Goro Shimura

The periods of abelian varieties with complex multiplication and the spectral values of certain zeta functions

Mémoires de la S. M. F. 2e série, tome 2 (1980), p. 103-106

<http://www.numdam.org/item?id=MSMF_1980_2_2__103_0>
THE PERIODS OF ABELIAN VARIETIES WITH COMPLEX
MULTIPLICATION AND THE SPECIAL VALUES
OF CERTAIN ZETA FUNCTIONS

by

Goro SHIMURA

Let K be a CM-field of degree $2n$ and I_K the free \mathbb{Z}-module generated by all embeddings of K into \mathbb{C}. Given a CM-type $\varphi = \sum_{i=1}^{n} \tau_i$ of K, take a \mathbb{Q}-rational abelian variety of type (K, φ) and a \mathbb{Q}-rational holomorphic 1-form ω_i on A such that $\omega_i \cdot a = a_i^* \omega_i$ for all $a \in K$. As shown in [2, p.383], there is a non-zero complex number $p_K(\tau_i, \varphi)$ depending only on K, φ, and τ_i such that

$$[\pi.p_K(\tau_i, \varphi)]^{-1} \int_c \omega_i \in \overline{ \mathbb{Q} }$$

for every $c \in H_1(A, \mathbb{Z})$. The quantity $p_K(\tau_i, \varphi)$ can actually be chosen to be a positive real number; it is also given as the value of a certain \mathbb{Q}-rational (meromorphic) Hilbert modular form at a CM-point (see [2]). Now denote by ρ the complex conjugation, and put $\Gamma_K(\tau_i, \varphi) = p_K(\tau_i, \varphi)^{-1}$. Then we have
Theorem 1: If \(\varphi_1, \ldots, \varphi_m \) are CM-types of \(K \) and \(\tau \) is an embedding of \(K \) into \(\mathbb{C} \), the product \(\prod_{i=1}^m p_K(\tau, \varphi_i) \) with \(s_i \in \mathbb{Z} \), up to algebraic factors, depends only on \(\tau \) and \(\sum s_i \varphi_i \). Moreover, if \(L \) is a CM-field containing \(K \) and \(\psi \) is a CM-type of \(L \) whose restriction to \(K \) is \(\sum_s \varphi_s \), then the above product equals, up to algebraic factors, to \(\prod_{\sigma} p_L(\sigma, \psi) \), where \(\sigma \) runs over all embeddings of \(L \) into \(\mathbb{C} \), which coincide with \(\tau \) on \(K \).

The proof is given in [3]. To express this theorem in a different way, we consider two linear maps

\[
\text{Res}_{L/K} : I_L \mapsto I_K , \quad \text{Inf}_{L/K} : I_K \rightarrow I_L.
\]

Here \(\text{Res}_{L/K}(\sigma) \) is the sum of all restrictions of \(\sigma \) to \(K \); \(\text{Inf}_{L/K}(\tau) \) is the sum of all extensions of \(\tau \) to \(L \).

Theorem 2: The above \(p_K \) can be extended to a bilinear map of \(I_K \times I_K \) into \(\mathbb{C} \) with the following properties:

1) \(p_K(\alpha \beta) = p_K(\alpha, \beta \alpha) = p_K(\alpha, \beta)^{-1} \) for \(\alpha, \beta \in I_K \);

2) \(p_K(\alpha, \text{Res}_{L/K} \beta) = p_L(\text{Inf}_{L/K} \alpha, \beta), p_K(\text{Res}_{L/K} \beta, \alpha) = p_L(\beta, \text{Inf}_{L/K} \alpha) \) for \(\alpha \in I_K, \beta \in I_L \), and \(K \subseteq L \);

3) \(p_M(\gamma \alpha, \gamma \beta) = p_K(\alpha, \beta) \) if \(\gamma \) is an isomorphism of \(M \) onto \(K \).

Theorem 3: If \((L, \psi) \) is the reflex of \((K, \varphi) \), we have \(p_K(\alpha, \varphi) = p_L(\psi \alpha, \text{id}_L) \) for every embedding \(\sigma \) of \(K \) into \(\mathbb{C} \).

These theorems imply various algebraic relations among the periods. For example, we have:

\(104 \)
Theorem 4: For $\alpha \in I_K$, let $t(\alpha)$ denote the rank of the module $\sum_{\gamma \in \mathcal{C}} \mathbb{Z}\alpha\gamma$, where G is the Galois group over \mathfrak{q} of the Galois closure of K. If $\sum_{i=1}^{n} \tau_i$ is a CM-type of K, then for every $\beta \in I_K$, the module

$\{(e_1, \ldots, e_n) \in \mathbb{Z}^n \mid \prod_{i=1}^{n} p_K(\tau_i, \beta) e_i = 1\}$

has rank at least $n - t(\beta - \beta_0)$.

If β is a CM-type, we have $t(\beta - \beta_0) = t(\beta) - 1$. Theorems 2, 3 and 4 will be proved in [4].

The quantities p_K occur as the values of an L-function of a CM-field with an algebraic valued Hecke character of infinite order (see [1, Theorem 2]). As a new example of a zeta function whose values are given by p_K, we consider

$$D(s) = \sum_{\mathfrak{a} \in \mathcal{A}(A)} \mu(T\mathcal{K}/\mathbb{Q}(\mathfrak{a})) x^k |x^\tau|^{-2s} \quad (s \in \mathbb{C}).$$

Here Λ is a lattice in K and $a \in K$; $0 < k \in \mathbb{Z}$; τ is an embedding of K into \mathbb{C}; μ denotes the Fourier coefficients of an elliptic modular form $g(z) = \sum_{b} \mu(b) e^{2\pi ibz}$; Y is a real element of K such that Y^τ is its only positive conjugate; ϕ is an element of I_K with non-negative coefficients.

Theorem 5: The series D is convergent for sufficiently large $\text{Re}(s)$ and can be continued to a meromorphic function on the whole plane.

Theorem 6: Suppose that g is a cusp form of weight ℓ, $\mu(b)$ are all algebraic, and τ and τ_0 occur in ϕ with the same multiplicity, say q. Let m be an integer such that

$$(2n - 1 - k + \ell + \deg(\phi))/2 < m < q.$$

Then $D(m)$ is $\pi p_K(k\tau - \phi, 2\tau)$ times an algebraic number.
A more general result holds for a series of a similar type with a Hilbert modular form (which is not necessarily a cusp form) in place of g. The details will be given in [4].

References

