Nouvelles annales de mathématiques

Léopold Brasseur

Note sur une propriété de l'ellipse

Nouvelles annales de mathématiques 2^e *série*, tome 3 (1864), p. 111-116

http://www.numdam.org/item?id=NAM 1864 2 3 111 1>

© Nouvelles annales de mathématiques, 1864, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NOTE SUR UNE PROPRIÉTÉ DE L'ELLIPSE;

PAR M. LÉOPOLD BRASSEUR, Docteur ès Sciences physiques et mathématiques, Répétiteur à l'École des Mines de Liége.

I. Les bissectrices des angles que les deux rayons vecteurs d'un point quelconque de l'ellipse font avec le grand axe se compent sur la perpendiculaire élevée à l'extrémité du demi grand axe positif.

^(*) Voyez le beau Mémoire sur les courbes à double courbure du troisième ordre, que M. Chasles a inséré dans le tome XLV des Comptes rendus de l'Académie des Sciences. Voyez aussi, dans le t. Ier, 2e série, des Nouvelles Annales de Mathématiques, un savant travail de M. Cremona sur quelques parties du même sujet. Ce sont deux belles applications des méthodes fécondes de la Géométrie pure.

Les bissectrices des suppléments des mêmes angles se coupent sur la perpendiculaire élevée à l'extrémité du demi grand axe négatif.

Démonstration. — x', y' étant les coordonnées d'un point n pris sur l'ellipse dont a et b sont les demi-axes principaux, on a

(1)
$$a^2y'^2 + b^2x'^2 = a^2b^2.$$

En désignant par 2α , $2\alpha'$, les angles que les deux rayons vecteurs du point n font avec le grand axe, on a, en posant $a^2 - b^2 = c^2$,

tang 2
$$\alpha = \frac{y'}{x'-c}$$
,

et en changeant +c en -c,

tang
$$2\alpha' = \frac{y'}{x'+c}$$
.

Les valeurs de tang 2α et de tang $2\alpha'$ fournissent celles de tang α et tang α' par la formule connue de Trigonométrie

$$\tan \alpha = \frac{-1 + \sqrt{1 + \tan^2 2\alpha}}{\tan 2\alpha}.$$

Substituant la valeur de tang 2 a dans cette égalité, on a

$$tang \alpha = \frac{1}{\gamma'} \left[-(x'-c) + \sqrt{x'^2 + y'^2 - 2 c x' + c^2} \right].$$

Si dans cette expression on remplace y'^2 par sa valeur tirée de l'équation (1), afin d'exprimer que le point n appartient à l'ellipse, on trouvera que la quantité sous le radical devient un carré parfait en y faisant $a^2 - b^2 = c^2$, et l'on aura

(2)
$$\tan \alpha = \frac{a - x'}{ay'}(a + c),$$

et en changeant + c en - c,

(3)
$$\tan \alpha' = \frac{a-x'}{ay'}(a-c).$$

Actuellement, les équations des deux bissectrices seront

L'élimination de y entre ces deux équations donne, pour l'abscisse du point d'intersection des deux bissectrices:

(6)
$$x = c \cdot \frac{\tan \alpha + \tan \alpha'}{\tan \alpha - \tan \alpha'}$$

Or, d'après les équations (2) et (3), on trouve

$$\frac{\tan \alpha \alpha + \tan \alpha'}{\tan \alpha \alpha - \tan \alpha'} = \frac{a}{c},$$

et l'équation (6) devient

$$x = a$$
.

Cette valeur de x étant indépendante des coordonnées du point particulier n pris sur l'ellipse, il s'ensuit que l'équation x=a, qui représente une perpendiculaire élevée à l'extrémité du demi grand axe positif, est celle du lieu géométrique mentionné à l'énoncé.

Comme la bissectrice d'un angle est perpendiculaire à la bissectrice du supplément de cet angle, il en résulte qu'on obtient le lieu géométrique dont il est fait mention à la seconde partie de l'énoncé, en remplaçant dans l'équation (6) tang α et tang α' respectivement par $-\frac{1}{\tan g \alpha}$ et $-\frac{1}{\tan g \alpha'}$, ce qui donne pour le lieu cherché

$$x=-a$$
. C. Q. F. D. Ann. de Mathémat., 2^c série, t. III. (Mars 1864.)

Remarque. — Le changement de $+b^2$ en $-b^2$ conduisant aux mêmes résultats, la propriété démontrée convient également à l'hyperbole.

Puisque la bissectrice d'un angle est perpendiculaire à la bissectrice du supplément de cet angle, on déduit aisément du théorème qui précède le corollaire :

Corollaire. — Si deux angles droits tournent chacun autour de son sommet supposé fixe, de manière que le point d'intersection de deux de leurs côtés décrive une droite perpendiculaire à la droite qui unit les sommets des deux angles, le point d'intersection des deux autres côtés décrira une droite parallèle à la première. Les deux droites ainsi décrites seront à égale distance du milieu de la droite qui unit les deux sommets.

II. La tangente en un point quelconque de l'ellipse et les bissectrices des angles que les deux rayons vecteurs de ce point font avec le grand axe se coupent sur la perpendiculaire élevée à l'extrémité du demi grand axe positif.

La tangente et les bissectrices des suppléments des mêmes angles se rencontrent sur la perpendiculaire élevée à l'extrémité du demi grand axe négatif.

Démonstration. — En effet, si dans l'équation de la tangente au point x', y' on fait x = a, on trouve

$$y = \frac{b^2(a-x')}{a \, \gamma'},$$

et si dans l'équation (4) ou (5) de l'une ou de l'autre des bissectrices on pose x = a, on a dans les deux cas :

$$y = \frac{(a^2 - c^2)(a - x')}{ay'} = \frac{b^2 \cdot (a - x')}{ay'},$$

valeur identique à la précédente. Donc, etc.

On démontrerait la seconde partie de l'énoncé en opérant de la même manière sur les équations des bissectrices des suppléments des angles en question. c. Q. F. D.

Corollaire I. — La tangente en un point quelconque de l'ellipse et la bissectrice de l'angle que l'un des deux rayons vecteurs de ce point fait avec le grand axe se coupent sur la perpendiculaire élevée à l'extrémité du demi grand axe positif.

La tangente et la bissectrice du supplément du même angle se coupent sur la perpendiculaire élevée à l'extrémité du demi grand axe négatif.

Corollaire II.—Si un angle droit, dont le sommet coïncide avec l'un des foyers d'une ellipse, tourne autour de ce foyer supposé fixe, les deux côtés de l'angle rencontrent respectivement les perpendiculaires élevées aux extrémités du grand axe, en deux points tels, que la droite qui les unit est tangente à l'ellipse.

Corollaire III. — Si un angle droit tourne autour de son sommet supposé fixe, ses côtés rencontrent respectivement deux droites parallèles situées de part et d'autre de ce sommet en deux points tels, que la droite qui les unit est tangente à une même ellipse dont un des foyers coïncide avec le sommet de l'angle, et dont le grand axc est égal à la distance entre les deux parallèles.

III. Soient donnés deux faisceaux de rayons, ayant respectivement pour centres les points f et f' et se rencontrant deux à deux sur une droite D, perpendiculaire à la droite ff' qui unit les deux centres. En considérant deux rayons quelconques qui se coupent sur la droite D, si l'on fait tourner chacun d'eux autour de son centre jusqu'à ce que l'angle qu'il fait actuellement avec la droite ff' soit doublé, les deux rayons dans leur nouvelle position

se couperont sur une courbe du second degré, ayant pour foyers les centres des deux faisceaux et pour demi grand axe la distance du milieu de la droite ff' à la droite D.

Pour démontrer cette propriété, réciproque du théorème I, supposons la droite D située au delà des deux centres fixes f et f'. Considérons en outre l'ellipse ayant pour foyers les centres f et f', et pour demi grand axe la distance du milieu de la droite ff' à la droite D.

En construisant: 1° les deux rayons vecteurs d'un point quelconque n de cette ellipse; 2° les bissectrices des angles que ces deux rayons vecteurs font avec le grand axe, ces deux bissectrices se couperont en vertu du théorème I sur la droite D. D'autre part, si on fait tourner chaque bissectrice passant par un foyer autour de ce dernier jusqu'à ce que l'angle de la bissectrice avec le grand axe soit doublé, les deux bissectrices dans leur nouvelle position coïncideront avec les deux rayons vecteurs du point n et par suite se couperont sur l'ellipse proposée. c. Q. F. D.

Remarque. — Cette propriété permet de transformer une droite en une ellipse, et dans cette transformation il existe cette relation entre un point de la droite et le point correspondant sur l'ellipse, que la droite qui les unit est tangente à l'ellipse.