
PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

FRED GALVIN
Stationary Strategies in Topological Games
Publications du Département de Mathématiques de Lyon, 1985, fascicule 2B
« Compte rendu des journées infinitistes », , p. 41-43
<http://www.numdam.org/item?id=PDML_1985___2B_41_0>

© Université de Lyon, 1985, tous droits réservés.

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PDML_1985___2B_41_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


STATIONARY STRATEGIES IN TOPOLOGICAL GAMES 

by Fred CALVIN 

If X is topological space, the Banach-Mazur game BM(X) is played as 
follows : first Black chooses a nonempty open set B q c X , then White chooses 
a nonempty open set W Q C: B q , then Black chooses a nonempty open set B^ c: W Q , 
and so on . Thus, a play of the game BM(X) is an infinite decreasing sequence 
X 3 B 3 W => B, => W. 3 . . . => B 3 W =>... of nonempty open sets ; Black 

O - O - 1 - 1 - n - n - tr J tr 9 

wins if the intersection is empty, White wins if it is nonempty. This genera­
lization of the classical Banach-Mazur game [5] is due to J.C. Oxtoby [6] 
who showed that Black has a winning strategy in BM(X) if and only if X is not a 
Baire space. (X is a Baire space if every intersection of countably many dense 
open subsets of X is dense in X ) . 

A space X is said to be "weakly orfavorable" [8] if White has a winning 
strategy in BM(X). It follows from Oxtoby fs result that every weakly a-favorable 
space is a Baire space. The converse if false : if X is a subset of the real 
line which meets every nonempty perfect set and whose complement also meets 
every nonempty perfect set (i.e. , X is a "Bernstein set"), then neither player 
has a winning strategy in BM(X) ; i.e. , X is a Baire space but is not weakly 
a-favorable. However,the spaces satisfying the usual hypotheses of the Baire 

category theorem (e.g., complete metric spaces or locally compact Hausdorff 
spaces) are not only Baire but in fact weakly a-favorable. 
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In general a strategy for White in BM(X) may depend on all the previous 
moves : 

It is easy to see that such a strategy can be reduced to an equivalent strategy 
which depends only on the opponent's previous moves : 

wn = T'(VV->V-
A "stationary strategy11 (also known as a "positional strategy" or a "tactic"[1]) 
is a strategy which depends only on the opponent's last move : 

W = a(B ) . 
n n 

A space X is said to be 'a-f avorable" [1] if White has a stationary winning 
strategy in BM(X). It is easy to see that complete metric spaces and locally 
compact Hausdorff spaces are ot-favorable, and for a long time it was an open 
problem whether all weakly a-favorable spaces are a-favorable. However, G. Debs 
has recently found a simple example [2] of a (non-regular) Hausdorff space which 
is weakly a~favorable but not a-favorable, as well as a more complicated example 
[3] of a Tychonoff space with the same properties. 

Now , a "Markov strategy" for White in BM(X) is one which depends only on the 
opponent's last move and the number of moves that have been made : 

W = T(n,B ). n ' n 

If X is "pseudocomplete" in the sense of J.C. Oxtoby [7] , then it is clear that 
White has a Markov winning strategy in BM(X). It is not so clear that he has a 
stationary winning strategy, but this is a consequence of a theorenn of F. Galvin 
and R. Telgarsky [4] : if White has a Markov winning strategy in BM(X), then 
he also has a stationary winning strategy. 

G. Debs [3] and F. Galvin and R. Telgarsky [4] independently observed that, 
for every weakly a-favorable space X , White has a winning strategy in BM(X) 
of the form W = C(W ,,B ) ; however, we do not know if there is always a n n-1 n J 

winning strategy of the form W = a(B , ,B ) . 
J n n-1 n 
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