D. W. Masser

On quasi-periods of abelian functions with complex multiplication

Mémoires de la S. M. F. 2e série, tome 2 (1980), p. 55-68

<http://www.numdam.org/item?id=MSMF_1980_2_2__55_0>
1. INTRODUCTION

Let \mathcal{L} be an algebraically presented lattice in \mathbb{C}^2 in the sense of [6], and let $\theta_0(z), \ldots, \theta_n(z)$ be theta functions on \mathbb{C}^2 which give an analytic isomorphism from the torus \mathbb{C}^2/\mathcal{L} to an abelian variety A in projective space. As in [6], we may suppose that $\theta_0(0) \neq 0$ and that the quotients $f_1(z) = \theta_1(z)/\theta_0(z)$ $(1 \leq i \leq n)$ are abelian functions whose Taylor expansions about $z = 0$ have algebraic coefficients. Let $g = g(z)$ be a quasi-periodic function in the sense of [5], analytic at $z = 0$, whose Taylor expansion about $z = 0$ also has algebraic coefficients. Thus the quasi-periods

\[\eta(g, \omega) = g(z + \omega) - g(z) \]

are independent of z for each ω in \mathcal{L}. The main result of [5] states that if A is simple, g is not abelian, and ω is non-zero, then $\eta = \eta(g, \omega)$ is transcendental.
The methods of [5] can also be used in a much easier way to prove that $\eta + \alpha \tau$ is either zero or transcendental for any algebraic number α. Presumably $\eta + \alpha \tau$ is in fact always transcendental in these circumstances. However, not even the analogue [4] of this result for the product of two elliptic curves has been proved in general. In this paper we resolve the problem when A has many complex multiplications in the sense of [6] and [7]. We prove the following theorem.

Theorem: Suppose A is simple and has many complex multiplications. Then if g is not abelian and ω is non-zero, the number $\eta(g, \omega) + \alpha(2\pi i)$ is transcendental for any algebraic number α.

From the example given in [5] it is easy to deduce the following linear independence property of special values of the classical beta function $B(x,y)$. This answers a question raised in [5].

Corollary: As r, s run over all positive integers the numbers $B(r/5, s/5)$ span a vector space of dimension 6 over the field of algebraic numbers.

Another consequence, obtained by taking g as a linear function, is the transcendence in dimension 2 of the expressions $p(t, \phi)$ introduced by Shimura in his study [8] of algebraic relations between periods. The corresponding result in dimension 1 follows from the classical theorems of Schneider.

The proof of our Theorem relies on some distribution properties of certain division fields associated with A. These will be discussed in the next section. After that we shall give the main transcendence proof. But first we set up some preliminaries.

Using elementary specialization arguments on Fourier series, it is not too difficult to establish the existence of a theta function $\theta(z)$ with $\theta(0) \neq 0$, non-degenerate in the sense of [9], whose Taylor expansion about $z = 0$ has coefficients in an algebraic number field. This will be convenient (but not essential) for later use. We shall assume that the endomorphism ring of A is isomorphic to the ring of integers \mathbb{O} of a totally imaginary quadratic extension K of a real quadratic field K. This assumption involves no loss of generality, as we can always replace \mathcal{E} by an isogenous lattice (cf. [7] p.59). After strongly normalizing [2], we obtain embeddings φ_1, φ_2 of K into \mathbb{C}, inducing different embeddings of K_0 into \mathbb{C}, such that for any σ in \mathcal{O} the corresponding endomorphism is represented in \mathbb{C}^2 by mapping $z = (z_1, z_2)$ to $\varphi z = (\varphi_1 z_1, \varphi_2 z_2)$. From now until the end of section 2 we fix an algebraic number field F, containing all the conjugates of K, such that the Taylor expansions of $f_1(z), \ldots, f_n(z)$ and $\theta(z)$...
about \(z = 0 \) have coefficients in \(F \).

Next, we suppose \(f_1(z), \ldots, f_n(z) \) to have been replaced by sufficiently general linear combinations of themselves with coefficients in \(F \). This preserves the embedding property into projective space, and allows us to assume the following additional facts. Firstly, the Jacobian matrix of \(f_1(z), f_2(z) \) at \(z = 0 \) is non-singular, so that in particular these functions are algebraically independent, and secondly, the functions \(f_1(z), \ldots, f_n(z) \) are all integral over the ring \(F[f_1(z), f_2(z)] \) (cf. [3] p.5, Remark 2.7).

Finally, we fix throughout the paper elements \(a_1, a_2, a_3, a_4 \) of an integral basis of \(K \) over the rational field \(\mathbb{Q} \), and if \(d \) is the discriminant of \(K \), we put \(a_0 = \sqrt{d} \). For \(\alpha \) in \(K \) we denote by \(\text{Tr}(\alpha), N(\alpha) \) the trace and norm respectively of \(\alpha \) from \(K \) to \(\mathbb{Q} \). We write \(\varphi = (\varphi_1, \varphi_2) \), and we multiply vectors of \(\mathbb{C}^2 \) componentwise, as in [6].

2. DIVISION FIELDS

For a prime \(\ell \geq 2 \) we define \(F_{\ell} \) as the field generated over \(F \) by the numbers \(f_i(\omega/\ell) \) \((1 \leq i \leq n) \) as \(\omega \) runs over all periods of \(\ell \) such that \(\theta_0(\omega/\ell) \neq 0 \). It is easily seen that \(F_{\ell} \) is a Galois extension of \(F \). It is known from class field theory and the results of [7] that for all sufficiently large \(\ell \) the field \(F_{\ell} \) contains \(M_{\ell} = F(e^{2\pi i/\ell}) \) and has degree at most \(c_0 \ell^3 \) for some \(c \) independent of \(\ell \). In fact it is convenient for us to derive elementary proofs of these statements in the course of obtaining the required distribution properties of \(F_{\ell} \).

We shall also need the less elementary fact that the degree of \(F_{\ell} \) exceeds \(c' \ell^3 \) for some \(c' > 0 \) independent of \(\ell \). During the conference Professor Shimura showed me how to deduce this from the results of [7], and I am grateful for his permission to include a sketch of the proof in the Appendix to this paper.

In the proofs of the following two lemmas, we shall ignore problems arising from zero denominators; they can be dealt with by standard tricks as in [5].

Lemma 1 : Let \(\ell \) be sufficiently large. Then \(F_{\ell} \) contains \(M_{\ell} \).

Proof : We use an analytic representation of the Weil-pairing. Consider the function
It is readily checked that \(\psi(\xi_1, \xi_2) \) is an abelian function in each variable separately when the other variable is held fixed. It follows (as in [9] pp. 94-96) that \(\psi(\xi_1, \xi_2) \) is a rational function of \(f_1(\xi_1), \ldots, f_n(\xi_1) \) and \(f_1(\xi_2), \ldots, f_n(\xi_2) \). Moreover the coefficients of this rational function can be supposed to lie in \(F \).

Let \(E(\xi_1, \xi_2) \) be the Riemann form associated with \(\theta(z) \) (see [7] p. 20).

We easily verify that

\[
\psi(\omega_1/\ell, \omega_2/\ell) = \exp\left(2\pi i E(\omega_1, \omega_2)/\ell \right)
\]

for any \(\omega_1, \omega_2 \) in \(L \). Now \(E(\xi_1, \xi_2) \) is integer-valued on the product \(L \times L \), and we may fix \(\omega_1, \omega_2 \) such that \(E(\omega_1, \omega_2) \neq 0 \). Then (2) implies that \(e^{2\pi i/\ell} \) lies in \(F_{\ell} \) for all \(\ell \) sufficiently large. Hence Lemma 1 is proved.

Next let \(\Gamma_{\ell} \) be the Galois group of \(F_{\ell} \) over \(F \). For all \(\ell \) sufficiently large, there is a standard homomorphism \(\rho \) from \(\Gamma_{\ell} \) to the multiplicative group of \(F_{\ell}^* \). This is defined by the property that for \(\psi \) in \(\Gamma_{\ell} \) and any \(\sigma \) in \(I \) corresponding to \(\rho(\psi) \) we have (cf. [7] p. 63 or the Appendix to [1])

\[
(f_1(\omega/\ell))^{\psi} = f_1(\sigma, \omega/\ell) \quad (1 \leq i \leq n)
\]

for any of the generators of \(F_{\ell} \). Whenever \(F_{\ell} \) contains \(M_{\ell} \), we write \(\Delta_{\ell} \) for the Galois group of \(F_{\ell} \) over \(M_{\ell} \).

Lemma 2 : Let \(\ell \) be sufficiently large. Then for any \(\sigma \) in \(I \) corresponding to an element of \(\rho(\Delta_{\ell}) \) we have

\[
\sigma_1 \sigma_1^{-1} = \sigma_2 \sigma_2^{-1} \equiv 1 \pmod{\ell}.
\]

Proof : Let \(\psi \) be an element of \(\Delta_{\ell} \), and let \(\sigma \) in \(I \) correspond to \(\rho(\psi) \). Applying \(\psi \) to (2) and taking into account the equations (3), we obtain

\[
\exp\left(2\pi i E(\omega_1, \omega_2)/\ell \right) = \exp(2\pi i E(\omega_1, \omega_2)/\ell).
\]
QUASI-PERIODS OF ABELIAN FUNCTIONS

It follows that

\[E(\psi_1, \psi_2) \equiv E(\omega_1, \omega_2) \pmod{\ell} \]

for all \(\psi_1, \psi_2 \) in \(\mathcal{L} \).

Next, fix any \(\psi \neq 0 \) in \(\mathcal{L} \). Then according to [7] (Theorem 4, p.48) there exists \(\zeta \) in \(\mathcal{K} \) with \(\zeta = -\zeta \) such that

\[E(\varphi_1, \varphi_2) = \text{Tr}(\zeta \sigma_1 \sigma_2) \]

for all \(\sigma_1, \sigma_2 \) in \(\mathcal{I} \). We deduce that

\[E(\varphi_1, \varphi_2) = \kappa (\sigma_1 \sigma_2 - \sigma_1 \sigma_2) \]

where

\[\kappa = \kappa(\sigma_1, \sigma_2) = \zeta(\sigma_1 \sigma_2 - \sigma_1 \sigma_2). \]

Now the left hand side of (6) is not identically zero in \(\sigma_1, \sigma_2 \), and hence we may fix \(\sigma_1, \sigma_2 \) in \(\mathcal{I} \) such that \(\kappa \neq 0 \). Put \(\varphi_1 = \varphi_1 \varphi_2 = \varphi_2 \) in (5); then by (6)

\[\kappa \sigma_1 \sigma_2 + \kappa \sigma_1 \sigma_2 \equiv \kappa \sigma_1 \sigma_2 \pmod{\ell}. \]

But with \(\alpha_0 \) as in section 1, we have \(\alpha_1 = -\alpha_2 \) and \(\kappa(\sigma_1, \sigma_2) = \alpha_0 \kappa(\sigma_1, \sigma_2). \) Hence if we put \(\varphi_1 = \varphi_1 \varphi_2 = \varphi_2 \) in (5), we obtain

\[\alpha_0 (\kappa - \kappa) \equiv \alpha_0 (\kappa - \kappa) \pmod{\ell}. \]

From (7) and (8) we deduce the congruences (4) of Lemma 2, provided \(\ell \) is sufficiently large.

Lemma 3 : Let \(\ell \) be sufficiently large, and let \(\delta \) in \(\mathcal{I} \) be prime to \(\ell \). Then there are at most 4 elements \(\sigma \pmod{\ell} \) of \(\mathcal{I} \) such that both \(\sigma \) and \(\sigma + \delta \) correspond to elements of \(\rho(\Delta_\ell) \).
Proof: If \(g \) is sufficiently large and \(\sigma, \sigma + \delta \) both correspond to elements of \(P(A) \) then from Lemma 2 we have

\[
(\sigma + \delta)^{\Phi_1} (\sigma + \delta)^{-\Phi_1} \equiv (\sigma + \delta)^{\Phi_2} (\sigma + \delta)^{-\Phi_2} \equiv 1 \pmod{\ell}
\]

as well as (4). It follows after a simple calculation that \(x = \sigma^\Phi_1 \) satisfies the congruence

\[
\delta x^2 = (\sigma + \delta)^{\Phi_1} (\sigma + \delta)^{-\Phi_1} \equiv 0 \pmod{\ell}.
\]

Let \(\mathfrak{p} \) be any prime ideal divisor of \(\ell \) in the Galois closure of \(K \). Since \(\delta \) is prime to \(\ell \) and therefore to \(\mathfrak{p} \), (10) shows that there are at most 2 possibilities for \(\sigma \pmod{\mathfrak{p}} \). Each of these determines at most one possibility for \(\delta \pmod{\mathfrak{p}} \), by (4). A similar argument works for \(\sigma^\Phi_2 \) and \(\delta^\Phi_2 \), and we conclude that there are at most 4 possibilities \(\pmod{\mathfrak{p}} \) for the quadruple \((\sigma, \delta, \sigma^\Phi_1, \delta^\Phi_1) \).

However, we have \(\sigma = s_1 \alpha_1 + s_2 \alpha_2 + s_3 \alpha_3 + s_4 \alpha_4 \) for rational integers \(s_1, s_2, s_3, s_4 \), and these rational integers can be expressed as fixed linear forms in the conjugates \(\sigma, \delta, \sigma^\Phi_1, \delta^\Phi_1 \) of \(\sigma \). If \(\ell \) is sufficiently large we deduce that there are at most 4 possibilities \(\pmod{\mathfrak{p}} \) for the quadruple \((s_1, s_2, s_3, s_4) \), and therefore at most 4 possibilities \(\pmod{\ell} \). This implies Lemma 3.

The main result of this section can now be proved. It gives a distribution property of the set of \(g = (\sigma, \delta) \) in \(\mathbb{Z}^2 \) for \(\sigma \) in \(I \) corresponding to elements of \(\rho(\Delta^\ell) \).

Proposition: Let \(\ell \) be a sufficiently large prime which does not split in the quadratic field \(K_0 \). Then there exist positive constants \(c, c', c'' \) independent of \(\ell \) such that

1. The field \(\mathbb{F}_\ell \) has degree at most \(c\ell^{3/2} \),
2. There is a subset \(D_\ell \) of \(\Delta^\ell \), containing at least \(c' \ell^2 \) elements, such that for any distinct elements \(\sigma_1, \sigma_2 \) in \(I \) corresponding to elements of \(\rho(D_\ell) \) we have

\[
|g_1 - g_2| \geq c'' \ell^{1/2}.
\]

Proof: Let \(c_1, c_2, \ldots \) denote positive constants independent of \(\ell \). We give first the proof of (i), which does not use class field theory or the results of [7].

For \(x > 0 \) let \(I(x) \) be the set of elements \(\delta \) of \(I \) with \(0 < |\delta| < x \); clearly \(I(x) \) contains at most \(c_1 x^4 \) elements. Now every element \(\delta \) of \(I(\ell^{1/2}) \) is prime to
QUASI-PERIODS OF ABELIAN FUNCTIONS

\[|N(\delta)| = |O_1^2 \delta^2 O_2^2 \delta^2| = 16^2 |\delta|^2 < \ell^2, \]

and the splitting assumption on \(\ell \) implies that every prime ideal factor of \(\ell \) has absolute norm \(\ell^2 \) or \(\ell^4 \). Select \(\lambda \) with \(0 < \lambda < 1 \) arbitrarily for the moment; \(\lambda \) will be specified later during the proof of (ii). Consider the integers

\[\delta = s_1 a_1 + s_2 a_2 + s_3 a_3 + s_4 a_4 (0 < s_1, s_2, s_3, s_4 < \ell) \]

which correspond to elements of \(\rho(\Delta_\ell) \); their number is exactly the cardinality of \(\Delta_\ell \). For each \(\delta \) in \(I(\lambda \ell^{1/2}) \) delete all the \(\sigma \) such that \(\sigma + \delta \) also corresponds to an element of \(\rho(\Delta_\ell) \). By Lemma 3, we delete altogether at most \(4c_1 \lambda^2 \ell^2 \) integers. The remaining integers (if any) correspond to a subset \(\Delta_\ell \) (possibly empty) of \(\Delta_\ell \), and clearly (11) holds with \(c'' = \lambda \) for any distinct \(\sigma_1, \sigma_2 \) remaining. A simple geometric argument now shows that \(\Delta_\ell \) contains at most \(c_2 \lambda^{-4} \ell^2 \) elements.

Hence \(\Delta_\ell \) contains at most \(4c_1 \lambda^4 \ell^2 + c_2 \lambda^{-4} \ell^2 \) elements, which implies (i), since \(\Xi_\ell \) has degree at most \(c_3 \ell \).

To verify (ii) we recall that the degree of \(F_\ell \) exceeds \(c_4 \ell^3 \) (see Appendix), and therefore \(\Delta_\ell \) contains at least \(c_5 \ell^2 \) elements. Hence, choosing \(\lambda \) above as the largest number with \(4c_1 \lambda^4 < \frac{1}{2} c_5 \), we see that \(\Delta_\ell \) is left with at least \(\frac{1}{2} c_5 \ell^2 \) elements. This completes the proof of the Proposition.

The Proposition continues to hold even when \(\ell \) splits in \(K_0 \), but then the proof is more elaborate. As we do not need the full result, we omit the details. We end by remarking that the estimate (11) is best possible for any set \(\Delta_\ell \) containing at least \(c' \ell^2 \) elements.

3. THE AUXILIARY FUNCTION

We return now to the situation in section 1. We suppose \(\alpha \) and

\[\beta = \eta(g, \omega) + \alpha(2\pi i) \]

are algebraic for \(g, \omega \) as in the Theorem, and we shall eventually deduce a contradiction. We may assume that the field \(F \) of sections 1 and 2 contains \(\alpha, \beta \) and the coefficients in the Taylor expansion of \(g(z) \) about \(z = 0 \). Recall from [6] that \(2/2z_1, 2/2z_2 \) map the ring

\[R = F [f_1(z), \ldots, f_n(z)] \]

into itself. Since \(2g/2z_1, 2g/2z_2 \) are abelian functions analytic at \(z = 0 \), there exists \(h \) in \(R \), with \(h(0) \neq 0 \), such that \(2g/2z_1, 2g/2z_2 \) lie in \(R \). Putting \(f_n+1(z) = (h(g))^{-1} \), it is easily verified that the ring generated over \(F \) by the functions

\[f_1(z), \ldots, f_n(z) \]
is mapped into itself by $3/3z_1$, $3/3z_2$ and $3/3z_3$. Also the argument of Lemma 2.1 of [5] shows that for some integer $p > 1$ the function $\chi(z) = h(z)(\theta_0(z))^p$ is a theta function whose product with any of the functions (12) is entire.

For a large parameter k write

$$L = \lfloor k^{4/5} \rfloor, \quad S = \lfloor k^{1/10} \rfloor,$$

and let c_1, c_2, \ldots denote positive constants independent of k.

Lemma 4: There exists a non-zero polynomial P of degree at most L in each variable, whose coefficients are rational integers of absolute values at most $\frac{c_1}{k}$, such that for each positive integer $s < S$ the function

$$\phi(z, z_3) = P(f_1(z), f_2(z), e^{z_3}, g(z) + az_3)$$

has a zero of order at least k at $(z, z_3) = s(\omega, 2\pi i)$.

Proof: This is routine. Compare the proof of Lemma 5.1 of [5], and note that when $(z, z_3) = s(\omega, 2\pi i)$ for an integer s, we have

$$g(z) + az_3 = g(0) + s\beta.$$

Next, we need a simple inequality for the absolute height function H defined on the field of algebraic numbers (see [10], § 1.1 for the definition of the logarithm of H). Let $Q(X_1, \ldots, X_q)$ be a polynomial of degree at most L in X_i $(1 \leq i \leq q)$, with rational integer coefficients of absolute values at most U, and for algebraic numbers β_1, \ldots, β_q put $\gamma = Q(\beta_1, \ldots, \beta_q)$. Then by estimating separately at each valuation we obtain

$$H(\gamma) \leq U \prod_{i=1}^{q} \left(L_i + 1 \right)^L.$$

Lemma 5: Let ℓ be a sufficiently large prime, and for positive integers $r < \ell$ and s put $t = s + r/\ell$. Then the functions (12) are analytic at $(z, z_3) = t(\omega, 2\pi i)$, and their values at this point lie in F_ℓ and have absolute heights at most $\frac{c_2}{s}$.

62
QUASI-PERIODS OF ABELIAN FUNCTIONS

Proof: Analyticity follows as on p.247 of [5], since \(\chi(0) \neq 0 \). The corresponding values of all the functions in (12), except possibly the last, lie in \(F_p \) by Lemma 1, and their absolute heights are at most \(c_3 \) by well-known properties of the Néron-Tate height on \(A \) (cf. [2] p.307). We deal with the remaining function as in [5] by noting that \(f(z) = g(2z) - 2g(z) \) is a rational function of \(f_1(z), \ldots, f_n(z) \) with coefficients in \(F \). If \(m = 2^{-1} - 1 \), the proof of Lemma 3.5 of [5] shows that

\[
\begin{align*}
m(g(t^w) - tn) &= m(g(t^w/x) - rn/x) = - \sum_{i=0}^{l-2} 2^{l-2-i} \beta_i, \\
\end{align*}
\]

where

\[
\beta_i = f(z^{i} t^w/x) \quad (0 \leq i \leq l - 2).
\]

Hence \(\epsilon = g(t^w) + at(2\pi i) \) satisfies

\[
\begin{align*}
m\epsilon &= m(sk + r) - \sum_{i=0}^{l-2} 2^{l-2-i} \beta_i, \\
\end{align*}
\]

and so lies in \(F_p \). Again we have \(H(\beta_i) \leq c_4 \) \((0 \leq i \leq l - 2) \) and so from (13) with \(q = l \) we deduce \(H(m\epsilon) \leq c_5 \)’s. This immediately gives the desired estimate for \(H(\epsilon) \), and completes the proof of Lemma 5.

We can now carry out the extrapolation on division values. Let \(C \) denote any absolute constant.

Lemma 6: Let \(i \) be an integer with \(0 \leq i \leq C \), let \(l \leq s^{1/8} \) be a sufficiently large prime which does not split in \(K_0 \), and for positive integers \(r \leq l \) and \(s \leq s^{1+(1/4)} \), let \(t = s + r/x \). Then \(\Phi(z, z_3) \) has a zero of order at least \(k/2 \) at \((z, z_3) = t(w, 2\pi i) \).

Proof: If \(i \leq C \) is the first positive integer (if any) for which the lemma is false, there is a differential operator \(D \) of minimal order at most \(k/2 \) such that

\[
\begin{align*}
\xi = D \Phi(t^w, t(2\pi i)) \neq 0
\end{align*}
\]

for some \(t \) as in the lemma. Since the rational primes which do not split in \(K_0 \) have density \(1/2 \), the number of such primes not exceeding \(s^{(i-1)/8} \) is at least \(c_6 s^{(i-1)/8} / \log k \). The maximum modulus principle then gives

\[
\log |\xi| \leq -c_7 k s^{(i+1)/2} / \log k.
\]
But $D \phi (g, z_3)$ is a polynomial in the functions (12) of total degree at most $c_9 k$. Using (13) and the standard estimates for its coefficients, we deduce from Lemma 5 that

$$\log H(\xi) < c_9 k \log k + c_9 k (g + \log s) < c_{10} k s^{1/8}.$$

Again by Lemma 5 we see that ξ lies in F_1, and so by (i) of the Proposition its degree is at most $c_{11} \xi^3$. This leads to

$$\log |\xi| > -c_{12} k \xi^3 s^{1/8} > -c_{12} k s^{1/2}.$$

This contradicts (14) and thereby proves Lemma 6.

At this point let us remark that it is possible to deduce a final contradiction from Lemma 6 by purely analytic methods involving diophantine approximation. This approach does not use the result (ii) of the Proposition. In this way we can obtain a proof of the Theorem independent of class field theory and the results of [7].

4. COMPLETION OF THE PROOF

We fix a prime ℓ satisfying

$$k^2 < \ell < 2k^2$$

which does not split in K. We begin by eliminating $g(z) + g_{z_3}$ from the auxiliary function.

Lemma 7: There is a non-zero polynomial Q of degree at most $M < c_{13} L^2$ in each variable, with coefficients in F, such that for each positive integer $r < \ell$ the function

$$\psi(z, z_3) = Q(f_1(z), f_2(z), e^{z_3})$$

has a zero at $(z, z_3) = (r/\ell) (0, 1, 0, 1)$.

Proof: The functions $f_1(z), f_2(z)$ and $g(z)$ are algebraically independent (cf. Lemma 2.3 of [5]), and it follows that $\phi(z, z_3)$ is not identically zero. An application of Lemma 6 of [4] immediately gives a polynomial Q^* of degree at most $c_{14} L^2$, with coefficients in F, such that the function

$$Q^*(z, z_3) = Q(f_1(z), f_2(z), e^{z_3})$$

has a zero at $(z, z_3) = (r/\ell) (0, 1, 0, 1)$.

64
QUASI-PERIODS OF ABELIAN FUNCTIONS

\[Q(f_1(z), \ldots, f_n(z), f_{n+1}(z), e^z) \]

is not identically zero but vanishes at the points where \(\phi(z, z_j) \) has a zero of order at least \(3L+1 \). In particular, by Lemma 6 above with \(C = 161 \), this function vanishes at the points specified in Lemma 7. There is now no difficulty in constructing the required polynomial \(Q \) by the method of Lemma 2.5 of [5], since the ring \(F[f_1(z), \ldots, f_n(z)] \) contains \((f_{n+1}(z))^{-1} \) and is integral over \(F[f_1(z), f_2(z)] \).

The final contradiction is obtained by using the Proposition together with well-known results on polynomials. We need first some preliminary remarks.

By the Jacobian condition on \(f_1(z) \) and \(f_2(z) \) at \(z = 0 \), we may fix a neighbourhood \(\mathcal{N} \) of \(z = 0 \) such that

\[(15) \quad |f(z_1) - f(z_2)| \geq c_{15}|z_1 - z_2| \]

holds for any \(z_1, z_2 \) in \(\mathcal{N} \), where \(f(z) = (f_1(z), f_2(z)) \). We recall the set \(D \) of the Proposition, and we let \(I_\kappa \) be the set of integers \(s = s_1a_1 + s_2a_2 + s_3a_3 + s_4a_4 \) (\(0 \leq s_1, s_2, s_3, s_4 \leq \kappa \)) corresponding to elements of \(p(D) \). Let \(\mathcal{B} \) be a compact set in \(\mathbb{C} \) containing all the corresponding points \(g_w/\kappa \). For any \(\mu > 1 \) we can cover \(\mathcal{B} \) with no more than \(c_{16} \mu^{-20} \) small balls of radius \(\mu^{-5} \). Since \(I_\kappa \) contains at least \(c_{17} \kappa^2 \) elements, there exists a subset \(J_\kappa \) of \(I_\kappa \), containing at least \(c_{18} \mu^{-20} \kappa^2 \) elements \(s \), such that the corresponding points \(g_w/\kappa \) all lie in the same ball, say \(\mathcal{B}_0 \). Let \(z_0 \) be the centre of \(\mathcal{B}_0 \). A less direct application of the Box Principle gives an integer \(r \) with \(1 \leq r \leq \mu^4 \) such that

\[(16) \quad |r z_0 - w_0| < c_{19} \mu^{-1} \]

for some period \(w_0 \) of \(\kappa \). It follows that for any \(z \) in \(\mathcal{B}_0 \) we have

\[|rz - w_0| < r |z - z_0| + c_{19} \mu^{-1} < c_{20} \mu^{-1} \]

We now fix \(\mu \leq c_{21} \) so large that (16) implies that \(rz - w_0 \) lies in \(\mathcal{N} \) for all \(z \) in \(\mathcal{B}_0 \). Hence by (15) and (11), we conclude that

\[|f(r z_1/\kappa) - f(r z_2/\kappa)| > c_{22} |z_1 - z_2|^{1/2} > c_{23} \kappa^{-1/2} \]
for any distinct σ_1, σ_2 in J.

We now return to Lemma 7. Since $M < c L^2$, $r < c_2$ and $k > k^2$, ordinary cyclotomy shows that the polynomial

$$R(X_1, X_2) = Q(X_1, X_2, e^{2\pi i/\theta})$$

is not identically zero. We have also

$$R(f_1(r\theta/\ell), f_2(r\theta/\ell)) = 0. \quad (18)$$

Let σ be an element of J, and apply the corresponding automorphism ψ of A to (18). Since ψ fixes $M = F(e^{2\pi i/\ell})$, we find using (3) that

$$R(f_1(r\theta/\ell), f_2(r\theta/\ell)) = 0. \quad (18)$$

Because J contains at least $c_{25} \ell^2$ elements, it follows from (17) and the usual estimates for zeroes of polynomials (e.g. Lemma 8 of [6]) that R is identically zero. This contradiction completes the proof of the Theorem.

APPENDIX

Lower bounds for degrees of division fields.

We prove here the main fact used in section 3, namely that the field F_ℓ has degree at least $c \ell^3$ for some $c > 0$ independent of ℓ. The proof is based on an argument shown to me by Shimura during the conference, and I am grateful for his permission to include it in this paper.

Since the abelian variety A is simple, the CM-type dual to $(K; \Phi_1, \Phi_2)$ has the same form $(K*, \Phi_1, \Phi_2)$ (see [7] section 8, and especially pp. 73, 74).

Fix $\omega \neq 0$ in L, and let $\bar{x} \equiv \omega/\ell$. If x is sufficiently large then $\theta_{0}(\bar{x}) \neq 0$ and \bar{x} is a proper D-section point of A in the sense of [7] (p.63), where D is the principal ideal of K generated by ℓ. We now appeal to the Main Theorem 2 of [7] (p.135, but see also p.118; this is where we need our hypothesis on the endomorphism ring of A). Using the basic properties of Kummer varieties and fields of moduli ([7] Proposition 16, p.30, and Theorem 2, p.28), it is not hard to see that our field F_ℓ contains the class field K_ℓ over K^* specified in Main Theorem 2. This corresponds to the ideal group H_ℓ of K^* defined (mod ℓ) as follows. The ideal \mathcal{O} of K^* prime to ℓ is in H_ℓ if and only if the ideal $\mathcal{O}_{\Phi_1} \mathcal{O}_{\Phi_2}$ of K is the principal ideal generated by an element μ of K such that $\mu \bar{\omega}$ is the absolute norm of \mathcal{O} and $\mu \equiv 1 \pmod{\ell}$.

66
Thus if G^* is the group of ideals of K^* prime to ℓ, the Galois group of K^* over K is isomorphic to G^*/H, and we proceed to show that the latter quotient has order at least $c' \ell^3$ for some $c' > 0$ independent of ℓ.

To each λ in I prime to ℓ we associate the principal ideal of K^* generated by λ^ℓ. This induces a homomorphism ϕ from the multiplicative group of $I/\ell I$ to G^*/H. It suffices to prove that the kernel $\ker(\phi)$ of ϕ has order at most $c''\ell$ for some c'' independent of ℓ. However, let λ in I prime to ℓ correspond to an element of this kernel. Then after an easy calculation (see [7] pp. 73,74) we find that the resulting element μ of K must be of the form $\epsilon\lambda N(\lambda)/\lambda^\ell$, where ϵ is a root of unity in K. Now there exists a positive integer $m < 12$ independent of ϵ such that $\epsilon^m = 1$, and we deduce that $\lambda^m(N(\lambda))^m = \lambda^m (mod \ell)$. This, together with its complex conjugate, implies that

$$\begin{align*}
(N(\lambda))^m &= (\lambda^\ell, \varphi_1, \varphi_2, \varphi_2^\ell)^{2m} = 1 (mod \ell),
\end{align*}$$

and also $\lambda^{2m} = \lambda^{2m} (mod \ell)$. Applying φ_1, φ_2 to the latter congruence, we obtain

$$\begin{align*}
(\lambda^{\ell^2})^{2m} &= (\lambda^{\varphi_1}, \varphi_2^{\ell^2})^{2m} = \lambda^{\varphi_1^{2m}}, \\
(\lambda^{\ell^2})^{2m} &= (\lambda^{\varphi_2^{\ell^2}}) = \lambda^{\varphi_2^{2m}} (mod \ell).
\end{align*}$$

Fix any integer r with $0 < r < \ell$, and let N be the number of integers $\lambda (mod \ell)$ in I, prime to ℓ, such that (19) and (20) hold as well as

$$\operatorname{Tr}(\lambda^{4m}) = (\varphi_1^{4m}) + (\lambda^{\varphi_1^{4m}}) + (\lambda^{2m})^4 + (\lambda^{\varphi_2^{4m}}) = r (mod \ell).$$

For any such λ, the number $x = (\lambda^{\varphi_1^{4m}})$ satisfies

$$2x^2 - rx + 2 = 0 \quad (mod \ell).$$

A simple counting argument, as in the proof of Lemma 3, now shows that $N < 2^{(4m)^4}$ for ℓ sufficiently large. It follows that in this case $\ker(\phi)$ contains at most $2^{(4m)^4\ell}$ elements, and this leads to the desired lower bounds for the degree of F_{ℓ}.

67
REFERENCES

