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ON THE STRUCTURE OF CERTAIN SEMI-GROUPS
OF SPHERICAL KNOT CLASSES

By Barry MAZUR

§ 1. Introduction.

The problem of classification of k-sphere knots in r-spheres is the problem of
classifying “knot pairs”: S=(S,, S,), where S, is an oriented combinatorial r-sphere,
S, a subcomplex of S, (isomorphic to a standard k-sphere), and the pair S is considered
equivalent to 5’ (S~=&’) if there is a combinatorial orientation-preserving homeomorphism
of S, onto S, bringing S, onto S,.

Thus it is the problem of classifying certain relative combinatorial structures.
The set of all such, for fixed £ and 7, will be called X}, and can be given, in a natural
manner, the structure of a semi-group. There is a certain sub-semi-group of X to be
singled out — the semi-group Sj, of all pairs S=(S,, S,) where S, is smoothly imbedded
in S, (locally unknotted).

In this paper I shall define a notion of equivalence (which I call *-equivalence)
between knot pairs which is (seemingly) weaker than the equivalence defined above.

Two knot pairs S and S’ are *-equivalent if (again) there is an orientation-preserving
homeomorphism

P :S,—S,

bringing S, onto S;. However ¢ is required to be combinatorial (not on all of S,, as
before, but) merely on S;=S,—(p,, ..., p,), where p,, .., p,€S,, where S; is considered
as an open infinite complex. Thus %-equivalence neglects some of the combinatorial
structure of the pair (S;, S;). The set of all %-equivalence classes of knot pairs forms a
semi-group again, called "=

Finally the subsemi-group of smoothly imbedded knots in "Zj I call 'S,. The
purpose of this paper is to prove a generalized knot theoretic restatement of lemma g in [x].

Inverse THEOREM: A knot S} is invertible if and only if it is #-trivial.

And in application, derive the following fact concerning the structure of the
knot semi-groups:

There are no inverses in “Sj.
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20 BARRY MAZUR

§ 2. Terminology.

My general use of combinatorial topology terms is as in [2]. It is clear what is
meant by the “usual” or “standard’ imbedding of a k-sphere or a k-cell in E’.  Similarly
an unknotted sphere or disc in E” means one that may be thrown onto the usual by a
combinatorial automorphism of E'. ‘ :

DeriniTioN 1. Let M* be a subcomplex (a k-manifold) of E. Then MF is locally
unknotied at a point m (meM) if the following condition is met with:

1) There is an r-simplex A" drawn about m so that A'"nMcSt(m), and A'nM is
then a k-cell B*cA’, and 0B*coA".

2) There is a combinatorial automorphism of A’, sending B* onto the ‘“standard
k-cell in A™’. M is plain locally unknotted if it is locally unknotted at all points.

Semi-Groups:

All semi-groups to be discussed will be countable, commutative, and possess zero
elements.

DEeFINITION 2. A semi-group F is positive if:
X+4+Y=o0 implies X=0
(i.e.if F has no inverses).

DEFINITION 3. A minimal base of a semi-group F is a collection J=(y;, ...) of
elements of F such that every element of F is a sum of elements in J, and there is no
smaller J' cJ with the same property.

, DEFINITION 4. A prime element p in the semi-group F is an element for which
p=x-+y implies either x=0 or y=o.

Clearly, if a positive semi-group F possesses a minimal base, that minimal base
has to be precisely the set of primes in F, and F has the property that every element is
expressible as a finite sum of primes.

DeFiNITION 5. An element xeF is invertible if there is a yeF such that

Xx+y=o.

§ 3. (x)-homeomorphism.

DEerFinITION 6. A (B4, ..., p,)-homeomorphism, &:E —E’ will be an orientation
preserving homeomorphism which is combinatorial except at the points p,eE’. It is
a homeomorphism such that A|E"—/(p,) is a combinatorial map — simplicial with respect
to a possibly infinite subdivision of the open complexes involved. When there is
no reason to call special attention to the points p,, ..., p,, I shall call such: a (x)-
homeomorphism.
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DerinrTion 7. Two subcomplexes K, K'cE™ will be called *-equivalent (K~K')

if there is a *-homeomorphism % of E’ onto itself bringing K onto K'. (If & is a (p,)-
homeomorphism I shall also say KGJ)K’.) To keep from using too many subscripts,

1

whenever a (%)-equivalence comes up in a subsequent proof, I shall act as if it were
a (p)-equivalence for a single point p. This logical gap, used merely as a notation-
saving device, can be trivally filled by the reader.

I’ll say a sphere knot is *-trivial if it is %-equivalent to the standard sphere.

§ 4. Knot Addition.

There is-a standard additive structure that can be put on X, the set of combina-
torial k-sphere knots in E (two k-sphere knots are equivalent if there is an orientation-
preserving combinatorial automorphism of E" bringing the one knot onto the other).
(For details see [2]).

I shall outline the procedure of ‘“‘adding two knots” S,, S,. Separate S, and S,
by a hyperplane H (possibly after translating one of them). Take a k-simplex A, from
each S;, i=o0, 1. And lead a “tube” from A to A, (by “thickening” a polygonal arc
joining a point p,eA; to p,eA,, which doesn’t intersect the S; except at A,). Then
remove the A; and replace them by the tube T=S*"!x I, where one end, S¥! x o is
attached to A, by a combinatorial homeomorphism, and the other S¥~* x 1 is attached
to 0A, similarly. The resulting knot is called the sum: S;4S,, and its knot-equivalence
class is unique.

If one added the point at infinity to E’, to obtain S’, the hyperplane H would
become an unknotted "' cS’, separating the knot S+ S, into its components S, and S,.
In analytic fashion, then, we can say that a k-sphere knot ScS" is split by an S"~'cS" if:

1) 'S is an unknotted (k—1)-sphere knot in S.

2) §"~! is unknotted in S".

3) S""'AS is unknotted in S" 1.

Let A, and A, be the two complementary components of S""'nS in S, and let B
be an unknotted k-disc that S""'nS bounds in §’~!. Then S;=A,UB, S,=A,uB
are knotted spheres again, and clearly S~S;+38,.

Thus I’ll say: S"' splits S into Sy+S,; if E; and E, are the complementary
regions of S"' in §”, I’ll refer to S, as that « part of S » lying in E,, and similarly for S,.
Working in the semi-group "X}, one can be slightly cruder, and say: §" ' *-splits S if
only 1) and 3) hold. Clearly by [x], every S"' is *-trivial in S".

LemMma 1: If S~ %-splits S, and S,, S, are constructed in a manner analogous to
the above, then S~S;-S,. :

§ 5. The Semi-Groups of Spherical Knots.

This operation of addition, discussed in the previous section, turns X into a commu-
tative semi-group with zero. Our object is to study the algebraic structure of the
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22 BARRY MAZUR

subsemi-group S;cZX; of locally unknotted k-sphere knots. Let "%/ be the semi-group
of classes of spherical knots under %-equivalence. Let GjcX; be the maximal subgroup
of X}, that is: the subgroup of invertible knots.
Inverse THEOREM: There is an exact sequence
0—->G—S;—"S;—>0
(where *S, is the image of S in *XI)

or, equivalently, a knot in S} is *-trivial if and only if it is invertible.

§ 6. Proof of the Inverse Theorem.

a) If S is invertible, then Sﬁo. The proof is quite as in [x]. Let S+S'~o.
Then consider the knots:
Se=S+S"4+S+4+8"+...up,
S, =S"4+S+S" +S+...up,
(See figure 1)
and notice: (as was done in detail in [1])

Sw ~ 0
(Pe)
S;, ~ 0
(Poo)
S.=S+S.
H1 Hz H3 H‘
S S’ S

S’
AM@ NN * Poe

'_.sm S0

Fig. 1

LemMmA 2: There is a (*)-homeomorphism
f:E'—-E’ such that
f:S—>S+8S..
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ON THE STRUCTURE OF CERTAIN SEMI-GROUPS OF SPHERICAL KNOT CLASSES 23

Proor: Let D be the k-cell on which the addition of S to S, takes place. Since
S, o>,0, we may transform figure 1 to figure 2 by a (p,,)-homeomorphism g which leaves

everything to the left of the hyperplane H, fixed, and sends S’ to the * standard £-sphere
to the right of H;. (See figure 2.)

D

s* —g(s/)

oo

Fig. 2

Then, in figure 2, clearly one can construct an automorphism f' which leaves S
fixed and sends D onto g(S,)—int D.
Take f=g 'f'g, and f has the properties required, and is a (*)-homeomorphism.
Therefore, by the above lemma,
SU S+S, =S, =°
and finally:

SNO
(+)

which proves (a).
b) If SeS, and S(Np),o, then S is invertible.

Proor: First observe that if k=r—1, invertibility of knots is generally true (by [1]),
and so we needn’t prove anything.

Lemma g: If k<r—1, and SeS,’,,SG)»o for p¢S, then S~o.

Proor: There is an r-cell A containing S but not p. Then f|A is combinatorial,
and by a standard lemma:

LEmMA 4: If g:A—A’ is a combinatorial homeomorphism of an r-cell AcE" to
an r-cell A’cE’, then g can be extended to a combinatorial automorphism of E” (see [2]).
Thus, restrict f to A, and extend f|A to a combinatorial automorphism g of E'. This g
yields the equivalence S~o. Therefore, assume S«(;o, and peS.
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24 BARRY MAZUR

Fig. 3

Let B be a small r-cell about p, so that C=BnS is in St(p), and hence an unknotted
k-cell, by the local unknottedness of S. 9BnS=0C and 0C is unknotted in dB.
Let f be the (p)-homeomorphism taking S onto the standard S*.

£(B)

D) f

Fig. 4

Now let D be an unknotted disc, the image of a perturbation of f(C) with the
properties:

i) 9(f(C))=0D ;
ii) int Dcint B ;
iii) f(p)¢D ;
iv) the knot K=Du(S*—f(Q)) is still trivial.

Then f~! takes K to a knot K'=f"*(K), split by B into the sum:
K'=S+§8
where S is the knot lying in the exterior component of B, and S’ in the interior.
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ON THE STRUCTURE OF CERTAIN SEMI-GROUPS OF SPHERICAL KNOT CLASSES 25

But K~o, and K’ff(;K where f(p)¢f(K), therefore by lemma 3, f(K)~K.
So:

S+S' ~f(K)~Kn~o,
and S' is invertible.

CoRrOLLARY: 'S}, is a positive semi-group.
So we have that "S, is precisely S} « modulo units ».

§ 7. Infinite Sums in "I,

Let X;,i=1, ..., beknots representing the classes y,€X;. Define ¥ X, to be the
i=1

infinite one point compactified sum of the knots X,, in that order (figure 5).

X, Xz X3 X,

AN AT |

ST\ U

Fig. 5

@
As it stands, X = ¥ X, will not represent a knot in XJ, because X is not combina-
i=1

1=

torially imbedded (at p,,).

DeriniTION 8. ¥ X,=X converges if there is a (p,)-homeomorphism H: XY,
i=1

where Y is combinatorially imbedded. In that case, the knot class ye’Z; is uniquely

determined by the X;eX;, and I shall say X y,=».
i=1

If £y, isin "S], I'll say that X y; converges in “S;.
i 1=1

i=1

Tueorem 1. If 3 y; converges in *S:, then it does so finitely. That is, there is
an N such that =l
Xi’:’()’ 1>N.

Proor: Notice that by the inverse theorem, there are no inverses in "Sj.

Let. X= 3% X,, and H:X-—>Y where Y is a subcomplex of E' and H a
i=1

(*)-homeomorphism.
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26 BARRY MAZUR

Fig. 6

Let B be a ball about p’' such that BnY isadiscin St(p’), and by the local unknot-
tedness of Y, B splits Y into two knots,

Y=YV 4Y®

where Y,cB is trivial, and Y~Y,.

Fig. 7

Now transform the situation by H™!, Let B'=H"'(B), and we have that 9B’ x-splits
X into:

X~XWM 4 X®
and H yields the *-equivalences:
X(I)NY(I)NO
X, y®
Find an i so large that A;cint B'. Then 24, splits X" further:
X0 X6 4 X

where X® is the part of X® lying in A,. But then, by figure 6, X® is nothing more
than:
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ON THE STRUCTURE OF CERTAIN SEMI-GROUPS OF SPHERICAL KNOT CLASSES 27
) _ .
X! N,E.'Xr
Passing to equivalence classes in "S], one has:

X(3) = z b7

j=1

(where x the x-equivalence class of X). But repeated application of the fact that *Sj
has no inverses yields y;=o for j>i, which proves the theorem.
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