \deg q = m$. Then if $\Delta \in \mathfrak{D}_m$ and Q is a homogeneous polynomial function on \mathfrak{g} , it is clear that ΔQ is homogeneous and

$$\deg(\Delta Q) = \deg Q + m$$
.

Choose an open and convex neighborhood Ω_0 of zero in Ω such that each a_i ($1 \le i \le r$) can be expanded in a power series around zero, which converges absolutely on Ω_0 . Then

$$a_i(\mathbf{X}) = \sum_{\mathbf{v} > 0} q_{\mathbf{v}i}(\mathbf{X}) \tag{X} \in \Omega_0$$

where q_{vi} is a homogeneous polynomial function on g of degree v. It is obvious from our result above that

$$q_{vi}(xX) = \sum_{1 < j < r} c_{ij}(x) q_{vj}(X) \qquad (x \in G, X \in \Omega_0)$$

and therefore

$$_{\nu}\mathbf{D} = \sum_{i} q_{\nu i} \partial(p_{i})$$

lies in $\mathfrak{I}(\mathfrak{g}_c)$. On the other hand it is clear that $\mathfrak{D}(\mathfrak{g}_c)$ is the direct sum of \mathfrak{D}_m for all m ($-\infty < m < \infty$) and each \mathfrak{D}_m is stable under G. Let ${}_{\nu}D_m$ denote the component of ${}_{\nu}D$ in \mathfrak{D}_m is this direct sum. Then it is clear that ${}_{\nu}D_m \in \mathfrak{I}(\mathfrak{g}_c)$. Moreover ${}_{\nu}D_m \neq 0$ implies that $v = m + \deg p_i$ for some i. Hence if $m_0 = \sup_i \deg p_i$, it follows that ${}_{\nu}D_m = 0$ for $v > m + m_0$. Put

$$\mathbf{D}_{m} = \sum_{\mathbf{v} > 0} \mathbf{v} \mathbf{D}_{m}$$
.

Then $D_m \in \mathfrak{I}(\mathfrak{g}_c) \cap \mathfrak{D}_m$. Moreover if p is a homogeneous element in $J(\mathfrak{g}_c)$, then by hypothesis

$$o = D p = \sum_{m > -m_0} D_m p$$

on Ω_0 . Since $D_m p$ is homogeneous of degree $m + \deg p$, it is clear that $D_m p = 0$. Therefore $D_m T = 0$ by Theorem 4.

Now fix $f \in C_c^{\infty}(\Omega_0)$. It is clear that for any $p \in S(\mathfrak{g}_c)$, the series

$$\sum_{\nu>0} |\partial(p)q_{\nu i}| \qquad (1 \le i \le r)$$

converge uniformly on any compact subset of Ω_0 . Hence it follows without difficulty that the series

$$\sum_{m>-m_{\mathfrak{g}}} \mathcal{D}_{m}^{*} f$$

converges in $C_c^{\infty}(\Omega_0)$ to D^*f . (Here the star denotes adjoint, as usual.) This implies that the series

$$\sum_{m \geq -m_{\mathbf{0}}} \mathrm{T}(\mathrm{D}_{m}^{*}f)$$

converges to $T(D^*f)$. But $T(D_m^*f) = 0$ since $D_mT = 0$. Therefore $T(D^*f) = 0$. This means that DT = 0 on Ω_0 .

The above proof shows that Supp DT contains no semisimple element of Ω .

Hence it follows from Corollary 1 of Lemma 8 that DT = 0. This completes the proof of Theorem 5.

Remark. — I do not know whether Theorem 5 continues to hold when the condition of analyticity of D is dropped.

§ 15. SOME PREPARATION FOR THE PROOF OF LEMMA 29

Let G be a connected semisimple Lie group with a faithful finite-dimensional representation, g its Lie algebra over \mathbf{R} , θ a Cartan involution of g and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ the corresponding Cartan decomposition. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} . We introduce an order in the space of all (real) linear functions on \mathfrak{a} and denote by Σ the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$ (see $[\mathfrak{g}(f), \mathfrak{p}, \mathfrak{244}]$). Let \mathfrak{a}^+ be the set of all points $H \in \mathfrak{a}$ where $\alpha(H) \geq 0$ for every $\alpha \in \Sigma$. Put $A = \exp \mathfrak{a}$ and $A^+ = \exp(\mathfrak{a}^+)$ in G. The exponential mapping from \mathfrak{a} to A is bijective. We denote its inverse by log. Introduce a partial order in A as follows. Given two elements h_1, h_2 in A, we write $h_1 > h_2$ if $h_1 h_2^{-1} \in A^+$. Let $l = \dim \mathfrak{a}$. Then we can choose a simple system of roots $\alpha_1, \ldots, \alpha_l$ in Σ (see $[\mathfrak{g}(d), Lemma 1]$).

Lemma 34. — Fix some norm \vee on the finite-dimensional space g. Then for any number $a \ge 0$, we can choose two numbers b, c $(b \ge a, c \ge 1)$ with the following property. Suppose $X \in g$, $h \in A^+$ and $v(X) \le a$. Then there exist elements $X_0 \in g$ and $h_0 \in A^+$ such that

- 1) $X^h = X_0^{h_0}, \nu(X_0) \leq b, \ 1 < h_0 < h;$
- 2) $\max_{1 \leq i \leq l} \exp \alpha_i (\log h_0) \leq c(1 + \nu(X^h))^l$.

(In case l=0, $\max_{i} \exp \alpha_{i}(\log h_{0})$ should be taken to mean 1.) We shall give a proof of this lemma in § 20.

As usual put
$$B(X, Y) = tr(ad Xad Y) (X, Y \in \mathfrak{g})$$
. Then the quadratic form
$$||X||^2 = -B(X, \theta(X)) \tag{$X \in \mathfrak{g}$}$$

is positive-definite and defines the structure of a real Hilbert space on g. For any a>0, let ω_a denote the set of all $X\in\mathfrak{g}$ with ||X||< a and put $\Omega_a=(\omega_a)^G$.

Lemma 35. — Suppose a>b>0. Then $Cl\Omega_b \subset \Omega_a$.

We shall give a proof of this in § 21.

Corollary. — Ω_a is an open and completely invariant subset of g.

It is obvious that Ω_a is open and invariant. Fix $X_0 \in \Omega_a$. Then $X_0 = Y_0^{x_0}$ where $||Y_0|| < a$ and $x_0 \in G$. Choose b such that $||Y_0|| < b < a$. Then $X_0 \in \Omega_b$ and $Cl(\Omega_b) \subset \Omega_a$ by Lemma 35. This shows that every point of Ω_a has an open invariant neighborhood whose closure (in g) is contained in Ω_a . From this it is clear that Ω_a is completely invariant.

For any linear transformation T in g, let T* denote its adjoint (in the sense of Hilbert-space theory). Put

$$||x||^2 = \operatorname{tr}(\operatorname{Ad}(x)^*\operatorname{Ad}(x)) \qquad (x \in G).$$

Choose a base (H_1, \ldots, H_l) for a over **R** dual to $(\alpha_1, \ldots, \alpha_l)$ so that

$$\alpha_i(\mathbf{H}_j) = \delta_{ij} \qquad (\mathbf{I} \leq i, j \leq l)$$

and define $m(\alpha) = \sum_{i} \alpha(H_i)$ for $\alpha \in \Sigma$. Since $H_i \in \mathfrak{a}^+$, it is clear that $m(\alpha)$ is a positive integer.

Lemma 36. — Given a>0, we can choose numbers b, c $(b\geq a, c\geq 1)$ such that the following condition holds. For any $X\in\Omega_a$, we can select $x\in G$ such that

1)
$$||X^{x-1}|| \le b$$
, 2) $||x|| \le c(1 + ||X||)^m$

where $m = l \max_{\alpha \in \Sigma} m(\alpha)$.

(If l=0 then m=0 by definition.) Choose b_0 , c_0 such that Lemma 34 holds for (b_0, c_0) instead of (b, c) with the norm $\nu(Z) = ||Z||$ $(Z \in \mathfrak{g})$. Let K be the analytic subgroup of G corresponding to \mathfrak{k} . Then K is compact, $G = KA^+K$ and Ad(k) is unitary for $k \in K$. Hence if $x = k_1 h k_2$ $(k_1, k_2 \in K, h \in A^+)$, it follows that ||x|| = ||h||. However Ad(h) is self-adjoint (1) and its eigenvalues are 1 and $e^{\pm \alpha(\log h)}$ $(\alpha \in \Sigma)$. Since $\alpha(\log h) \geq 0$, it is clear that

$$||h|| \le n^{1/2} \max_{\alpha \in \Sigma} e^{\alpha(\log h)}$$

where $n = \dim \mathfrak{g}$. But $\alpha = \sum_{1 \le i \le m_i} m_i \alpha_i$ where $m_i = \alpha(H_i)$ are integers ≥ 0 . Hence

$$\alpha(\log h) \leq m(\alpha) \max_{i} \alpha_{i}(\log h) \leq m_{0} \max_{i} \alpha_{i}(\log h)$$

where $m_0 = \max_{\alpha \in \Sigma} m(\alpha)$. Therefore

$$||h|| \leq n^{1/2} \left(\max_{i} e^{\alpha_{i}(\log h)} \right)^{m_{0}}$$

(This holds also if l=0. We define $m_0=0$ in that case.)

Now fix $X \in \Omega_a$ and choose $Y \in \mathfrak{g}$, $y \in G$ such that $||Y|| \le a$ and $X = Y^y$. Let $y = k_1 h k_2$ $(k_1, k_2 \in K, h \in A^+)$. Replacing (Y, y) by $(Y^{k_2}, k_1 h)$, we can assume that $y = k_1 h$. Select $Y_0 \in \mathfrak{g}$ and $h_0 \in A^+$ such that $Y^h = Y_0^{h_0}$, $||Y_0|| \le h_0$, $1 < h_0 < h$ and

$$\max_{i} e^{\alpha_{i}(\log h_{0})} \leq c_{0}(1 + ||\mathbf{Y}^{h}||)^{l}.$$

This is possible from the definition of b_0 , c_0 . Then

$$||h_0|| \le n^{1/2} c_0^{m_0} (1 + ||Y^h||)^m$$
.

Now put $x = k_1 h_0$. Then $X = Y^y = Y_0^x$ and therefore $||X^{x^{-1}}|| \le b_0$. Moreover

$$||x|| = ||h_0|| \le n^{1/2} c_0^{m_0} (1 + ||X||)^m$$
.

Therefore we can take $b = b_0$ and $c = n^{1/2} c_0^{m_0}$ in the lemma.

⁽¹⁾ The facts stated here are all well known. They can be found in [3(a)].

§ 16. SOME INEQUALITIES

For $t \ge 1$, let G(t) denote the set of all $x \in G$ with $||x|| \le t$. Then G(t) is obviously compact.

Lemma 37. — Let μ denote the Haar measure of G. Then there exists a number c>o and an integer $M\geq o$ such that

$$\mu(\mathbf{G}(t)) \leq ct^{\mathbf{M}}$$

for $t \ge 1$.

The statement is trivial if G is compact. Hence we may assume that $l \ge 1$. Put $A^+(t) = A^+ \cap G(t)$. Then it is clear that $G(t) = KA^+(t)K$ and therefore (see [3(a), Lemma 22])

$$\mu(\mathbf{G}(t)) = \int_{\mathbf{A}^+(t)} \mathbf{D}(h) dh$$

where dh is the (suitably normalized) Haar measure on A,

$$D(h) = \prod_{\alpha \in \Sigma} \left(e^{\alpha(\log h)} - e^{-\alpha(\log h)} \right)^{m_{\alpha}} \tag{h \in A}$$

and m_{α} is the multiplicity of α (m_{α} is the dimension of the space \mathfrak{g}_{α} consisting of all $X \in \mathfrak{g}$ such that $[H, X] = \alpha(H)X$ for all H in \mathfrak{a} .) Put $2\rho = \sum_{\alpha \in \Sigma} m_{\alpha}\alpha$. Then it is obvious that $D(h) \leq e^{2\rho(\log h)} \qquad (h \in A^+).$

Now $2\rho = \sum_{1 \le i \le l} m_i \alpha_i$ where m_i are positive integers. Put $\tau_i = \alpha_i (\log h)$. Then $dh = c_1 d\tau_1 \dots d\tau_l$ where c_1 is a positive constant and

$$e^{2\rho(\log h)} = \exp(m_1 \tau_1 + \ldots + m_l \tau_l).$$

Now if $h \in A^+(t)$, we have

$$1 \le e^{\alpha_i (\log h)} \le ||h|| \le t$$

and therefore $0 \le \tau_i \le \log t$. Hence

$$\mu(\mathbf{G}(t)) \leq \int_{\mathbf{A}^+(t)} e^{2\rho(\log h)} dh \leq ct^{\mathbf{M}}$$

where $c = c_1/(m_1 m_2 \dots m_l)$ and $M = m_1 + \dots + m_l$.

Lemma 38. — There exists a compact neighborhood U of I in G and two constants $a_1, c_1 > 0$ with the following property. For any $t \ge I$, we can choose a finite set of points x_i $(I \le i \le N(t))$ in G such that

- 1) $G(t) \subset \bigcup_i x_i U;$
- 2) $||x_i|| \leq a_1 t;$
- 3) $N(t) \leq c_1 t^M$

By a theorem of Borel [1, Theorem C], there exists a discrete subgroup Γ of G such that $\Gamma \backslash G$ is compact. Choose a compact neighborhood U of 1 in G such that $U = U^{-1}$ and $G = \Gamma U$. Put

$$\Gamma(t) = \Gamma \cap (G(t)U)$$
.

Select a compact neighborhood $V = V^{-1}$ of τ in U such that $V^2 \cap \Gamma = \{\tau\}$ ($V^2 = VV$). Then the union

$$\bigcup_{\gamma \in \Gamma(t)} \gamma \mathbf{V} = \Gamma(t) \mathbf{V}$$

is disjoint and

$$\Gamma(t)$$
V \subset G (t) UV \subset G (t) U².

Choose $a_1 \ge 1$ so large that $U^2 \subseteq G(a_1)$. Then

$$\Gamma(t)$$
V \subseteq **G** (t) **G** (a_1) \subseteq **G** (ta_1)

since $||xy|| \le ||x|| \cdot ||y||$ $(x, y \in G)$. Hence

$$\mu(\Gamma(t)V) \leq \mu(G(ta_1)) \leq ca_1^M t^M$$

from Lemma 37. But since the above union was disjoint,

$$\mu(\Gamma(t)V) = N(t)\mu(V)$$

where N(t) is the number of elements in $\Gamma(t)$. Hence $N(t) \leq c_1 t^M$ where $c_1 = ca_1^M/\mu(V)$. Let x_i $(1 \leq i \leq N(t))$ be all the elements of $\Gamma(t)$. Since $\Gamma(t) \subset G(t) \cup G(ta_1)$, it follows that $||x_i|| \leq a_1 t$. Finally since $G = \Gamma U$, it is obvious that

$$G(t) \subset \Gamma(t)U = \bigcup_i x_i U.$$

§ 17. PROOF OF LEMMA 39

Fix a number a>0 and let $\Omega=\Omega_a$ in the notation of Lemma 35. For $0 \le s < t$, let $\Omega(s,t)$ denote the set of all $X \in \Omega$ with $s \le ||X|| < t$. Also put $\Omega(t) = \Omega(0,t)$.

Lemma 39. — Let T be an invariant distribution on g. Then there exist elements p_1, \ldots, p_r in $S(g_c)$ and an integer $v \ge 0$ such that

$$|\mathbf{T}(f)| \leq (\mathbf{I} + t)^{\mathsf{v}} \sum_{1 \leq i \leq r} \sup |\partial(p_i)f|$$

for all $f \in C_c^{\infty}(\Omega(t))$ and t > 0.

This requires some preparation. As before let ω_t (t > 0) be the set of all points $X \in \mathfrak{g}$ with ||X|| < t.

Lemma 40. — Define b, c and m as in Lemma 36 and for any $t \ge 0$ let G_t denote the set of all $x \in G$ with $||x|| \le c(x+t)^m$. Then $\omega_b^{G_t} \supset \Omega(t)$.

This is obvious from Lemma 36.

Define U and M as in Lemma 38.

Lemma 41. — There exist two numbers $c_1, c_2 > 0$ with the following property. For any t > 0, we can choose a finite set F_t of points in G such that:

- I) $G_t \subset F_t U$;
- 2) $||x|| \le c_1(1+t)^m \text{ for } x \in \mathbf{F}_t;$
- 3) $[\mathbf{F}_t] \leq c_2 (\mathbf{I} + t)^{m\mathbf{M}}$.

Here $[F_t]$ denotes the number of elements in F_t .

This follows immediately from Lemma 38 if we note that $G_t = G(t')$ where $t' = c(1+t)^m$.

Now choose $b_1 > b$ such that $\operatorname{Cl}(\omega_b)^{\operatorname{U}} \subset \omega_{b_1}$ and fix $\alpha \in \operatorname{C}_c^{\infty}(\omega_{b_1})$ such that $0 \le \alpha \le 1$ and $\alpha = 1$ on $\omega_b^{\operatorname{U}}$. For any t > 0, put

$$\varphi_t = \sum_{x \in F_t} \alpha^x.$$

Since $\Omega(t) \subset \omega_b^{G_l} \subset (\omega_b^{U})^{F_l}$ and $\alpha = 1$ on ω_b^{U} , it is clear that $\varphi_t \geq 1$ on $\Omega(t)$. Put $\alpha_x = \alpha^x/\varphi_t$ on $\Omega(t)$ ($x \in F_t$).

Lemma 42. — Given $p \in S(g_c)$, we can choose a number $c(p) \ge 0$ and an integer $m(p) \ge 0$ such that

$$\sup |\partial(p)\alpha^x| \leq c(p)(1+t)^{m(p)}$$

for $x \in \mathbf{F}_t$ and t > 0.

Let V be the subspace of $S(g_o)$ spanned by p^y $(y \in G)$ and let p_1, \ldots, p_r be a base for V. Then

$$p^{y} = \sum_{1 < i < r} a_{i}(y) p_{i}$$

where a_i are analytic functions on G. We can choose $c' \ge 0$ and an integer $v \ge 0$ such that (see (1) [3(d), p. 203])

$$|a_i(y)| \le c' ||y||^{\mathsf{v}}$$
 $(y \in G, 1 \le i \le r).$

Then

$$\partial(p)\alpha^x = (\partial(p^{x^{-1}})\alpha)^x = \sum_i a_i(x^{-1})(\partial(p_i)\alpha)^x.$$

Hence

$$\sup |\partial(p)\alpha^x| \leq c_0 ||x^{-1}||^{\nu}$$

where $c_0 = c' \sum_i \sup |\partial(p_i)\alpha|$. If $x = k_1 h k_2$ $(k_1, k_2 \in K, h \in A)$, it is obvious that ||x|| = ||h||. Moreover θ is a unitary transformation of g and therefore since $\theta \operatorname{Ad}(h)\theta^{-1} = \operatorname{Ad}(h^{-1})$, it is clear that $||h|| = ||h^{-1}|| = ||x^{-1}||$. This shows that $||x^{-1}|| = ||x||$ and therefore

$$\sup |\partial(p)\alpha^x| \leq c_0 ||x||^{\nu} \leq c_0 c_1^{\nu} (\mathbf{I} + t)^{m\nu}$$

since $||x|| \le c_1(1+t)^m$ for $x \in F_t$. So we can take $c(p) = c_0 c_1^{\nu}$ and $m(p) = m\nu$.

Corollary 1. — $\sup |\partial(p)\varphi_t| \leq c(p)c_2(1+t)^{m(p)+mM}$ (t>0).

This is obvious since $[F_t] \leq c_2(1+t)^{mM}$.

Corollary 2. — Given $p \in S(g_c)$, we can choose $c'(p) \ge o$ and an integer $\mu(p) \ge o$ such that

$$\sup_{\Omega(t)} |\partial(p)\alpha_x| \leq c'(p)(1+t)^{\mu(p)}$$

for $x \in \mathbf{F}_t$ and t > 0.

Since $\alpha_x = \alpha^x/\varphi_t$ and $\varphi_t \ge 1$ on $\Omega(t)$, this is an immediate consequence of Lemma 42 and Corollary 1 above.

⁽¹⁾ The proof of Lemma 6 of [3(d)] is clearly independent of the assumption that rank $g = \operatorname{rank} \mathfrak{t}$ which was made at the beginning of \S 3 of [3(d)].

Now we come to the proof of Lemma 39. Put $f_x = \alpha_x f$ $(x \in F_t)$. Since $\sum_{x \in F_t} \alpha_x = I$ on $\Omega(t)$, it is obvious that

$$f = \sum_{x \in \mathcal{F}_t} f_x$$

and therefore

$$T(f) = \sum_{x \in F_t} T(f_x).$$

But $T(f_x) = T((f_x)^{x^{-1}})$, since T is invariant. Moreover

 $\operatorname{Supp} f_x \subset \operatorname{Supp} f \cap \operatorname{Supp} \alpha_x \subset \operatorname{Supp} \alpha^x$.

Hence

$$\operatorname{Supp}(f_x)^{x^{-1}} \subset \operatorname{Supp} \alpha \subset \omega_{b_1}$$
.

Since ω_b , is relatively compact in g, we can select $p_1, \ldots, p_r \in S(g_c)$ such that

$$|T(g)| \leq \sum_{1 \leq i \leq r} \sup |\partial(p_i)g|$$
 $(g \in C_c^{\infty}(\omega_{b_1})).$

Therefore

$$|\mathsf{T}(f_x)| = |\mathsf{T}((f_x)^{x^{-1}})| \leq \sum_i \sup |\partial(p_i) f_x^{x^{-1}}|.$$

But

$$\sup |\partial(p_i)f_x^{x^{-1}}| = \sup |\partial(p_i^x)f_x|.$$

Let V be the subspace of $S(g_c)$ spanned by p_i^y ($y \in G$, $1 \le i \le r$) and let q_j ($1 \le j \le s$) be a base for V. Then

$$p_i^y = \sum_{1 < j < s} a_{ij}(y)q_j \qquad (y \in G)$$

where a_{ij} are analytic functions on G. Moreover we can choose $c_0 \ge 0$ and an integer $v \ge 0$ such that $|a_{ij}(y)| \le c_0 ||y||^v$ for $y \in G$ (see [3(d), p. 302]). Then

$$\sum_{1\leq i\leq r}\sup |\partial(p_i)f_x^{x^{-1}}|\leq c_0||x||^{\mathsf{v}}r\sum_{1\leq j\leq s}\sup |\partial(q_j)f_x|.$$

We can obviously select q_{kj} , q'_{kj} in $S(g_c)$ ($1 \le k \le u$, $1 \le j \le s$) such that

$$\partial(q_j)(\beta\gamma) = \sum_{1 < k < u} \partial(q_{kj})\beta \cdot \partial(q_{kj}')\gamma \qquad (1 \le j \le s)$$

for any two C^{∞} functions β and γ on g. Then since $f_x = \alpha_x f$, we get

$$\sum_{j} \sup |\partial(q_{j}) f_{x}| \leq \sum_{k,j} \sup_{\Omega(t)} |\partial(q_{kj}) \alpha_{x}| |\partial(q'_{kj}) f|.$$

Therefore

$$|T(f_x)| \leq c_0 r ||x||^{\gamma} \sum_{1 \leq k \leq u} \sum_{1 \leq j \leq s} \sup_{\Omega(t)} |\partial(q_{kj})\alpha_x| \cdot \sup |\partial(q'_{kj})f|.$$

Now $||x|| \le c_1(1+t)^m$ for $x \in F_t$ (Lemma 41). Therefore we get the following result from Corollary 2 of Lemma 42. There exists a number $c_3 \ge 0$ and an integer $m_3 \ge 0$ such that

$$|T(f_x)| \leq c_3(\mathbf{1}+t)^{m_3} \sum_{k,j} \sup |\partial(q_{kj})f|$$

for $x \in \mathbb{F}_t$, $f \in \mathbb{C}_c^{\infty}(\Omega(t))$ and t > 0. Since $f = \sum_{x \in \mathbb{F}_t} f_x$ and $[\mathbb{F}_t] \leq c_2 (1+t)^{mM}$ (Lemma 41), we conclude that

$$|\mathbf{T}(f)| \leq c_4 (\mathbf{I} + t)^{m_4} \sum_{k,j} \sup |\partial(q'_k)f|$$

where $c_4 = c_2 c_3$ and $m_4 = m_3 + mM$. Obviously this implies the statement of Lemma 39.

§ 18. PROOF OF LEMMA 43

For any a>0 define Ω_a as in Lemma 35.

Lemma 43. — Let T be an invariant distribution on g and fix a number a>0. Then we can choose p_1, \ldots, p_r in $S(g_c)$ and an integer $d\geq 0$ such that

$$|\mathbf{T}(f)| \leq \sum_{\mathbf{1} \leq i \leq r} \sup(\mathbf{I} + ||\mathbf{X}||)^d |f(\mathbf{X}; \partial(p_i))|$$

for all $f \in \mathbf{C}_c^{\infty}(\Omega_a)$.

We need some preliminary work. Fix a function $\alpha \in C_c^{\infty}(\mathbf{R})$ such that I) $\alpha(-t) = \alpha(t)$, 2) $0 \le \alpha \le 1$, 3) $\alpha(t) = 1$ if $|t| \le 1/2$ and $\alpha(t) = 0$ if $|t| \ge 3/4$ $(t \in \mathbf{R})$. Put $\alpha_k(t) = \alpha(t-k)$ for any integer k and let

$$\beta = \sum_{-\infty < k < \infty} \alpha_k.$$

Fix $t_0 \in \mathbb{R}$ and select an integer k_0 such that $|t_0 - k_0| \le 1/2$. Then $\alpha_{k_0}(t_0) = 1$ and therefore $\beta(t_0) \ge 1$. Moreover $t_0 \notin \text{Supp } \alpha_k$ unless $|t_0 - k| \le 3/4$. Since the closed interval of length 3/2 with t_0 at its center, can contain at most two integral points, it is clear that

$$|(d^m\beta/dt^m)_{t=t_0}| \leq 2\sup_{t} |(d^m\alpha/dt^m)|$$

for any integer $m \ge 0$. Therefore $1 \le \beta \le 2$ everywhere and

$$\sup_{t} |(d^{m}\beta/dt^{m})| \leq 2 \sup_{t} |(d^{m}\alpha/dt^{m})| < \infty.$$

Put $\gamma_k = \alpha_k/\beta$. Then it is clear that

$$\sup_t \left| (d^m \gamma_k / dt^m) \right|$$

is finite and independent of k. We denote it by c_m .

Since $0 \notin \text{Supp } \alpha_k$ if $k \neq 0$, it is clear that $\beta = 1$ around the origin. Hence $B(s) = \beta(|s|^{1/2}) \cdot (s \in \mathbb{R})$ is a \mathbb{C}^{∞} function on \mathbb{R} and

$$\sup_{s} |(d^m B/ds^m)| = \sup_{t} |(d/2tdt)^m \beta|.$$

Since $\beta = 1$ around zero, it is clear that

$$\sup_{t} |t^{-p}(d^q\beta/dt^q)| < \infty$$

for two integers p and q ($p \ge 0$, $q \ge 1$). Hence it follows that

$$\sup_{s} |(d^m B/ds^m)| < \infty.$$

Similarly if $A_k(s) = \alpha_k(|s|^{1/2})$ $(s \in \mathbb{R})$, one sees that A_k is a function of class C^{∞} . Moreover if $k \ge 0$, it follows in the same way that

$$\sup_{s} |(d^m \mathbf{A}_k/ds^m)| = \sup_{t \ge 0} |(d/2tdt)^m \alpha_k|$$

$$\leq \sup_{t > 0} |(d/2(t+k)dt)^m \alpha| \leq c_m'$$

where c'_m is a positive number independent of k.

Now put $g(X) = \beta(||X||) = B(||X||^2)$, $h_k(X) = \alpha_k(||X||) = A_k(||X||^2)$ for $X \in \mathfrak{g}$ and $k \ge 0$. Since $Q: X \to ||X||^2$ is a quadratic form on \mathfrak{g} , it is obvious that g and h_k are C^{∞} functions on \mathfrak{g} .

Lemma 44. — Let p be an element in $S(g_c)$ of degree $\leq d$. Then we can choose a number $c_n \geq 0$ such that

$$|g(X; \partial(p))| \le c_p(\mathbf{1} + ||X||)^d$$
, $|h_k(X; \partial(p))| \le c_p(\mathbf{1} + ||X||)^d$

for $X \in \mathfrak{g}$ and $k \geq 0$.

One proves by an easy induction on d that there exist polynomial functions q_j ($0 \le j \le d$) on g of degrees $\le d$ such that

$$\begin{split} g(\mathbf{X};\,\partial(\mathbf{p})) &= \sum_{0 \leq j \leq d} q_j(\mathbf{X}) (d^j \mathbf{B}/ds^j)_{s = ||\mathbf{X}||^s}, \\ h_k(\mathbf{X};\,\partial(\mathbf{p})) &= \sum_{0 < j < d} q_j(\mathbf{X}) (d^j \mathbf{A}_k/ds^j)_{s = ||\mathbf{X}||^s} \end{split}$$

for $X \in g$ and $k \ge 0$. Our assertion now follows immediately from the facts proved above.

Put $g_k = h_k/g$ $(k \ge 0)$. Since $g \ge 1$, g_k is also of class C^{∞} . Corollary. — We can choose $c'_n \ge 0$ such that

$$|g_k(\mathbf{X}; \partial(\mathbf{p}))| \leq c'_n(\mathbf{I} + ||\mathbf{X}||)^d$$

for $X \in \mathfrak{g}$ and $k \geq 0$.

This is obvious from Lemma 44 if we take into account the fact that $g \ge 1$.

We now come to the proof of Lemma 43. Since $\alpha_k(t) = 0$ for k < 0 and $t \ge 0$, it follows that $\sum_{k \ge 0} g_k = 1$. Fix $f \in C_c^{\infty}(\Omega_a)$ and put $f_k = g_k f$. Then $\sum_{k \ge 0} f_k = f$. It is clear that if $X \in \text{Supp } g_k$, then $|||X|| - k| \le 3/4$. Therefore $f_k = 0$ if k is large. Hence

$$\mathbf{T}(f) = \sum_{k>0} \mathbf{T}(f_k).$$

Define $\Omega(s,t)$ and $\Omega(t)$ $(0 \le s \le t)$ for $\Omega = \Omega_a$ as in the beginning of § 17. Then Supp $f_k \subset \Omega(k+1)$. Therefore, by Lemma 39, we can choose p_1, \ldots, p_r in $S(\mathfrak{g}_c)$ and an integer $v \ge 0$ such that

$$|T(f_k)| \leq (2+k)^{\mathsf{v}} \sum_{1 < i < r} \sup |\partial(\mathbf{p}_i) f_k|$$

for all $f \in C_c^{\infty}(\Omega_a)$ and all $k \ge 0$. Moreover since $||X|| \ge k-1$ if $X \in \text{Supp } f_k$, it follows that

$$(2+k)^{\nu+2}\sup |\partial(p_i)f_k| \leq \sup(3+||\mathbf{X}||)^{\nu+2}|f_k(\mathbf{X};\partial(p_i))|.$$

Choose q_{ij} , q'_{ij} in $S(g_c)(1 \le i \le r, 1 \le j \le s)$ such that

$$\partial(\mathbf{p}_i)(\mathbf{F_1F_2}) = \sum_{i} \partial(\mathbf{q}_{ij}) \mathbf{F_1} \cdot \partial(\mathbf{q}'_{ij}) \mathbf{F_2}$$
 (1 \leq i \leq r)

for any two C^{∞} functions F_1 , F_2 on g. Then

$$|f_k(\mathbf{X}; \, \partial(\mathbf{p_i}))| \leq \sum_{j} |g_k(\mathbf{X}; \, \partial(q_{ij}))| |f(\mathbf{X}; \, \partial(q'_{ij}))|$$

since $f_k = g_k f$. Therefore there exist, from the corollary of Lemma 44, an integer $d_0 \ge 0$ and a number c > 0 such that

$$|f_k(\mathbf{X}; \partial(\mathbf{p_i}))| \le c(\mathbf{I} + ||\mathbf{X}||)^{d_{\mathbf{o}}} \sum_{i} |f(\mathbf{X}; \partial(q'_{ij}))|$$

for all $f \in C_c^{\infty}(\Omega_a)$, $k \ge 0$, $X \in \mathfrak{g}$ and $1 \le i \le r$. Hence

$$(2+k)^{\mathsf{v}+2} \sup |\partial(\mathbf{p}_i)f_k| \leq 3^{\mathsf{v}+2} c \sum_i \sup (\mathbf{I} + ||\mathbf{X}||)^d |\partial(q'_{ij})f|$$

where $d = d_0 + v + 2$. Put

$$c_0 = 3^{\nu+2} c \sum_{k>0} (k+2)^{-2} < \infty.$$

Then it follows that

$$|\operatorname{T}(f)| \leq \sum_{k \geq 0} |\operatorname{T}(f_k)| \leq c_0 \sum_{i,j} \sup(\mathbf{I} + ||\mathbf{X}||)^d |\partial(q'_{ij})f|$$

for $f \in C_c^{\infty}(\Omega_a)$. This completes the proof of Lemma 43.

§ 19. COMPLETION OF THE PROOF OF LEMMA 29

As usual we identify g_c with its dual under the Killing form. Call an element $p \in S(g_c)$ real if p(X) is real for $X \in g$. Then we can select p_1, \ldots, p_r in $I(g_c)$ such that 1) p_i is real and homogeneous of degree ≥ 1 and 2) $I(g_c) = \mathbf{C}[p_1, \ldots, p_r]$. Put

$$q(\mathbf{X}) = \sum_{1 < i < r} p_i(\mathbf{X})^2 \tag{X \in g)}.$$

Lemma 45. — We can choose a number $\delta > 0$ such that $q(X) < \delta(X \in \mathfrak{g})$ implies that $X \in \Omega_a$. Suppose this is false. Then we can choose a sequence $X_k \in \mathfrak{g}$ $(k \ge 1)$ such that $q(X_k) \to 0$ and $X_k \notin \Omega_a$. Let Y_k and Z_k respectively be the semisimple and nilpotent

components of X_k (see § 3). Then $Y_k \in Cl(X_k^G)$ from the corollary of Lemma 7. Therefore $q(Y_k) = q(X_k)$. Since Ω_a is open and invariant and $X_k \notin \Omega_a$, it is clear that $Y_k \notin \Omega_a$. Therefore $q(Y_k) = q(X_k) \to 0$ and $Y_k \notin \Omega_a$.

Let $\mathfrak{h}_1, \ldots, \mathfrak{h}_m$ be a maximal set of Cartan subalgebras of \mathfrak{g} , no two of which are conjugate under G. Y_k , being semisimple, lies in some Cartan subalgebra of \mathfrak{g} which must be conjugate to \mathfrak{h}_j for some j. Hence we can choose $x_k \in G$ and an index j_k such that $Y_k^{x_k} \in \mathfrak{h}_{j_k}$. By choosing a subsequence we may assume that $H_k = Y_k^{x_k} \in \mathfrak{h}$ $(k \ge 1)$ where \mathfrak{h} is a fixed Cartan subalgebra of \mathfrak{g} . Then $q(H_k) = q(Y_k) \to \mathfrak{o}$ and therefore it is obvious that $p(H_k) \to \mathfrak{o}$ for any $p \in I(\mathfrak{g}_c)$ which is homogeneous of degree ≥ 1 . Now define q_i $(1 \le j \le n)$ in $I(\mathfrak{g}_c)$ by

$$\det(t-\operatorname{ad} X) = t^n + \sum_{1 \leq j \leq n} q_j(X) t^{n-j}$$
 (X \in g),

where t is an indeterminate. Then q_i is homogeneous of positive degree and therefore $q_i(H_k) \rightarrow 0$. However

$$\det(t - \operatorname{ad} H) = t^{l} \prod_{\alpha > 0} (t - \alpha(H)^{2})$$
(H \in \bar{h})

where $l = \dim \mathfrak{h}$ and α runs over all positive roots of $(\mathfrak{g}, \mathfrak{h})$. Therefore $\alpha(H_k) \to 0$ for every root α and hence $H_k \to 0$. But then $||H_k|| \le a$ if k is large and therefore $Y_k = x_k^{-1}H_k \in \Omega_a$, giving a contradiction with our earlier result. This proves Lemma 45.

Corollary 1. — There exists a C^{∞} function g on g such that:

- 1) g is invariant and Supp $g \subset \Omega_a$;
- 2) g = 1 around zero;
- 3) for any $p \in S(g_c)$, we can choose $c_p, m_p \ge 0$ such that

$$|g(\mathbf{X}; \partial(p))| \leq c_p (\mathbf{I} + ||\mathbf{X}||)^{m_p}$$
 (Xeg).

Select a C^{∞} function F on **R** such that I) F(t) = F(-t), 2) F(t) = I if $|t| \le \delta/3$ and F(t) = 0 if $|t| \ge \delta/2$ $(t \in \mathbf{R})$. Put

$$g(X) = F(q(X)) \tag{X \in \mathbf{g}}.$$

If $X \in \text{Supp } g$, it is clear that $q(X) \leq \delta/2$ and therefore $X \in \Omega_a$. Moreover g(X) = I if $q(X) \leq \delta/3$. Fix $p \neq 0$ in $S(g_e)$ and let $d = d^0p$. Then it is clear that

$$g(\mathbf{X}; \, \partial(\mathbf{p})) = \sum_{0 \le i \le d} (d^{i}\mathbf{F}/dt^{i})_{t = q(\mathbf{X})} \mathbf{p}_{i}(\mathbf{X}) \tag{X \in g}$$

where p_j ($0 \le j \le d$) are suitable elements in $S(\mathfrak{g}_e)$. Hence g obviously satisfies condition \mathfrak{g}). Corollary 2. — Let T be an invariant distribution on Ω_a . Then g^2T is a tempered distribution on \mathfrak{g} .

Put $T_k = g^k T$ (k = 1, 2). Then T_k is an invariant distribution on \mathfrak{g} . We now apply Lemma 43 to T_1 . So we can choose an integer $d \ge 0$ and elements $p_i \in S(\mathfrak{g}_e)$ $(1 \le i \le r)$ such that

$$|\mathbf{T_1}(f)| \leq \sum_{\mathbf{1} < i < r} \sup(\mathbf{I} + ||\mathbf{X}||)^d |f(\mathbf{X}; \, \partial(\mathbf{p_i}))|$$

for $f \in C_c^{\infty}(\Omega_a)$. Therefore if $f \in C_c^{\infty}(\mathfrak{g})$, we have

$$|T_2(f)| = |T_1(f_1)| \le \sum_{i} \sup(i + ||X||)^d |f_1(X; \partial(p_i))|$$

where $f_1 = gf$. Now select p_{ij} , $q_{ij} \in S(g_c)$ ($1 \le i \le r$, $1 \le j \le s$) in such a way that

$$\partial(p_i)(\varphi_1\varphi_2) = \sum_i \partial(p_{ij})\varphi_1 \cdot \partial(q_{ij})\varphi_2$$
 (1 \leq i \leq r)

for any two C^{∞} functions φ_1 , φ_2 on \mathfrak{g} . Then

$$\partial(p_i)f_1 = \sum_i \partial(p_{ij})g \cdot \partial(q_{ij})f$$
.

Therefore, by condition 3) of Corollary 1 above, it is obvious that there exist $c, m \ge 0$ such that

$$|T_2(f)| \le c \sum_{i,j} \sup(\mathbf{I} + ||\mathbf{X}||)^{d+m} |f(\mathbf{X}; \partial(q_{ij}))|$$

for $f \in C_c^{\infty}(\mathfrak{g})$. This proves that T_2 is tempered.

We can now complete the proof of Lemma 29. Since Ω is an open neighborhood of zero, we can choose a>0 such that $X\in\Omega$ whenever ||X||< a ($X\in\mathfrak{g}$). Therefore $\Omega_a\subset\Omega$. Now take $f=g^2$ where g is defined as in Corollary 1 of Lemma 45. Then it follows from Corollary 2 above that f is a tempered distribution on g. This proves Lemma 29.

§ 20. PROOF OF LEMMA 34

We shall now begin the proof of Lemma 34. Since any two norms on g are equivalent, it is enough to consider the case when $\nu(X) = ||X|| \ (X \in \mathfrak{g})$. The case l = 0 being trivial, we assume $l \geq 1$ and use induction. For any (real-valued) linear function λ on \mathfrak{a} , let \mathfrak{g}_{λ} denote the space of all $X \in \mathfrak{g}$ such that $[H, X] = \lambda(H)X$ for all $H \in \mathfrak{a}$. We denote by E_{λ} the orthogonal projection of g on \mathfrak{g}_{λ} . Then $\mathfrak{g}_{\lambda} = \{0\}$ unless $\lambda = 0$ or $\pm \alpha$ for some $\alpha \in \Sigma$. Since ad H is self-adjoint for $H \in \mathfrak{a}$ (see $[\mathfrak{g}(h), Lemma 27]$), the spaces \mathfrak{g}_{λ} and \mathfrak{g}_{μ} ($\lambda \neq \mu$) are mutually orthogonal. Therefore if

$$E_{+} = \sum_{\alpha \in \Sigma} E_{\alpha}, \qquad E_{-} = \sum_{\alpha \in \Sigma} E_{-\alpha},$$

it is clear that $E_+ + E_0 + E_- = I$.

Let S denote the set $\{1, 2, ..., l\}$ and for any subset Q of S, let Σ_Q denote the set of all $\alpha \in \Sigma$ which are linear combinations of α_i ($i \in Q$). Define $\mathfrak{n}_Q = \sum_{\alpha \in \Sigma_Q} \mathfrak{g}_{\alpha}$ and let \mathfrak{g}_Q be the subalgebra of g generated by $\mathfrak{n}_Q + \mathfrak{g}(\mathfrak{n}_Q)$. Then $\mathfrak{g}(\mathfrak{g}_Q) = \mathfrak{g}_Q$ and therefore $\mathfrak{g}_Q = \mathfrak{f}_Q + \mathfrak{p}_Q$ where $\mathfrak{f}_Q = \mathfrak{f} \cap \mathfrak{g}_Q$, $\mathfrak{p}_Q = \mathfrak{p} \cap \mathfrak{g}_Q$.

Lemma 46. — g_Q is semisimple.

Let $\langle X, Y \rangle = -B(X, \theta(Y))$ $(X, Y \in \mathfrak{g})$ denote the scalar product in the Hilbert space \mathfrak{g} and, for any linear function λ on \mathfrak{a} , let H_{λ} denote the element in \mathfrak{a} such that

 $\langle H, H_{\lambda} \rangle = \lambda(H)$ for all $H \in \mathfrak{a}$. We know (see [3(d), Lemma 3]) that if $X \in \mathfrak{g}_{\lambda}$ and $||X|| = \mathfrak{r}$, then $[\theta(X), X] = H_{\lambda}$.

First we claim that g_Q is reductive in g. Let U be any subspace of g such that $[g_Q, U] \subset U$. Since $g_Q = \theta(g_Q)$, ad g_Q is a self-adjoint family of transformations in g $[g_Q, h]$, Lemma 27]. Hence if V is the orthogonal complement of U in g, V is stable under ad g_Q . This proves our assertion. Therefore $g_Q' = [g_Q, g_Q]$ is semisimple. Now fix $\alpha \in \Sigma_Q$ and $X \in g_\alpha$ with ||X|| = 1. Then $[\theta(X), X] = H_\alpha \in g_Q$ and therefore $[H_\alpha, X] = \alpha(H_\alpha)X \in g_Q'$. Since $\alpha(H_\alpha) = ||H_\alpha||^2 > 0$, this proves that $g_\alpha \subset g_Q'$. However g_Q' is obviously stable under θ and so we conclude that $n_Q + \theta(n_Q) \subset g_Q'$. But, in view of the definition of g_Q , this implies that $g_Q' = g_Q$. This proves that g_Q is semisimple.

Let F_Q denote the orthogonal projection of g on g_Q . We have seen above that $H_\alpha \in \mathfrak{a} \cap \mathfrak{g}_Q$ for $\alpha \in \Sigma_Q$. Put $\mathfrak{a}_Q = \sum_{i \in Q} \mathbf{R} H_{\alpha_i}$ and let \mathfrak{b}_Q denote the orthogonal complement of \mathfrak{a}_Q in \mathfrak{a} . Then $\mathfrak{a}_Q = \sum_{\alpha \in \Sigma_Q} \mathbf{R} H_\alpha \subset \mathfrak{g}_Q$.

Lemma 47. — $\mathfrak{a}_Q = \mathfrak{a} \cap \mathfrak{g}_Q$. Moreover F_Q commutes with θ and E_λ for any linear function λ on \mathfrak{a} .

Let $H \in \mathfrak{b}_Q$. Then $\alpha_i(H) = \langle H_{\alpha_i}, H \rangle = o \ (i \in Q)$ and therefore $\alpha(H) = o$ for $\alpha \in \Sigma_Q$. Hence H commutes with $\mathfrak{n}_Q + \theta(\mathfrak{n}_Q)$ and therefore also with \mathfrak{g}_Q . Since \mathfrak{g}_Q is semisimple, it follows that $\mathfrak{g}_Q \cap \mathfrak{b}_Q = \{o\}$. Therefore since $\mathfrak{a}_Q \subseteq \mathfrak{g}_Q$, it is obvious that $\mathfrak{a} \cap \mathfrak{g}_Q = \mathfrak{a}_Q$.

Let \mathfrak{m}_Q be the set of all $X \in \mathfrak{g}_Q$ such that $[H,X] \in \mathfrak{g}_Q$ for all $H \in \mathfrak{a}$. Then \mathfrak{m}_Q is a subalgebra of \mathfrak{g}_Q which contains $\mathfrak{n}_Q + \theta(\mathfrak{n}_Q)$. Hence $\mathfrak{m}_Q = \mathfrak{g}_Q$. Therefore \mathfrak{g}_Q is stable under ad H ($H \in \mathfrak{a}$) and this implies that $E_\lambda \mathfrak{g}_Q \subset \mathfrak{g}_Q$ for any linear function λ on \mathfrak{a} . This shows that F_Q commutes with E_λ . Similarly since \mathfrak{g}_Q is stable under θ , F_Q commutes with θ .

Corollary. — \mathfrak{a}_Q is maximal abelian in \mathfrak{p}_Q and $\mathfrak{a}_Q = F_Q \mathfrak{a}$.

Since $g_0 + n_Q + \theta(n_Q)$ is a subalgebra of g, it must contain g_Q . Therefore

$$X = E_0 X + \sum_{\alpha \in \Sigma_0} E_{\alpha} X + \sum_{\alpha \in \Sigma_0} E_{-\alpha} X$$
 (X \in g_Q).

Now suppose $X \in \mathfrak{p}_Q$ and it commutes with \mathfrak{a}_Q . Then

$$o = [H, X] = \sum_{\alpha \in \Sigma_{Q}} \alpha(H) E_{\alpha} X - \sum_{\alpha \in \Sigma_{Q}} \alpha(H) E_{-\alpha} X \tag{$H \in \mathfrak{a}_{Q}$}$$

and therefore $\alpha(H)E_{\pm\alpha}X=0$ for $H\in\mathfrak{a}_Q$ and $\alpha\in\Sigma_Q$. But $H_{\alpha}\in\mathfrak{a}_Q$ for $\alpha\in\Sigma_Q$ and $\alpha(H_{\alpha})=||H_{\alpha}||^2>0$. Hence $E_{\pm\alpha}X=0$ ($\alpha\in\Sigma_Q$) and therefore $X=E_0X\in\mathfrak{g}_0$. This means that $X\in\mathfrak{g}_0\cap\mathfrak{p}=\mathfrak{a}$ since \mathfrak{a} is maximal abelian in \mathfrak{p} . But then $X\in\mathfrak{a}\cap\mathfrak{g}_Q=\mathfrak{a}_Q$. This proves that \mathfrak{a}_Q is maximal abelian in \mathfrak{p}_Q .

Since F_Q commutes with θ and E_0 and $\alpha \subset p$, it is clear that $F_Q \alpha \subset p_Q \cap g_0$. But since a_Q is maximal abelian in p_Q , $p_Q \cap g_0 = a_Q$. This proves that $F_Q \alpha = a_Q$.

Let l_Q denote the number of elements in Q. Then dim $a_Q = l_Q$. Let G_Q and A_Q be the analytic subgroups of G corresponding to g_Q and a_Q respectively. If $Q \neq S$, Lemma 34 holds for (g_Q, a_Q) instead of (g, a) by the induction hypothesis. Let A_Q^+ be the

set of all $h \in A_Q$ such that $\alpha_i(\log h) \ge 0$ ($i \in Q$). Then we obviously have the following

Lemma 48. — Assume that $Q \neq S$. Then there exist numbers $b_0, c_0 \geq 1$ with the following Suppose $X \in g_Q$, $||X|| \le 1$ and $h \in A_Q^+$. Then we can choose $X_0 \in g_Q$, $h_0 \in A_Q^+$ such properties. that:

- $\begin{array}{ll} \mathbf{I}) & \mathbf{X}^h \! = \! \mathbf{X}_0^{h_0}, \ ||\mathbf{X}_0|| \! \leq \! b_{\mathbf{Q}}, \ \mathbf{o} \! \leq \! \alpha_i (\log h_0) \! \leq \! \alpha_i (\log h) \\ \mathbf{2}) & \max_{i \in \mathbf{Q}} \exp(\alpha_i (\log h_0)) \! \leq \! c_{\mathbf{Q}} (\mathbf{I} + ||\mathbf{X}_0^{h_0}||)^{l_{\mathbf{Q}}}. \end{array}$

Let $A^+(Q)$ be the set of all $h \in A^+$ such that $\alpha_i(\log h) = o(j \notin Q)$. For any $h \in A$, define

$$h_{\mathbf{Q}} = \exp(\sum_{i \in \mathbf{Q}} \alpha_i (\log h) \mathbf{H}_i).$$

Then $\alpha_i(\log h) = \alpha_i(\log h_Q)$ $(i \in Q)$ and therefore $\log h - \log h_Q$ commutes with g_Q so that $X^h = X^{h_Q}(X \in \mathfrak{g}_Q)$. Moreover if $h \in A^+$, it is clear that $I \prec h_Q \prec h$ and $h_Q \in A^+(Q)$.

Corollary. — Suppose $X \in \mathfrak{g}_Q$, $||X|| \leq 1$ and $h \in A^+(Q)$. Then we can choose $X_0 \in \mathfrak{g}_Q$ and $h_0 \in A^+(\mathbb{Q})$ such that

- I) $X^h = X_0^{h_0}, ||X_0|| \le b_Q, I < h_0 < h,$ 2) $\max_{1 \le i \le l} \exp \alpha_i (\log h_0) \le c_Q (I + ||X_0^{h_0}||)^{l_Q}.$

Put $h' = \exp(\sum_{i \in Q} \alpha_i (\log h) F_Q H_i)$. Then $h' \in A_Q^+$ and $(h')_Q = h$ from the corollary of Lemma 47. Hence $X^{h'} = X^h$. Choose $h'_0 \in A_Q^+$ and $X_0 \in g_Q$ such that the conditions of Lemma 48 hold for (X, h', X_0, h'_0) in place of (X, h, X_0, h_0) . Then if we put $h_0 = (h'_0)_Q$ all the conditions of the corollary are fulfilled.

For any $i \in S$ and $Z \in \mathfrak{g}$, define

$$\mu(i:Z) = \max_{\substack{\alpha \in \Sigma \\ \alpha(\mathbf{H}_i) \neq 0}} ||\mathbf{E}_{\alpha}Z||$$

and let Q(Z) be the set of all $i \in S$ for which $\mu(i:Z) \ge 1$. Moreover for any subset Qof S, let Σ'_0 denote the complement of Σ_0 in Σ .

Lemma 49. — Let Z be an element of g. Then $||E_{\alpha}Z|| \le 1$ for every $\alpha \in (\Sigma_{Q(Z)})'$. Suppose $||E_{\alpha}Z|| \ge 1$ for some $\alpha \in \Sigma$. We have to show that $\alpha \in \Sigma_{\mathbb{Q}(\mathbb{Z})}$. Fix $i \in \mathbb{S}$ such that $\alpha(H_i) \neq 0$. Then

$$\mu(i:Z) \ge ||\mathbf{E}_{\alpha}Z|| \ge \mathbf{r}$$

and therefore $i \in Q(Z)$. Since this holds for every i for which $\alpha(H_i) \neq 0$, it is clear that $\alpha \in \Sigma_{Q(Z)}$.

Put $F'_{Q} = I - F_{Q}$ for any subset Q of S. Fix $X \in \mathfrak{g}$ and $h \in A^{+}$ and assume that $||X|| \le 1$. Put $Q_0 = Q(X^h)$ and let s denote the number of elements in Σ .

Lemma 50. — $||\mathbf{F}'_{Q_0}\mathbf{X}^a|| \leq \mathbf{I} + s^{1/2}$ for any $a \in \mathbf{A}$ such that $\mathbf{I} \prec a \prec h$.

Let λ be a linear function on \mathfrak{a} such that $\mathfrak{g}_{\lambda} \neq \{0\}$. Then

$$E_{\lambda}X^{a}=e^{\lambda(\log a)}E_{\lambda}X.$$

Now a > 1 and therefore $\lambda(\log a) \le 0$ if $\lambda \le 0$. Therefore since F'_{Q_a} commutes with E_0 and E_, it is obvious that

$$||(E_0 + E_-)F'_{Q_0}X^a|| \le ||(E_0 + E_-)X^a|| \le ||X|| \le I$$
.

On the other hand $\alpha(\log a) \leq \alpha(\log h)$ ($\alpha \in \Sigma$) since a < h. Therefore

$$||E_{+}F'_{Q_{0}}X^{a}||^{2} = \sum_{\alpha \in \Sigma'_{Q_{0}}} ||E_{\alpha}X^{a}||^{2} \le \sum_{\alpha \in \Sigma'_{Q_{0}}} ||E_{\alpha}X^{h}||^{2} \le s$$

from Lemma 49.

$$F'_{Q_a}X^a = (E_+ + E_0 + E_-)F'_{Q_a}X^a$$

our assertion is now obvious.

Lemma 51. — For any (1) Q \leq S, select b_Q and c_Q corresponding to Lemma 48 and define $b_0 = I + s^{1/2} + \max_{Q < S} b_Q, \quad c_0 = \max_{Q < S} c_Q.$

Let $X \in \mathfrak{g}$, $h \in A^+$ and suppose that $||X|| \leq 1$ and $Q(X^h) \neq S$. Then we can choose $X_0 \in \mathfrak{g}$ and $h_0 \in A^+$ such that

- 1) $X^h = X_0^{h_0}$, $I < h_0 < h$, $||X_0|| \le b_0$; 2) $\max_{1 < i < l} \exp \alpha_i (\log h_0) \le c_0 (I + ||X_0^{h_0}||^{l-1})$.

Put $Q = Q(X^h)$. Then $X^h = F_Q X^h + F'_Q X^h$. But since F_Q commutes with Ad(h)(Lemma 47), we have

$$F_{0}X^{h} = (F_{0}X)^{h} = X_{0}^{h_{Q}}$$

where $X_Q = F_Q X$. Since Q<S, we can apply the corollary of Lemma 48 to (X_Q, h_Q) . Hence we can choose $X_1 \in \mathfrak{g}_Q$ and $h_0 \in A^+(Q)$ such that:

- 1) $X_Q^{h_Q} = X_1^{h_0}, ||X_1|| \le b_Q, 1 < h_0 < h_Q;$
- 2) $\max_{1 < i < l} \exp \alpha_i (\log h_0) \le c_Q (1 + ||X_1^{h_0}||)^{l_Q}$

Then

$$X^{h}\!=\!X_{1}^{h_{0}}\!+\!F_{\mathrm{Q}}'X^{h}\!=\!(X_{1}\!+\!F_{\mathrm{Q}}'X^{h_{2}})^{h_{0}}$$

where $h_2 = h h_0^{-1}$. Since $I < h_0 < h_Q < h$, it follows that $I < h_2 < h$. Put $X_0 = X_1 + F_0' X^{h_2}$.

Then

$$||\mathbf{X_0}|| \le ||\mathbf{X_1}|| + ||\mathbf{F_Q'X^{h_2}}|| \le b_{\mathbf{Q}} + \mathbf{I} + s^{1/2} \le b_{\mathbf{0}}$$

from Lemma 50. Moreover

$$X_1^{h_0} = X_Q^{h_Q} = F_Q X^h$$
.

Therefore

$$||X_1^{h_0}|| \leq ||X^h|| = ||X_0^{h_0}||.$$

Hence

$$\max_{1 \leq i \leq l} \exp \alpha_i (\log h_0) \leq c_Q (1 + ||X_1^{h_0}||)^{l_Q} \leq c_0 (1 + ||X_0^{h_0}||)^{l-1}$$

and so the lemma is proved.

⁽¹⁾ Q < S means that Q is a subset of S and $Q \neq S$.

Put $c = 2^l c_0$ and $b = b_0$. Then in order to prove Lemma 34, it is obviously enough to verify the following result.

Lemma 52. — Let $X \in \mathfrak{g}$ and $h \in A^+$ and suppose $||X|| \leq \mathfrak{1}$. Then we can choose $X_0 \in \mathfrak{g}$ and $h_0 \in A^+$ such that:

- 1) $X^h = X_0^{h_0}, ||X_0|| \le b, 1 < h_0 < h;$
- 2) $\max_{1 \le i \le l} \exp \alpha_i (\log h_0) \le c(1 + ||X_0^{h_0}||)^l$.

If $Q(X^h) \le S$, our statement follows immediately from Lemma 51. So we may assume that

$$\mu(i:X^h) \ge I \qquad (1 \le i \le l).$$

Let Ω be the set of all $a \in A^+$ such that 1) 1 < a < h and 2) $\mu(i : X^a) \ge 1/2$ $(1 \le i \le l)$. Obviously Ω is a compact set containing h. Put

$$f(a) = \sum_{1 \le i \le l} \mu(i : \mathbf{X}^a)$$
 (a \in \Omega).

Then f is a continuous function on Ω which must take its minimum at some point $a_0 \in \Omega$. First suppose $a_0 = 1$. Then $1 \in \Omega$ and therefore

$$\mu(i:X) \ge I/2 \qquad (I < i < l).$$

Now fix $i \in S$ and choose $\alpha \in \Sigma$ such that $\alpha(H_i) \neq 0$ and $||E_{\alpha}X|| \geq 1/2$. Then

$$||\mathbf{E}_{+}\mathbf{X}^{h}|| \geq e^{\alpha(\log h)}||\mathbf{E}_{\alpha}\mathbf{X}|| \geq 2^{-1}e^{\alpha_{i}(\log h)}.$$

Therefore

$$\max_{i} e^{\alpha_{i}(\log h)} \leq 2 ||\mathbf{E}_{+}\mathbf{X}^{h}|| \leq 2 ||\mathbf{X}^{h}||.$$

Since $b \ge 1$ and $c = 2^l c_0 \ge 2$, we can take $X_0 = X$ and $h_0 = h$ in this case.

So now assume that $a_0 \neq 1$. Then we claim that $\mu(i: X^{a_0}) = 1/2$ for some i. For otherwise suppose $\mu(i: X^{a_0}) > 1/2$ for every i. Choose j such that $\alpha_j(\log a_0) \neq 0$. Put $a_{\varepsilon} = a_0(\exp(-\varepsilon H_j))$ where ε is a small positive number. If ε is sufficiently small, it is clear that $a_{\varepsilon} \in \Omega$. Hence $f(a_{\varepsilon}) \geq f(a_0)$. On the other hand since

$$||\mathbf{E}_{\alpha}\mathbf{X}^{a_{\varepsilon}}|| = e^{-\varepsilon\alpha(\mathbf{H}_{j})}||\mathbf{E}_{\alpha}\mathbf{X}^{a_{0}}|| \qquad (\alpha \in \Sigma),$$

it is clear that

$$\mu(i:X^{a_{\epsilon}}) \leq \mu(i:X^{a_{\mathbf{0}}})$$

for every i. Moreover $e^{-\varepsilon \alpha(\mathbf{H}_j)} \le 1$ if $\alpha(\mathbf{H}_j) \neq 0$ ($\alpha \in \Sigma$) and therefore since $\mu(j: \mathbf{X}^{a_0}) \ge 1/2$, it is obvious that

$$\mu(j:X^{a_{\varepsilon}}) < \mu(j:X^{a_{0}}).$$

But this implies that $f(a_{\varepsilon}) < f(a_0)$ and so we get a contradiction. Hence $\mu(i: X^{a_0}) = 1/2$ for some i and therefore $Q(X^{a_0}) < S$. But then by Lemma 51 we can choose $X_0 \in \mathfrak{g}$ and $a_1 \in A^+$ such that $X^{a_0} = X_0^{a_1}$, $||X_0|| \le b_0$, $1 < a_1 < a_0$ and

$$\max_{1 \leq i \leq l} \exp \alpha_i (\log a_1) \leq c_0 (1 + ||X_0^{a_1}||)^{l-1}.$$

Now put $h_0 = ha_0^{-1}a_1$. Then

$$X^h = (X^{a_0})^{ha_0^{-1}} = (X_0^{a_1})^{ha_0^{-1}} = X_0^{ha_0}$$

and therefore

$$||X^h|| \ge ||\mathbf{E}_{\alpha}X^{a_0}|| \exp \alpha(\log(ha_0^{-1})) \qquad (\alpha \in \Sigma).$$

Fix $i \in S$. Then since $\mu(i : X^{a_0}) \ge 1/2$, we can select $\alpha \in \Sigma$ such that $\alpha(H_i) \neq 0$ and $||E_{\alpha}X^{a_0}|| \ge 1/2$. Therefore since $1 < a_0 < h$, we have

$$||X^h|| \ge 2^{-1} \exp \alpha_i (\log(ha_0^{-1})).$$

On the other hand

$$e^{\alpha_i (\log a_1)} \le c_0 (1 + ||X_0^{a_1}||)^{l-1} = c_0 (1 + ||X_0^{a_0}||)^{l-1}.$$

Therefore since $h_0 = ha_0^{-1}a_1$, we get

$$e^{\alpha_i (\log h_0)} \leq 2c_0 ||\mathbf{X}^h|| (1 + ||\mathbf{X}^{a_0}||)^{l-1}$$
.

But since $1 < a_0 < h$, we have (see the proof of Lemma 50)

$$||\mathbf{E}_{+}\mathbf{X}^{a_{0}}|| \leq ||\mathbf{E}_{+}\mathbf{X}^{h}|| \leq ||\mathbf{X}^{h}||$$

and

$$||(E_0 + E_-)X^{a_0}|| < ||X|| < 1.$$

Therefore

$$||X^{a_0}|| \leq \mathfrak{r} + ||X^h||$$

and hence

$$e^{\alpha_i(\log h_0)} \leq 2c_0||X^h||(2+||X^h||)^{l-1} \leq c(1+||X^h||)^l$$
.

Since $||X_0|| \le b_0 = b$, Lemma 51 (and therefore also Lemma 34) is proved.

§ 21. PROOF OF LEMMA 35

We have still to prove Lemma 35. Fix a>b>0 and let x_i and X_i $(i\ge 1)$ be two sequences in G and g respectively such that $||X_i||< b$ and x_iX_i converges to some Yeg. We have to prove that $Y\in\Omega_a$. Let $x_i=k_ih_ik_i'$ $(k_i,k_i'\in K;h_i\in A^+)$. Replacing (x_i,X_i) by $(k_ih_i,k_i'X_i)$ we may assume that $x_i=k_ih_i$. Moreover by selecting a subsequence we can arrange that $k_i\to k$ and $X_i\to X$ $(k\in K,X\in g)$. Then by replacing (x_i,X_i,Y) by $(k^{-1}x_i,X_i,k^{-1}Y)$, we are reduced to the case when k=1. Now

$$X_i^{x_i} - X_i^{h_i} = (I - Ad(k_i^{-1}))X_i^{x_i}.$$

Since $X_i^{x_i} \rightarrow Y$ and $k_i \rightarrow I$, it is clear that $||X_i^{x_i} - X_i^{h_i}|| \rightarrow 0$. Hence $X_i^{h_i} \rightarrow Y$.

By selecting a subsequence we can obviously arrange that the following condition holds. There exists a subset Q of S such that $\alpha_j(\log h_i) \to t_j (t_j \in \mathbb{R})$ for $j \in \mathbb{Q}$ and $\alpha_j(\log h_i) \to +\infty$ for $j \notin \mathbb{Q}$ ($1 \le j \le l$) as $i \to \infty$. Then it is clear that

$$\mathbf{E}_{-\alpha} \mathbf{X}_{i}^{h_{i}} = e^{-\alpha(\log h_{i})} \mathbf{E}_{-\alpha} \mathbf{X}_{i} \rightarrow \mathbf{0}$$

for $\alpha \in \Sigma_Q'$. Put

$$E = E_0 + \sum_{\alpha \in \Sigma_Q} (E_\alpha + E_{-\alpha})$$

and

$$h = \exp(\sum_{i \in \Omega} t_i H_i).$$

Then it is clear that

$$EX_i^{h_i} \rightarrow EX^h$$
.

On the other hand if

$$\mathbf{E}'_{+} = \sum_{\alpha \in \Sigma'_{0}} \mathbf{E}_{\alpha},$$

we have

$$I = E + E'_{+} + \sum_{\alpha \in \Sigma'_{o}} E_{-\alpha}.$$

Therefore since $E_{-\alpha}X_i^{h_i} \to o$ ($\alpha \in \Sigma_Q'$), we conclude that

$$(E + E'_{+})X_{i}^{h_{i}} \rightarrow Y$$
.

Therefore $Y = EY + E'_{+}Y$ and $EY = EX^{h}$. Now select $H \in \mathfrak{a}$ such that $\alpha_{j}(H) = 0$ for $j \in Q$ and $\alpha_{j}(H) > 0$ for $j \notin Q$ $(1 \le j \le l)$. Then $\alpha(H) > 0$ for $\alpha \in \Sigma'_{Q}$ and therefore

$$Ad(\exp(-tH))E'_{+}Y \rightarrow 0$$

as $t \to +\infty$. Put $y_t = (h \exp tH)^{-1}$. Then

$$\mathbf{Y}^{y_t} = \mathbf{E}\mathbf{X} + (\mathbf{E}'_+\mathbf{Y})^{y_t} \rightarrow \mathbf{E}\mathbf{X}$$

as $t \to +\infty$. Since $||EX|| \le ||X|| \le b$, it follows that $||Y^{y_t}|| \le a$ if t is sufficiently large and positive. Therefore $Y \in \Omega_a$ and this proves Lemma 35.

The Institute for Advanced Study, Princeton, New Jersey.

REFERENCES

- [1] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology, 2 (1963), 111-122.
- [2] N. BOURBAKI, Groupes et algèbres de Lie, chapitre Ier: « Algèbres de Lie », 1960, Hermann, Paris.
- [3] Harish-Chandra:
 - a) Representations of semisimple Lie groups VI, Amer. Jour. Math., 78 (1956), 564-628.
 - b) The characters of semisimple Lie groups, Trans. Amer. Math. Soc., 83 (1956), 98-163.
 - c) Differential operators on a semisimple Lie algebra, Amer. Jour. Math., 79 (1957), 87-120.
 - d) Fourier transforms on a semisimple Lie algebra, I, Amer. Jour. Math., 79 (1957), 193-257.
 - e) Fourier transforms on a semisimple Lie algebra, II, Amer. Jour. Math., 79 (1957), 653-686.
 - f) Spherical functions on semisimple Lie groups, I, Amer. Jour. Math., 80 (1958), 241-310.
 - g) Invariant eigendistributions on semisimple Lie groups, Bull. Amer. Math. Soc., 69 (1963), 117-123.
- h) Invariant distributions on Lie algebras, Amer. Jour. Math., 86 (1964), 271-309.
 i) Invariant differential operators and distributions on a semisimple Lie algebra, Amer. Jour. Math., 86 (1964),
- j) Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math., 80 (1964), 551-593. [4] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math., 66 (1957), 545-556.

Manuscrit reçu le 8 avril 1964.