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THE INTERMITTENT SERVER 

by J.P. KELLER 

0. INTRODUCTION. 
This note is devoted to the study of Queuing Systems in which some of 

the servers may work intermittently, ie, a server is allowed to work only 
when "given" time by some allocator. This case occurs, for instance, when the 
same server carries out more than one kind of services, and our system diffe­
rentiates these services. Another example is a configuration with "mutually 
exclusive servers" when only one of the mutually exclusive servers may work a 
a time, the other being idle. This happens for example when several servers 
share the same ressource of which only one copy is available for all them. 
The obvious attitude to have in these situations is to assume that if y is 
the serving rate of one working server, (ie, the serving rate if uninterrupted) 
and if the server works 1/n-th of the time, then the actual serving rate is 
u/n, summarizing, intermittent servers ought to be treated as ordinary servers 
with "cut rates". A rigorous treatment of this folk-theorem presents more 
difficulties than one would expect. In this respect the intervention of Non-
Standard Analysis to prove the basic theorem of this paper, we hope, will 
enlight the nature of the theorem - the dealings with infinitesimal oscilla­
tions - rather than bury the reader into a sea of epsilons. 

For expository reasons we will present first the case of a single server 
We will then easily generalize Jackson's theorem on networks of queues to 
include intermittent servers. We claim that a large number of systems usually 
investigated by programming methods - simulations - could be, with a minimum 
of algorithmic analysis, described by closed formulas. This could be the case 
of an Operating system, in one of its key section, the Monitor. 

This report is only one side of a collective effort undertaken at the 
Courant Institute : examples illustrating the usefulness of our techniques by 
G. Belpaire (2), and verifications by means simulations by A. Borg (3) will be 
reported elsewhere. 

The fundamental difficulty, for a classical queuing theorist, with our 
intermittent servers is : the time scale is neither memoryless nor uniform. 
For a given server let g(t) be the serving time characteristic function 
(fig. 1 a, b). 
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(fig. la) g for an intermittent server. (fig. lb) g for a classical server. 

When g(t) = 1, the server si actually working. When g(t) = o, the server is idle. 
Consider a single server queue and its discrete states Ei (= state when i people 
are in the system).If the server is not intermittent, the memoryless property 
of any state may be described as follows (4). Let be a random variable that 

represents the time which the process spends in state Ei. Then 

(1) P ( \ > s + t | T . > S ) = h £(t) 
holds for the conditionnal probability. If our system has an intermittent server, 
the system has actually two different time clocks : the time clock to join the 
system (which in our example is uninterrupted) and the clock used to leave the 
system -represented by g(t). Thus (1) does not hold any more. We still retain 
a discrete state space representation for our stochastic process with P(k,t) 
being the probability of finding the system in state E^ at time t. 

We are going to introduce a suitable averaging procedure to reduce this 
system to a Markov process. The crux of the method is as follows : instantaneous 
probabilities may depend on the current value of g (at least their time derivative 
does , as will be seen below). Thus there might not be any limiting probability 
distribution as t 4 + 0 0 in the sense that is never identically zero, i.e.,P 

o t 
oscillates at all time. The key observation is : at t -*> + » these oscillations 
might very well be infinitesimal in amplitude (fig. 2). 

Fig. 2 . a function with a discontinuous derivative and infinitesimal oscillations 
as t -+ 0 0 

Anyone who has had Calculus via Non-standard Analysis (5) will not have any 
difficulty with our exposition of the solution. Other people are refered for 
a quick introduction - and that's all we need - to the introductory chapters of 
(6) or (7). Our reasoning has enough intuitive appeal for any reader to fell 
compelled to read it carefully, if not verify it (this part of the paper ought 
to be entitled : Another Act in the Revenge of Leibniz). 
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In section I we are going to establish the stochastic difference equation 
for the single intermittent server. In section II we will parallel Jackson's 
treatment of a 11 Job-shop-like Queuing System" (1) with groups of mutually exclusive 
servers and we expect the reader to be familiar with ref. (1). In section III we 
present the non-standard approach to the solution of such stochastic difference 
equations in the limit t •> °°. In section IV we state some results and provide 
some examples. 

It should be said that the author does not know of an adequate treatment, 
even of the single intermittent server through the usual M/G/I techniques, 
because of the lack of uniform service distribution : the service distribution 
depends on the absolute instants at which the service starts and restarts. The 
nicety of our result is : to reduce such a system to a Markovian one, all that 
is required is the existence of the limit : 

( 2 ) \ j g(x)dx - Cg (t + - ) , 

i.e. the existence of an average value of g (le. a limiting ratio : total 
working time/total time). 

I - THE SINGLE INTERMITTENT SERVER. 
The queue is a Poisson arrival system of rate X . We assume that the queue 

is also Poisson of rate/y for the servicing, when it is not idle, i.e., the 
probability of leaving the system at time t, T £ t ̂  T+AT for an infinitesimal 
AT , is 

( U XA T, if server is working during the 
Pleaving ( T 4 1 * T + A T ) = ' interval (T,T+AT) ; 

* 0 otherwise. 

i.e., for an arbitrary infinitesimal T : 

( 4 ) pleaving ( T 4 1 * T + A t ) = ^ ( T ) A T -

Let P(K,t) be the probability of having K customers in the system at time t. 
The usual analysis yields the following evolution equation, in the birth-death 
approximation (for h infinitesimal) : 
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(k > 1) P(k,t+h) = l-Ah+o(h) (l-pg(t)h+o(h)) P(k,t) 

+ (Ah+o(h)) P(k-l,t) 
+ (pg(t)h+o(h)) P(k+l,t) ; 

(k = o) P(o,t+h) = (l-Ah+o(h)) P(o,t) + (yg(t)h+o(h) P(l,t). 

Introducing the generating function 
oo 

(5) P(Z,t) = E P(k,t)Zk , 

k=o 

We obtain the differential equation 

(6) \ ?

t (Z,t) = A(Z-l) P(Znt) + g(t) ( 1 - 1 ) (P(Z,t)-P(bft)). 

The existence of a limiting distribution for P, as t -* + «> will be discussed 
later. 

II - JOB SHOP-LIKE QUEUING SYSTEMS WITH GROUPS OF MUTUALLY EXCLUSIVE SERVERS. 

We consider a network of queues and service stations numbered I,...,N and 
we assume a partition of these N servers into p+1 groups G Q,Gj,G p : 

G : the set of "independent11 servers, 
o 

> groups of mutually exclusive servers. 
G J P 3 

Independent servers are the classical servers, who work all the time, that 
is, more precisely, as long as there are customer waiting at their stations. On 
the contrary, for the servers belonging to the same groupe , say G. = {n ,n n 1 

i 1 2 * 3 
there is a time allocation mechanism "giving" time in turn to n j , ^ or iiy Such 
a time allocation function, called G^(t), typically looks like the one of fig. 3. 
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"3 run 
- J f . 1 (Fig. 3) A typical time allocation 

N I 1 / I — f u n c t i o n between servers n 1,n«,n 0. 
1 I 1

 1 T i 1 i i . \ 2. 5 
q I > i « i ! ^ In this example no one works during (t^t^l, 

ri ;
C2 rA C5 ^6 ^7 then n 3 during (t2,t3> etc. 

sUJTJ-LLL... 
o 1 — i ; 1 1 1 * 

2 3 4 5 i 
' r t | 1 (Fig. 4) Time characteristic functions of 

g 1 | | i ( j j servers n ^ , ^ , ^ corresponding to the 
2 \ ' > allocation of fig. 3. 

0 • « t t f t 

s LP TU , 
Correspondingly each server has its own time characteristic function g n(t) 
(see fig . 4) satisfying : 

G. (t) = I n g (t) 
n*G. 

I 

the mutual exclusion translates immediately into : 

m, n6G., m # n : g m(t). g n(t) = o 

It has to be said that I g (t) is not necessarily identically one. The 
n €G. n 

l 
intervals during which I g (t) = o are those during which none of the 

n«G. n 

I 
servers in G^ work. Note that any server in the group G Q has a constant time 
characteristic function g = 1 (see fig. l.b.). 

We assume at this point the reader familiar with ref. (1) and its notation. 
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Through a discussion similar to the one of section I we derive the pro­
bability of completing a service at center n, at time t : T ^ t ^ T + AT, 
assuming there were Kn people at this center at time T : 

/cw "o i *. * • f P(n,k )AT if server n is (9) P completing service (x ̂  t £ T + AT) = \ n during (T,T . A T ) , at center n 
V 0 otherwise, 

i.e. 

P completing service (T ̂  t s< T + AT) = p(n,kn> g(T) AT 
at center n. 

Then an analysis entirely similar to the one developped in ref (1) leads us to 
the time dependent state probability : 

O 0 ) dt ( * f t ) = "[ X^ S^)) + E I U(n,kn) (l-r(n,n)) g n(t) P(k,t) 
i=o Gi 

+ E E MS(k) - 1) r(o,n) P(h(n),t) • 
i=o n € Gi 

(10) 
P + 

+ Z I u(n,k +1) r(n,N+l) g (t) P(i(n),t) 
i=o n€ Gi 

P . 
+ I Z y(n 5d n+l) r(n,m) g (t) P (j(n,m),t). 

i=o n 6 Gi 

with the same notations and restrictions as in (1). Formally one introduces two 
vectors 

P(t) = (P(o\t),...,P(k,t),...) , 
G(t) = (g](t),..-,gN(t)) 

and the (infinite) system (10) may be written 

H = F o ( P ) + Fi( p>-G(t). 
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Provided that the rates A(g), u(n,q) q=0,1,2,...,n=l,2,...N remain bounded 
the linear operators F , Fj, are continuous in P. This observation, though 
trivial, plays an important role in the search of a solution to (1!), as one 
might expect. On another hand G(t) is a discontinuous function though, it 
might be considered piecewise continuous, with at most countably папу isolated 
discontinuity points (finite jumps) and remains bounded uniformly over 
t (0,°°), i.e., G is certainly measurable , of course the same observation 
holds of any of the individuals gj,...,g^ or of the characteristic function 
of the single intermittent server of section I. 

Ill - ASYMPTOTIC BEHAVIOR OF THE S0LMI0N OF THE STXHASTIC DIFFERENCE 
EQUATION FOR A SYSTEM WITH INTERMITTENT SERVERS. 

Roughly put, to establish the equations fera system with intermittent servers, 
one uses the following recipe 

(i) write down the equations for the classical (i.e. w/o intermittent 
servers) system 

(ii) for each intermittent server, replace its service rate by the product 
ux g(t) with its time characteristic function. 
This leads to an explicit factorization of the time dépendance as exhibited 
in (6) or (11). Without the explicit mention of parameters other than time and 
with an appropriate scalar product, the equation we have to study is of the 
type : 

(12) ^ - f,(u) + f 2(u). g(t), 

where f̂  (i-1,2), g are either scalar functions or operators as seen above. 

All we require for our analysis is : 
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A - the continuity of 9 

B - the continuity of the scalar product , t 

C - the existence of C = lim C ( . = lim ( j f g(X)dX). 
o 

Proceeding as usual to find an asymptotic behavior to a solution to (12), i.e., 
du 

solving — = 0 does not yield any clue as to what might be, if any, the 
asumptotic, hence, time independent, function since no time independent function, 
in general, will satisfy 

fj(u) + f 2(u). g(t) = o. 

Let us assume the existence of an asymptotic behavior for a solution u of (12) 
and let U, Fj , , G be the non-standard extensions of u, f̂  , f^, g respective' 
We are specially interested by the behavior of these extensions for infinite 
values of their argument, t. In particular, the existence of an asymptotic limit 
for u says : 

for some real, infinite, t . 

for all t > t one has : 
o 

04) (a) V(t)^> V (V is the limit of V if any), 
(b) C G(t) * C g , 
(c) F.(V(t))* F.(V). 

By definition U is a solution of 

(12) - jT^ = F. (V(t)) + F 9 (V(t)). G(t) at 1 ^ 

or equivalently of 

(15) V(t) - U(s) + / (F (V(x)) + F 2(V(x). G(x)) dX. 
s 

Using the continuity of F £ (i=l,2) and the fact that V is almost a constant 
over any interval (s,t) such that t Q £ s t , we will be able to treat F i(V(»)) 
as a constant and write 

90 
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\ (Fj (V(x) + F 2 (V(x)).G(x)) dx 
s 

* Fj(V) ( dx + F 2(V). f G(x)dx 
s s 

= (t-s) [Fj(V) + F 2 ( V ) . [ G(x) dx] 
s 

and by a convenient choixe of (s,t) we are going to be able to verify : 

1 rz 

— G(X)dx * C . 
t " s s g 

Whence turning (15) into : 

V (t) - V(s) v (t-s). (F (V) + F 9(V). C ). 

Thus showing that the limit v of u, if any, satisfies 
ff(v) + f 9(v). C = 0. 

The mathematical details follow. 

The continuity of F̂ ^ (i=l,2) may be expressed as 

x * y F^(x) - Fĵ Cy) 

Let us choose some infinite interval (S,T) with t « S ̂  T ; 

since V(x) * V on (S,T) we have 

(16) F i(V(x)) - F i(V) = e ^ x ) * 0 (i=l,2). 

(S,T) being compact and | z^ | continuous, | z^ | reaches its maximum, 
itself an infinitesimal. Thus there is an infinite real fl satisfying : 

Q < T - S , 
g •e i(x)^0 all x€(X,T) (i-1,2). 
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For instance take 

Q = inf (T- S, — 1 > 1 ) . 

V I max Je (x)| V / max liTCxTT 
x €(S,T) Vx C(S,T) 

Let us choose 
f s = S 
I t = S + 0, 

or any other infinite sub-interval (s,t) ̂  S,T) of length (t-s)<: Q . For any 
such s, t , s/t<fc o and by (16) : 

f (F.(U(x)) + F2(l/(x)). G(x)dx 
s t t 

* Fj(V) | dx+F 2(V). / G(x)dx , 
s s 

, t 
J (F,(V(x)) + F2(l/(x)). G(x))dx 
s 

* (t-s) [FJ(V) + F 2(V). J G(x)dx] . 
L s 

More over we are going to verify that f G(x) dx C (t) hence also ^ C . 
t—s— , S g g 

For : f G(x)dx - (/ G(x)dx - / G(x)dx ) = £ C g(t) - ̂  C g ( s ) , 
1 f* 

where we define, as in (13), C (t) = — J G(x)dx ; 
CJ t * o 

whence : J L fGix)dx = - J — c G ( t ) - \ . ^ C G ( . ) ; 
o 

since s/t ̂  o and C^(s)~ is finite, we cancel the second term on the right 
and we get : 

\ G(s)dx * C (t) * C . 
s 

Summarizing : 
ft 
J F,(TT(x) + F2(U(x)).G(x)dx * (t-s) ( F , ( V ) + F 2 ( V ) . C G ) . 
s 
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Plugging this back into (15) we obtain 

(17) V(t) - V(S) * ( t-s). (Fj(V) + F2(V).C ). 

By (14,a), V(t) - V ( s ) * 0. 

Vhence (17) becomes : 

0 <5 (t-s).(F1(V) + F2(V).C ) 

and (t-s) being infinite V satisfies 

F (V) + F 0(V). C * 0 . 
1 2 g 

Taking the standard parts we obtain : 

(18) fj(v) + f2(v).C = 0 . 

IV - LIMITING STATE PROBABILITY DISTRIBUTION FOR QUEUING SYSTEMS WITH 
INTERMITTENT SERVERS, 

In what follows one assumes that each server has a time characteristic 
function g(t) as represented in fig. 1 satisfying : 

1 ( l 

lim - g(x)dX = C < oo . 
t J 2 

The above condition is the one used in the previous section. It guarantees 
that the systems of section I and II, for instance if they have limiting state 
distributions, then these are the same as the limiting state distributions for : 

(6') | J = A(Z-I) P(Z,t) + peg < i - 1) (P(Z,t) - P(o,t)) 

or 

( I D v p ) + V p ) - V 
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a) SINGLE SERVER. 

The limiting state probability distribution of the single server is the 
solution of : 

(6") A(Z-l) P(Z,t) + yC g 1) (P(Z,t) - P(o,t)) = o. 

Using the normalization condition p . (1) = 1, (6fl) yields. 
LJ L I B 

(19) Pt . (Z) = 4^ . P = - s - • 
Lim v 1-Zpg yg yC 

That is 

( 2 0 ) P L i m ( K ) = ( WP8>P^ K • 

As expected the utilization factor is adjusted from the classical single 
server, for wasted time : c is the limiting value of the ratio : 

working time/total time. 

Indeed c < 1 =^ p £.A/y. This represents an increase in the business of 

the server : to serve the same number of customers in less real time, the 
server will have to be busy more often. 

b) NETWORKS, JOB-SHOP-LIKE SYSTEMS. 

The equilibrium of the system with groups of mutually exclusive servers, 
if any, will be identical to the one of the system obtained by substituting 
Cg^ to g n(X). In order words, this solution is the solution given in ref (1) 
using for service rates, instead of y(n,Kn), the real rates u(n,Kn)Cgn. 

K-l 
Let W(K) = n Mi ) for K - o,l,2,... 

i=o 
P Kn . . ^ 

cor(K) = n II n ( , V ™ ) for K=K.,...,K , 
i=o n€G. j-1 ^ n ' J > C 8 n

 1 n ^ 

T r(K) = I u (k) k = o,l,2,... , 
G S(k)=K G 
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n = TT/TIN rv / T /N if sum converges and II r = o otherwise . 
G w(K) t Q V K ) ^ 

K=o 

Then if Jln > o, a unique equilibrium exists and is given by 

(21) P Lim (^ = V G ^ W ( S ( ^ ) ) -
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