PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

BARRY MAZUR

On the structure of certain semi-groups of spherical knot classes

Publications mathématiques de l'I.H.É.S., tome 3 (1959), p. 19-27

http://www.numdam.org/item?id=PMIHES 1959 3 19 0>

© Publications mathématiques de l'I.H.É.S., 1959, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON THE STRUCTURE OF CERTAIN SEMI-GROUPS OF SPHERICAL KNOT CLASSES

By BARRY MAZUR

§ 1. Introduction.

The problem of classification of k-sphere knots in r-spheres is the problem of classifying "knot pairs": $S = (S_1, S_2)$, where S_2 is an oriented combinatorial r-sphere, S_1 a subcomplex of S_2 (isomorphic to a standard k-sphere), and the pair S is considered equivalent to $S'(S \sim S')$ if there is a combinatorial orientation-preserving homeomorphism of S_1 onto S'_1 bringing S_2 onto S'_2 .

Thus it is the problem of classifying certain relative combinatorial structures. The set of all such, for fixed k and r, will be called Σ_k^r , and can be given, in a natural manner, the structure of a semi-group. There is a certain sub-semi-group of Σ_k^r to be singled out — the semi-group S_k^r of all pairs $S = (S_1, S_2)$ where S_1 is smoothly imbedded in S_2 (locally unknotted).

In this paper I shall define a notion of equivalence (which I call *-equivalence) between knot pairs which is (seemingly) weaker than the equivalence defined above.

Two knot pairs S and S' are *-equivalent if (again) there is an orientation-preserving homeomorphism

$$\varphi: S_2 \rightarrow S_2'$$

bringing S_1 onto S_1' . However φ is required to be combinatorial (not on all of S_2 , as before, but) merely on $S_2^* = S_2 - (p_1, \ldots, p_n)$, where $p_1, \ldots, p_n \in S_2$, where S_2^* is considered as an open infinite complex. Thus *-equivalence neglects some of the combinatorial structure of the pair (S_1, S_2) . The set of all *-equivalence classes of knot pairs forms a semi-group again, called ${}^*\Sigma_k^r$.

Finally the subsemi-group of smoothly imbedded knots in ${}^*\Sigma_k^r$ I call ${}^*S_k^r$. The purpose of this paper is to prove a generalized knot theoretic restatement of lemma 3 in [x].

INVERSE THEOREM: A knot S_k^r is invertible if and only if it is *-trivial.

And in application, derive the following fact concerning the structure of the knot semi-groups:

There are no inverses in ${}^*S_{\nu}^r$.

§ 2. Terminology.

My general use of combinatorial topology terms is as in [2]. It is clear what is meant by the "usual" or "standard" imbedding of a k-sphere or a k-cell in E^r . Similarly an unknotted sphere or disc in E^r means one that may be thrown onto the usual by a combinatorial automorphism of E^r .

DEFINITION 1. Let M^k be a subcomplex (a k-manifold) of E^r . Then M^k is locally unknotted at a point $m \ (m \in M)$ if the following condition is met with:

- 1) There is an r-simplex Δ^r drawn about m so that $\Delta^r \cap \mathbf{M} \subset \mathrm{St}(m)$, and $\Delta^r \cap \mathbf{M}$ is then a k-cell $B^k \subset \Delta^r$, and $\partial B^k \subset \partial \Delta^r$.
- 2) There is a combinatorial automorphism of Δ^r , sending B^k onto the "standard k-cell in Δ^r ". M is plain *locally unknotted* if it is locally unknotted at all points.

Semi-Groups:

All semi-groups to be discussed will be countable, commutative, and possess zero elements.

DEFINITION 2. A semi-group F is positive if:

$$X+Y=0$$
 implies $X=0$

(i.e.if F has no inverses).

DEFINITION 3. A minimal base of a semi-group F is a collection $J = (\chi_1, \ldots)$ of elements of F such that every element of F is a sum of elements in J, and there is no smaller $J' \subset J$ with the same property.

DEFINITION 4. A prime element p in the semi-group F is an element for which p = x + y implies either x = 0 or y = 0.

Clearly, if a positive semi-group F possesses a minimal base, that minimal base has to be precisely the set of primes in F, and F has the property that every element is expressible as a finite sum of primes.

DEFINITION 5. An element $x \in F$ is invertible if there is a $y \in F$ such that

$$x+y=0.$$

\S 3. (*)-homeomorphism.

DEFINITION 6. A (p_1, \ldots, p_n) -homeomorphism, $h: E^r \to E^r$ will be an orientation preserving homeomorphism which is combinatorial except at the points $p_i \in E^r$. It is a homeomorphism such that $h|E^r - (p_i)$ is a combinatorial map—simplicial with respect to a possibly infinite subdivision of the open complexes involved. When there is no reason to call special attention to the points p_1, \ldots, p_n , I shall call such: a (*)-homeomorphism.

DEFINITION 7. Two subcomplexes K, $K' \subset E'$ will be called *-equivalent $(K_{\sim}K')$ if there is a *-homeomorphism h of E' onto itself bringing K onto K'. (If h is a (p_i) -homeomorphism I shall also say $K_{(p_i)}K'$.) To keep from using too many subscripts, whenever a (*)-equivalence comes up in a subsequent proof, I shall act as if it were a (p)-equivalence for a single point p. This logical gap, used merely as a notation-saving device, can be trivally filled by the reader.

I'll say a sphere knot is *-trivial if it is *-equivalent to the standard sphere.

§ 4. Knot Addition.

There is a standard additive structure that can be put on Σ_k^r , the set of combinatorial k-sphere knots in E^r (two k-sphere knots are equivalent if there is an orientation-preserving combinatorial automorphism of E^r bringing the one knot onto the other). (For details see [2]).

I shall outline the procedure of "adding two knots" S_0 , S_1 . Separate S_0 and S_1 by a hyperplane H (possibly after translating one of them). Take a k-simplex Δ_i from each S_i , i=0, 1. And lead a "tube" from Δ_0 to Δ_1 (by "thickening" a polygonal arc joining a point $p_0 \in \Delta_0$ to $p_1 \in \Delta_1$, which doesn't intersect the S_i except at Δ_i). Then remove the Δ_i and replace them by the tube $T = S^{k-1} \times I$, where one end, $S^{k-1} \times 0$ is attached to $\partial \Delta_0$ by a combinatorial homeomorphism, and the other $S^{k-1} \times I$ is attached to $\partial \Delta_1$ similarly. The resulting knot is called the sum: $S_0 + S_1$, and its knot-equivalence class is unique.

If one added the point at infinity to E^r , to obtain S^r , the hyperplane H would become an unknotted $S^{r-1} \subset S^r$, separating the knot $S_0 + S_1$ into its components S_0 and S_1 . In analytic fashion, then, we can say that a k-sphere knot $S \subset S^r$ is *split* by an $S^{r-1} \subset S^r$ if:

- 1) $S^{r-1} \cap S$ is an unknotted (k-1)-sphere knot in S.
- 2) S^{r-1} is unknotted in S^r .
- 3) $S^{r-1} \cap S$ is unknotted in S^{r-1} .

Let A_0 and A_1 be the two complementary components of $S^{r-1} \cap S$ in S, and let B be an unknotted k-disc that $S^{r-1} \cap S$ bounds in S^{r-1} . Then $S_0 = A_0 \cup B$, $S_1 = A_1 \cup B$ are knotted spheres again, and clearly $S \sim S_0 + S_1$.

Thus I'll say: S^{r-1} splits S into $S_0 + S_1$; if E_0 and E_1 are the complementary regions of S^{r-1} in S^r , I'll refer to S_1 as that « part of S » lying in E_1 , and similarly for S_0 . Working in the semi-group ${}^*\Sigma_k^r$, one can be slightly cruder, and say: S^{r-1} *-splits S if only 1) and 3) hold. Clearly by $[\mathbf{I}]$, every S^{r-1} is *-trivial in S^r .

Lemma 1: If S^{r-1} *-splits S, and S_0 , S_1 are constructed in a manner analogous to the above, then $S \sim S_0 + S_1$.

§ 5. The Semi-Groups of Spherical Knots.

This operation of addition, discussed in the previous section, turns Σ_k^r into a commutative semi-group with zero. Our object is to study the algebraic structure of the

subsemi-group $S_k^r \subset \Sigma_k^r$ of locally unknotted k-sphere knots. Let ${}^*\Sigma_k^r$ be the semi-group of classes of spherical knots under *-equivalence. Let $G_k^r \subset \Sigma_k^r$ be the maximal subgroup of Σ_k^r , that is: the subgroup of invertible knots.

Inverse Theorem: There is an exact sequence

$$o \rightarrow G_k^r \rightarrow S_k^r \rightarrow S_k^r \rightarrow o$$

(where ${}^*S_k^r$ is the image of S_k^r in ${}^*\Sigma_k^r$)

or, equivalently, a knot in S_k^r is *-trivial if and only if it is invertible.

§ 6. Proof of the Inverse Theorem.

a) If S is invertible, then $S_{(*)}$ o. The proof is quite as in [x]. Let $S + S' \sim o$. Then consider the knots:

$$S_{\infty} = S + S' + S + S' + \dots \cup p_{\infty}$$

$$S'_{\infty} = S' + S + S' + S + \dots \cup p_{\infty}$$

(See figure 1)

and notice: (as was done in detail in [1])

$$S_{\infty} \underset{(p_{\infty})}{\sim} 0$$

$$S_{\infty}' \underset{(p_{\infty})}{\sim} 0$$

$$S_{\infty} = S + S_{\infty}'$$

LEMMA 2: There is a (*)-homeomorphism

$$f: \mathbf{E}^r \to \mathbf{E}^r$$
 such that

$$f: S \rightarrow S + S'_{\infty}$$
.

PROOF: Let D be the k-cell on which the addition of S to S'_{∞} takes place. Since $S'_{\infty}_{(p_{\infty})}$ o, we may transform figure 1 to figure 2 by a (p_{∞}) -homeomorphism g which leaves everything to the left of the hyperplane H_1 fixed, and sends S' to the "standard k-sphere" to the right of H_1 . (See figure 2.)

Then, in figure 2, clearly one can construct an automorphism f' which leaves S fixed and sends D onto $g(S'_{\infty})$ —int D.

Take $f = g^{-1}f'g$, and f has the properties required, and is a (*)-homeomorphism. Therefore, by the above lemma,

$$S_{\underset{(\star)}{\sim}}S + S'_{\infty} = S_{\infty}\underset{(\star)}{\sim}o$$

and finally:

$$S_{\sim}$$
o

which proves (a).

b) If $S \in S_k^r$ and $S_{(p)}$ o, then S is invertible.

PROOF: First observe that if k=r-1, invertibility of knots is generally true (by [1]), and so we needn't prove anything.

LEMMA 3: If $k \le r-1$, and $S \in S_k^r$, $S_{(p)}$ o for $p \notin S$, then $S \sim 0$.

PROOF: There is an r-cell Δ containing S but not p. Then $f|\Delta$ is combinatorial, and by a standard lemma:

Lemma 4: If $g: \Delta \to \Delta'$ is a combinatorial homeomorphism of an r-cell $\Delta \subset E'$ to an r-cell $\Delta' \subset E'$, then g can be extended to a combinatorial automorphism of E' (see [2]). Thus, restrict f to Δ , and extend $f \mid \Delta$ to a combinatorial automorphism g of E'. This g yields the equivalence $S \sim 0$. Therefore, assume $S_{(m)} \circ$, and $p \in S$.

Let B be a small r-cell about p, so that $C = B \cap S$ is in St(p), and hence an unknotted k-cell, by the local unknottedness of S. $\partial B \cap S = \partial C$ and ∂C is unknotted in ∂B .

Let f be the (p)-homeomorphism taking S onto the standard S^k .

Fig. 4

Now let D be an unknotted disc, the image of a perturbation of f(C) with the properties:

- i) $\partial(f(\mathbf{C})) = \partial \mathbf{D}$;
- ii) int Dcint B;
- iii) $f(p) \notin \mathbf{D}$;
- iv) the knot $K = D \cup (S^k f(C))$ is still trivial.

Then f^{-1} takes K to a knot $K' = f^{-1}(K)$, split by ∂B into the sum:

$$K' = S + S'$$

where S is the knot lying in the exterior component of ∂B , and S' in the interior.

116

But $K \sim 0$, and $K'_{f(p)}K$ where $f(p) \notin f(K)$, therefore by lemma 3, $f(K) \sim K$. So:

$$S + S' \sim f(K) \sim K \sim 0$$

and S' is invertible.

Corollary: ${}^*S_k^r$ is a positive semi-group.

So we have that ${}^*S_k^r$ is precisely S_k^r « modulo units ».

§ 7. Infinite Sums in ${}^*\Sigma_k^r$.

Let X_i , $i = 1, \ldots$, be knots representing the classes $\chi_i \in \Sigma_k^r$. Define $\sum_{i=1}^{\infty} X_i$ to be the infinite one point compactified sum of the knots X_i , in that order (figure 5).

As it stands, $X = \sum_{i=1}^{\infty} X_i$ will not represent a knot in Σ_k^r , because X is not combinatorially imbedded (at p_{∞}).

DEFINITION 8. $\sum_{i=1}^{\infty} X_i = X \text{ converges if there is a } (p_{\infty}) \text{-homeomorphism } H: X \to Y,$ where Y is combinatorially imbedded. In that case, the knot class $y \in {}^*\Sigma_k^r$ is uniquely determined by the $X_i \in \Sigma_k^r$, and I shall say $\sum_{i=1}^{\infty} \chi_i = y$.

If $\sum_{i=1}^{\infty} \chi_i$ is in ${}^*S_k^r$, I'll say that $\sum_{i=1}^{\infty} \chi_i$ converges in ${}^*S_k^r$.

Theorem 1. If $\sum_{i=1}^{\infty} \chi_i$ converges in ${}^*S_k^r$, then it does so finitely. That is, there is an N such that

$$\gamma_i \sim 0, \qquad i > N.$$

PROOF: Notice that by the inverse theorem, there are no inverses in ${}^*S_k^r$.

Let $X = \sum_{i=1}^{r} X_i$, and $H : X \rightarrow Y$ where Y is a subcomplex of E^r and H a (*)-homeomorphism.

26

Fig. 6

Let B be a ball about p' such that $B \cap Y$ is a disc in St(p'), and by the local unknottedness of Y, ∂B splits Y into two knots,

$$Y = Y^{(1)} + Y^{(2)}$$

where $Y_1 \subset B$ is trivial, and $Y \sim Y_2$.

Now transform the situation by H^{-1} . Let $B' = H^{-1}(B)$, and we have that $\partial B' *-splits X$ into:

$$X_{\sim} X^{(1)} + X^{(2)}$$

and H yields the *-equivalences:

$$X^{(1)} \sim Y^{(1)} \sim o$$
 $X^{(2)} \sim Y^{(2)}$

Find an *i* so large that $\Delta_i \subset \operatorname{int} B'$. Then $\partial \Delta_i$ splits $X^{(1)}$ further:

$$X^{(1)} \sim X^{(3)} + X^{(4)}$$

where $X^{(3)}$ is the part of $X^{(1)}$ lying in Δ_i . But then, by figure 6, $X^{(3)}$ is nothing more than:

$$X^{(3)} \sim \sum_{j=i}^{\infty} X_{j}$$

Passing to equivalence classes in ${}^*S_k^r$, one has:

$$\chi^{(3)} + \chi^{(4)} = 0$$

$$\chi^{(3)} + \chi^{(4)} = 0$$

$$\chi^{(3)} = \sum_{j=1}^{\infty} \chi_{j}$$

(where x the *-equivalence class of X). But repeated application of the fact that ${}^*S_k^r$ has no inverses yields $\chi_j = 0$ for $j \ge i$, which proves the theorem.

REFERENCES

- [1] B. MAZUR, On Imbeddings of Spheres, Acta Mathematica (to appear).
 [2] V. K. A. M. Guggenheim, Piece wise Linear Isotopy, Journal of the London Math. Soc., vol. 46.

Reçu le 16 novembre 1959.