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BANACH SPACES

L. GRUSON and M. van der PUT

Introduction.

Although this paper is meant as a survey on Banach spao-es it co.iteains some 'new'
results and many new proofs of old results. An example of the latter is ( 3 . 6 ) and
( 3 . 1 0 ) where one proves that every closed subspace of a free Banach space is itself
free.

Most of section 7» Differential equations, is new. In this section one cons-
tructs primitive functions for continuous functions and rediscovers a formula of D.
Treiber. Subsequently differential equations are solved. A more detailed study of
primitive functions shows that any function "which is the pointwise limit of a se"-
quence of continuous functions and whose image is relatively compact has a primitive
fur -tion.

Section 5 makes the well known connection betwenn Banach -space and modules over
a valuation ring explicit. Some problems and results of earlier sections are phrased
in terms of modules. The first five sections contain standard material enriched
with a set of open problems.

This survey together with A . F . Monna's contribution to the proceedings of this
conference gives a fairly complete summary of the theory of ultrametric Banach
spaces.
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§.1. Examples of Banach spaces and notations.

The field K we are working with is supposed to be complete with respect to a

non-trivial, non-archimedian valuation. Its valuation ring Li € K ||̂ l| ^ 1 J is

denoted by V, the maximal ideal o f V by m = \X C K | |;U < 1 ) its residue field

/ by k. The value group of K will be denoted by |K^| . For constructions etc.

we often choose ^ & K with 0 < (Tr|^ 1 . if the valuation of K is discrete we suppose

that ln| generates |K*( i.e. \K*I = ^JIT | n } n 6 2^.

( 1 . 1 ) Let I be a set and ^ : I -> ^r € (R | r > 0} . Then I00 (l,^i ,K) = l°°(l,p.)

will denote the Banach space of all functions f : I -»• K satisfying sup |f(i)| k{i.)<o^ .

The norm is given by ||fj| = supjf(i) ) ^ (i). For any iC I, e. stands for the

element of l°°(l, ̂  ) given by e^( j ) = 0 if j ^ i, e^(i) = 1 .

The closed subspace .c^(l, p/ ,K) = c^( l , (^) of l^d,^) is defined by :

f : I -> K belongs to c^(l, ^) if lim | f(i) I ^ (i) = 0. It is clear that l̂ I, ̂  ) is

isomorphic to l^I,^*) if ^ (i) ^ ' (i )"1 C | K-*! for all i. The same holds for

c (l,|<.). So we can normalize u, such that 0 < inf |A,(i) x<- sup p,(i)< oo . For

normalized ^ one defines the subspace c(l,|^ ,K) = c(l, |-v) by : f : I -i- K belongs

to c(l,^,) if lim f(i) exists. So c^(l, |̂  ) C c(l, |A ) C l̂ I, ̂ ). If (-1 has the

property pid) = [ij then we abbreviate 1^(1 ,^ ) (resp. c(l, ^) and c (I, p.)) by

1^(1) (resp. c (I) and c (i)).
o

( 1 . 2 ) Let E be a Banach space (or just a topological space) and X a topological

space then C(X -^ E) denotes the set of all continuous functions of X -^E. If E

is a Banach space and X is compact then C ( X ->E) is a Banach space under the norm

lit I/ = sup i l | f ( x ) ( ) | x £ X i .

For the space C(X -» K) we sometines use the abbrevation C ( X ) .

( 1 .3 ) Let E and F be Banach spaces then <£ (E,F) = I 1 : E -^ F | 1 is K-linear

and continuous I is a Banach space under the norm (jl H = s u p j j l l ( x ) ! / ( I x i f ^ x e E .

x ^ 0 I . The dual < ^ ( E , K ) of E is denoted by E ' .

( 3 . 4 ) Let JE.^ . - be a family of Banach spaces. The Banach spaces TE. andZE.

are defined as follows :

ffE^ = l^id6 .x ^ sup.((e^<Mi

î = [^i^ei € .x ^ lim«eill = o j
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Both vector spaces are normed by l l^i^ci^ = sup ^i^ '

( 1 * 5 ) Let E be 'a Banach space and F a closed subspace of E. Then the vector space
•n

/- is again a Banach space under the quotient-norm given by

l|tl( = inf {(|e|/ | e € E , p (e ) = tj , where a denotes the canonical map p: E. -> E/ .

Let E -> G be a continuous map between Banach spaces. We will say that o< induces the
•p

norm on G if the induced map / / v -> G is bijective and isometric.

( 1 . 6 ) For a Banach space E we denote the sphere ( x € E | ||x-a||^ ^ by B(a,p).

§.2. Injective Banach spaces.

( 2 . 1 ) Definition. A Banach space E (over K) is called injective if for every

diagram 0 -^ A -> B, with 0( isometric and {) bounded, there exists (() : B -^ E such

4
that ||(()|| = II ^H and ̂  = ̂  .

(2.2) Theorem. The following conditions are equivalent :

( 1 ) E is injective,

(2) Every (L : c ((N, y. ) •> E has an extension ^ : c((N, ^,) -> E with )/(()!( = (()) |) .

(3) E is maximally complete (i.e. every set |B.i of spheres in E, with the

property B^ 0 B. ^ 0 for all i and j, has a non-empty intersection).

Proof. ( 1 ) =» (2) is clear ; (2)=^ (3) . Let \B>.\ be a set of spheres such that

B n B. ^ 0 for every i ̂  j. The strong triangle inequality yields that B. 0:B. or
- J 1 J

B. C B. . Hence we can find a countable subset of spheres B(a , p ) with : a = 0 ,
u -L n / n o

B(a^,^) ^ B(a^,^) for all n, ^ > ̂  > ̂  > ... such that

HB^ HB(a^).

Define ^ : N ^ K ^ Q by ^(i) = |j a^ - a^ |( (i ^> 1 ) and define

^0 : C0^9 ̂ ^ E by fV0!^ = ^ ~ ^-l ^ >/ 1 ^ - There is a ^P

(̂  : c(lN, p.) -» E extending ̂  such that ||(()|| = |l (|> !( = 1 . The element
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a = ( ( ) ( 1 , 1 ,1, . . .) belongs to every B(a , p ) since
\ n ' n

|la-aj| = |( ( ) ) ( 0 . . . . 0 , 1 , 1 . 1 . . . ) | l ^ / | ( 0 , . . . 0 . 1 , 1 , . . . ) ( j =

= sup ^ (i ) ^ ft
i > n

(3) =? (1 ). Using Zorn's lemma one sees that it suffices to consider the situation

i A <^.B, where B = A+Kx for some x C B.ro i
Every extension ()) of (L is determined by e = 0(x) . The condition ||())|| = |l<p^/| is

equivalent to : for all a 6 A, ) (()(x-a)| = |e-(J)Q(a)| ^ |(())^( (|x-a/( , and also to

e € ^ B((( )Q(a ) , I t ^ H ||x-a||) = Y.

For any a,a* C A we h^ve B^a), || (̂  |(((x-a||) 0 B^a* ). 1( ̂  |( [Ix-a'l]) ^ 0

since || ^(a) - (^(a' )H|| ̂ || ||a-a'|| ^ max( 1| ^i) || x-a i( , || ^H Hx-a'll). Since E is

supposed to be maximally complete it follows that Y ^ 0 and e and d) can be chosen

such that || ()) || = 1| (b || .

(2.3) Corollary, The field K is an injective Banach space if and only if K i s

maximally complete in the sense of Krull ( [31 ) .

(2.4) Proposition. Every quotient of an injective Banach space is injective. Every

product of injective Banach spaces is injective.

Proof. Let E be. injective and F a quotient of E,, 'n' : E —>¥ the canonical map.

Consider a sequence of spheres B(a , p ) = B in F with the property B 0 B

for all n. By induction one constructs a sequence ^b I in F such that

B(b , p ,) D B(b - , / ? ) and ^ (b ) = a for all n. (Induction step: a , - a ='n'(c)n i n~ i n' i i n n n n+1 n

for some c € E, since |a , - a | .< p one can suppose |c \<p , . Put b , = b +c)n+1 n i i n • ' n"~ 1 n+1 n

Any e € riB(b , n _ ) has the property Tr (e) € (\ B . The second statement of (2 .4)

has analogous proof. '

( 2 .5 ) Proposition. Let $E \ be a sequence of Banach spaces. The Banach space

^n/^- is injective.
— .n
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Proof. Analogous to ( 2 . U ) . See f^J .

Notation. If E = E for all n, we write 1 ^ ( E ) for TR > c (E) for ^E and c(E) for—'—~~—" n v\ o n
the subspace of -^(E) of all sequences having a limit in E. The map E -^ 1 co ( E )
given by e ^ ( e , e , . . . ) induces an isometry A- : E ^ I00 ( E ) / / _ ^ . And we find forE c^ (E}
every E a canonical injective resolution

°"^1•'%„-1°1%«-.
(2 .6 ) Theorem. E is injective if and only if the map 'lim' : c ( E ) -> E has an

extension with norm 1 to_ 1 ( E ) -> E.

I00 ( E )Proof. E is injective if and only if 4 has a left-inverse P : / / ^ -> E ofE c^-E)
norm 1 ; this follows from ( 2 . 2 ) , ( 2 . 4 ) and ( 2 . 5 ) . The existence of P means the
existence of a map (b : I00 (E) -> E with (|) = 1 , (b [ c (E) = "lim" .

U^oa

(2.7) Definition. E is called weakly injective if for every diagram 0 -^ A ->• B
°^

with o( isometry, |( (JU| < oo a there exists a. ^ : B -> E such that (|) d = (j) and |j(|)l|«»

(2 .8) Corollary. I_f E is weakly injective there exists a constant C > 1 and for
every diagram 0 -> A -^ B with o< isometry and || (fL ||< ro a map (t> : B -^ E satisfying

M ——
^ = ^o8^ mi ^ c n^n.
Proof. A -p has a left inverse P with |lp|| = C < 00 . The map P induces a norm

on E which makes E injective and has the property II l( ^ |l (j ^ C l| l|^ .

(2.9) Definitions. A K-linear isometry E < .̂ F is called essential (or F an essential
extension of E) if for all f £' F there exists e € E with (lf-e|| < l)f|/ . A K-linear
isometry E C F is a maximal completion if F is injective and E < ,̂ F is essential.

(2 .10) Proposition. Every Banach space E has a maximal completion (denoted by E)

which is unique up to (non-canonical) isomorphism.

Proof. Take for E a maximal essential extension of 4 - (E) in the Banach space
l^E) V 1 °° f F)/ / v . By definition /^ : E C E is essential and since ' ) / . . is
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maximally complete also E is maximally complete. The unicity follows easily from
, ( 2 . 2 ) .

( 2 . 1 1 ) In the last proof there was a choice of a maximal essential extension of a
subspace F inside an injective space G. The next lemma clarifies this situation.

Lemma. Let F be a closed subspace of an injective space G and let F. = ( i = 1 , 2 )
denote maximal essential extensions of F inside G. Then

( i ) F and F are injective and there exists a K-linear bijective isometric

cr : G -> G such 0-|F = id and cr(F ) = F .

( i i ) If F C^ G is not essential and F is not injective then F has many different
maximal extensions in G.

Proof.(i) If F. is not injective then there exists a set of spheres ^B(a , p n in

G with a C F. for all n and such that 0 B(a , 0 ) ^ 0 and D B(a , ? ) Q F. = 0.n i n ' n n / n i
Choose e C/lB(a , p ) . Then,as one easily sees,F. + Ke is an essential extension,
contrary to the assumption that F. is maximal. Hence F. is injective. Let H be a
subspace of G -which is maximal with respect to the property |1 f+h II = max(Uf ( f , | | h l | )
for all f € F, h C H. (We express this sometimes by H I F ) . Then it is easily seen
that H is injective, H ̂  F - H 3 F = E. By ( 2 . 1 0 ) there is a bijective isometric
map f : F, -> F- with t|E = id» Then 0' = id -- ($ 't has the required properties.\ d H

( i i ) Let a maximal extension F. of F inside G be given. Choose x € F./F and an
element y C G with Ky 1 F , y ̂  0. (I yfl < inf p|x-f|( j f C F } . Then F C F + Kz, where

z = x+y, is an essential extension contained in a maximal extension F . Clearly

F^ i- F̂  since y ̂  F^ .

( 2 . 1 2 ) Remark. Let the complete field L D K be an essential field extension in the
sense of Kapiansky ( [ $ ] ) .

Then L as K-Banach space is an essential extension of K and by ( 2 . 1 0 ) isomorphic
to a subspace of K. Hence card(L) ^ card(K) and the class of all essential field
extensions of K is in fact a set. The lemma of Zorn applied to this set yields the
existence of a maximal complete field L ,3 K which is an essential extension of K.
Again ( 2 . 1 0 ) yields L is isomorphic to K as a Banach space. Kapiansky has shown that
K might have non isomorphic maximal complete field extensions L, » L . As Banach
spaces L. and L^ are isomorphic.
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Examples.

( 2 . 1 3 ) c^d,^) is not injeetive if y. (l) contains a sequence a - > a > a > .. .

with a. '> 0.~^~~~~~~ i.

Proof. Let N sr J C I be the subset corresponding to the given sequence. Since

^^'M^ is a direct summand of c (l,^. ) an application of (2.U) shows that it is

enough to consider the case c^dN,?.) and ^ ( t ) ^ ^ (2)>.., ,lim ̂  (n) > 0. If C.ON,^)

were injeetive then there exists a map ^ : c(lN, ^ ) -^ GO^* ̂ ) vith |1 ^ 1| = 1 and
(J) ,| c^dN, (A.) = id.

Then x = ( X ^ , X ^ , . . . ) = < ) ) ( 1 ,1 ,1 , . . . ) C c^N, ^ ) has the property

|(x - (1,. . . ,1.0,0.0,. . .) | | = l | <p (0 , . . . , 0 ,1 ,1 ,1 . . . . ) ( | ^

^ 1 ( 0 , . . . , 0 , 1 , 1 , 1 , . . . ) [ ) = ^(n+1). Hence (X—•I ( < 1 for all n ; this contra-

dicts lim X = 0.n

( 2 . 1 4 ) Let E be a Banach space, such that every strictly decreasing sequence in E'

has limit zero. Then E is injeetive.

(Note that the existence of such E i- 0 implies that the valuation of K i,s discrete).

Proof. Let [B \ be a sequence of spheres in E such that B 3 B for all n. Wen 1 n n+1
may suppose that all radii ? lie in ' E and that p > P -\ for a11 n- Then

lim p = 0 and the completeness of E implies OB ^ 0.
I n n

( 2 . 1 6 ) Let I be an infinite set and u. a map : I -^ (R. . The Banach space c (N |i )

is injeetive if and only if the valuation of K is discrete and every strictly

decreasing sequence in k(l) has limit zero.

Proof. If the valuation of K is dense then c ((N,pt) ^ cr^^9 ^ ' ) > vhere ^ ' can be

chosen such that ^'(l). contains a strictly decreasing sequence with positive limit.

Hence the condition is necessary. Also sufficient because (K*| discrete and every

strictly decreasing sequence in ^(l) has limit 0 implies that every strictly

decreasing sequence in || c (I, [4: ) || has limit zero. Apply now ( 2 . 1 4 ) .

( 2 . 1 6 ) J f̂ K is maximally complete then I00 (I, ̂  ) is injeetive for every I and U

Proof. (2.4)
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( 2 . 1 7 ) Suppose that the valuation of K is discrete and. (̂  : K -^ IR ^ satisfies

^ . ( 1 ) > ^ ( 2 ) > . . . lim ^(i) > 0. Then I00(N, ̂ ) is the maximal completion of

CQ(N,^ ) .

Proof. By ( 2 . 1 5 ) all we have to show is that for any f = (f ,f . . . ) € 1°^ (|N, (4)

there exists e€ c^IW,^) with |j f-e || < ( j f | t . The discreteness of | K |̂ and the

properties of ^ imply that the set [ n 6 (N | ||f|| = |f | |^(n)l is non-empty and

finite, ^t n^ be the last integer with |lf|| =|f j |t(n ). Then

e = (f,,...,f ,0,0,...) has the required property.
' 0

( 2 . 1 8 ) An extension of ( 2 . 1 7 ) is the following :

Suppose that the valuation of K is discrete and consider E = c ( ! , (<), where î

is normalized by |TT| < p. (i) ^ 1 for all i. A subset J of_ I will be called

decreasing if every seouence .1^.1^.... in J such that

^ ( J ^ ) ^ ^ (J^ ) ^ HJ^) ^ ... is finite.

Then E is the subspace of I00 (I, (̂  ) given by

E = [f e î d, ̂  for every £ > 0 the set |j £ I ( | f ( j ) |>^£.^ is decreasing .

Proof. We note that a finite union of decreasing sets is again decreasing. It

follows that the subspace I00 (i, ^ ) given in the statement is equal to

F = U ^l^J, ̂  | J) | J C I decreasing | . As in ( 2 . 1 7 ) , for any

decreasing set J the inclusion c^J. ^/J) C I00 (J,|^|j) -is essential. Hence F is an

essential extension of c^I, |i/). Consider an extension F C F +' Ke with e t F. In

order to show that F is injective, we have to show that this extension is not es-

sential. Put d(e,F) = inf^||e-f|( | f € FJ > 0. Choose a sequence o( >(̂  ... in »R

with lim d^ = d(e,F). For any n ̂  1 the set J^ = [i C I ( (e(i) | ^ (i)^ jis

decreasing and one easily sees that also J = U j is decreasing. Let f C F be the

element given by f(i) = 0 if i ^ J and f(i) if i C J. Then d(e,F) = lle-flf and

for any f ' C F we have ||(e-f)-f'|| ^ ||e-f|| . Hence F C F + Ke is not essential.

(^"^ Suppose that the valuation of K is discrete. Let n be a positive integer.

For any Eanach space E over K there exists a norm (( |j^ on E such that, , ——— ———————————-—— n — ——————

M l̂ I I ^H l^ l i Hand |(E(|^r= ̂ l m n | m 6 TL\ U [o|.

Proof. Take \lx\\^ = sup [t € T|t ^ [| x ||l .



Banach spaces
63

(2.20) Suppose that the valuation of K is discrete. Then any Banach space E over K

is veakly in.iective and moreover inf ^C € R / A g has a left-inverse of norm <-c }=1 .

Proof, ( 2 . 1 9 ) and ( 2 . 1 4 ) .

( 2 . 2 1 ) Problems.

(i) Do there exist weakly injective Banach spaces E such that inf(c € <R IA
i E

has a left-inverse of norm ->. C! >1 ?

(ii) Let K be a maximally complete field, with dense valuation* Can one give

an explicit description of a maximal completion of c (N,K) inside I*6 ((N,K)?

(iii) Suppose that K is not maximally complete ; can one describe K explicitly

as a subspace of 1 ^'^/c (lN,K) ?

§3* Projective Banach spaces.

( 3 . 1 ) Definitions. A (bounded linear) map (() ; E -> F is called a strict surjection

if for any f C F we have ||f |( = min ( || e|| | e G E, (()(e) = fL (i.e. the surjective
C ———————— "•

map (|) induces the norm on F and for every f C F there exists e € 4 (^) v^-^1

He( | = llf||).

A Banach space E is called projective (resp. veakly-pro.iective) if for every
of

diagram B ->• C -̂  0 with o< a strict surjection and |l(t) |j < bfl , there exists a $ : E -^B
I (hE 'o

such taht ||(()|( = (f())^|| (resp. ||())|| < b0).

A Banach space E is called free (or is s-aid to have an orthogonal base) if

E = c (I,p. ) (isometric) for some I and k : I -^ B >o I ' o

Remarks.

(3.2) If the condition " Q( is a strict surjection" in the definition of projective

is replaced by " o( is surjective and induces the norm on F" then the field K is not
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projective.

(3.3) Every free Banach space is projective.

(3 .^) Let E be a Banach space. Put I = E/ [0^ and define ^ : I -^ R . by

Kx) = ||x|| . Then the map T^ : c^I, ̂  ) -» E, given by ^ (f) = 7 f(x)x, is
x€-1

a strict surjection.

(3 .5 ) Proposition. A Banach space E is projective if and only if E is a direct
summand of a free Banach space,

Proof' E C F is called a direct summand if there exists a projection P : F ->• E
with IIP (( = 1 .

4 " Since E is projective TT-p : c (I, |i ) •> E has a right-inverse p of norm 1 .

Hence E is isomorphic to the direct summand P (E ) of c (I, IA).

" <= " Let E be a direct summand of the free space F ; P: F -> E a projection of
c^ i

norm 1 ; B -> C a strict surjection ; (p- : E -> C a bounded map. Then (p-P : F -> C can

be lifted ^ : F -> B with l l ^ l l = || ((^P || = ||(()(| and (() = ^/E : E -> B has the

required property.

(3.6) Proposition. Every closed subspace of a projective space is projective.

Proof. Let a diagram B -> C - ^0 , o< strict, |) (L || < 0» be given.
t (b u ,
r°

We complete this diagram to a commutative one ,in the following way :

</
A = ker o< » B is a maximal completion of B with canonical map

^ K /
y ; B - ^ B ; & = \ ^ o ^ ; D = / with canonical projection ^ : B •> D ;
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the map ^ o ^ : B -^ D has kernel A and induces an isometry $ ; C -)>.D.

By (2.4), D is injective. Let D^ C D be a maximal essential extension of € ^ (E). ;

Then D^ is maximally complete, (since D is maximally complete) and there exists a

map ^ - - F ^ Do with |^| |=|1^|| and ^ = î.

We claim that for any d^ C D^ there exists ^ 6 ^ with )(,(^) = d and (|^lj = |ld || .

Indeed, there exists c € C with || 5' (c)-d | |<ttd l| and b € B, with

^(b) = c, |(b|| = |lcl|. = /(dQl| . Hence |l^(b) - d^^ IJd^H and there exists

b« € ^ with llb'll < [Id^l and X ( b ' ) = d^ - XV^) .

Now b = b+b' has the required properties.

By (3 .5) F may be supposed to be free, and the existence of a map ^: F •> ^ with

| 1 ^ II = 1 1 ^ oil , X^ =^ now follows.

The map -^ maps E in .fact into T(B). Indeed, for any e C E and b C B with

0((b) = ^(e) we have X^i (e) = ^i(e) = ^^(e) = ?a(b) = XUb;.

So ^( f i(e)-V.(b)) = 0 and ^ i(e) - ^(b) 6 ker ?C = A C (B).

So there exists a map ()) : E -> B with || (|))( = ||̂ i|| = |J() [| and V(() = ^i. Also

o( ( ( ) = ( ( ) and the proof is finished.

(3.7) Before giving the proof that every projective Banach space is in fact free, we
turn to Banach spaces of countable type.

Definition. A Banachspace E is of countable type if it has a countable subset which

generates a dense linear subspace of E.

Remarks.

The definition above is the analogous of"separable Banach space over (R or 0".

The condition E is separable would be too restrictive since the base field K need•
not be separable. Further we note that subspaces and quotient spaces of an E of

countable type are also of countable type.
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Definition. Let E be a Banach space over K, A a subset of E and c<6<R» 0 < °< ^ 1 .

The set, A is called o( -orthogonal if for every finite (or convergent) linear

combination ^ \, a the inequality l|Z.. X a || ̂ , oc max j X j l lal j holds./- . a a aa & A

A is said to be an 0( -orthogonal base of E if moreover every x C E can be written

as a convergent sum x = S-^ a.

Remark.
E has an o( -orthogonal base if and only if there exists a bijective linear

map () : E -> c (I, (^) (.for some I and^vith II (j) || < 1 , || <|)~1 II ^ C<~ 1 . In particular,

E has an orthogonal base (i.e. an 1-orthogonal base) if and only if E is free.

(3.8) Theorem. (Existence of bases)

1 ) _^f E is a Banach space of countable type then E has for every oc , 0 ^ €x < 1 ,

an Ot -orthogonal base.

2) If E is a Banach space of countable type and K is maximally complete then E

has an orthogonal base.

3) I_ E is a subspace of c-(lN, (̂  ) then E has an orthogonal base.

4) If every strictly decreasing sequence in ItE j| has limit zero then E has an

orthogonal base.

h) If the valuation of K is discrete and E is a Banachspace over K then for every

0( , 0 < CX < 1 , E has an 0( -orthogonal base.

Proof. 1 ) Assume for notational convenience that dim E = W . Choose a sequence {E \———— l n)

of subspace of E such that E C E ,, UE = E, dim E = n. Choose further a- n n+1 ^TI n
sequence[^^\ C R, 0 < (X^ < 1 , with fT 0( ̂  >y c< .

Take an element y C E^\ E _ and z € E , with

"^J^n11^ Ulyn-21!!2- c Vl I •• put \ = ̂ n • ^ claim that ̂  is

an o< -orthogonal base of E.

(a) x has the property I ^ x^+y U ^ o<^ max( ||̂  X^ |S , II y l| ) for y C E^ .

Proof-of (a). We may suppose A = - 1 . If ||x -y |K 0< max(II x || , |l y l| ) then

(y^-z^-y||< 0 n II y^n^11^ hly^^ I z e ^-it • This is a oo^radiction.
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„ n ., n
(b) For every n > 1 , || 7"" X .x.ll ^ TT (y- "^(tl x .x.().

i=1 1 i=1 1 1

Proof of (b). The formula is correct for n = 1 . If n > 1 then by
n n-1

(a) we have || ^T X^xj| >/ Oi max(|| X x H , |( ^ X . x . || ) and., by induction hypo-

n
thesis again,^ fT °^ • max( K X .x. || ).

Hence we did prove that Sx ^ is a -orthogonal. It is an ^ -orthogonal base

of the closed subspace F generated by the set (x \ . But F contains every E and(- n j n

must be equal to E.

2) and 3). One has to show that the construction in part 1 ) can be carried out

with o( = 1 for all n. For this it suffices to show that for subspaces

F C F C E with dim F = dim F +1 < oo there exists a projection p : F- -> F

with norm 1 .

Case 2) We prove a more general result : "Every finite-dimensional F over a maxi-

mally complete K is free (and hence injective by 2..U))"

If dim F = 1 this is clear. If dim F > 1 , F has a subspace F with

0 < dim F C dim F. By induction F is free and hence by (2.4) a direct summand of

F. Write F = F ffi F . Again by induction F is free and so F is free.

Case 3) Suppose F C F C C(-)(N» p-)» dim F = dim F + 1 < o ^ .

Take x C-F , x ^ 0 and let n^ 6 IN be such that ^(n ) | x | = (( xl(.

We may assume that x = 1 . The map A : c (K, ^) -^ c (lN,tt ) given by A ( e . ) = e.

if i ̂  n.. and A(e ) = x is bijective and isometric. So after applying A we may
M /V ^

assume e fc F . Then F. = Ke ® F.( i=1,2), F C F whereHQ i i HQ i l ^

F. = F. 0 |y C cn^9 K') I y = î* ^v induction on the dimension there exists a

projection p : F- -^ F with ||p|| = 1 given by p(e ) = e
Z. 1 HQ YlQ

4) Take a maximal orthogonal subset A of E and let F C E be the closed subspace

spanned by it. Then F is free and F is injective according to ( 2 . 1 3 ) . There exists

a projection p : E -> F with ||p|| = 1 . If E ^ F then (l-p)E ^ 0 and for any

b ^ 0, b €. ( l-p)(E) the set j b ? U A is also orthogonal. This contradicts the

maximality of A.
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5) For every o( . 0 < o( < 1 , E has a norm (| ||̂  with o( (I l| < U U *' < \\ U

such that (E, |( \\*) is free. (Apply ( 2 . 1 7 ) and ( 2 . 1 3 ) ) .

The property familiar for complex Hi Ibert-spaces : "Every maximal orthogonal

subset is an orthogonal base" is in general not true for free Banach spaces over K

as will be shown in the next proposition. Criteria for maximal orthogonal subsets

to be an orthogonal base are provided in

(3.9) Proposition. Let E be a Banach'space over K. The following conditions are

equivalent. <•

( 1 ) Every maximal orthogonal subset of E is an orthogonal base

(2) E satisfies one of the following two conditions

a) dim E < JDO and E has an orthogonal base.

b) every strictly decreasing sequence in {) E \\ has limit zero.

Proof. (2) ^ (T ) Case a). Let F be the linear subspace of E = c (l,(^)(card 1^/V^)

spanned by a maximal orthogonal subset A of E. If F. ^ E then there there exists

F with F. C F C E, dim F? = dim F..+1. According to case 3) of (3.8) a projection

p : F -^ F with norm 1 exists. For any b ^ 0, b 6(l-p)F the set A U ^b) is

orthogonal. Contradiction.

Case b). This is in fact proved in part 4) of (3.8).

( 1 ) ^ (2). E ^ C^19 h^ for some I and h- • If E does not satisfy (2) then I is
infinite and we can choose ^ such that the set (l) contains a strictly decrea-

sing sequence with positive limit.

So it suffices to give a maximal orthogonal subset of c ((N, L), where

(̂  ( 1 ) > |^(2) > ... and lim )-*/(!) > 0, which is not an orthogonal base. Put
{n=en+en^ (n > / 1 ) .

Since ( f -e (( < l| f II = lie I) for all n, the set )f i is a maximal orthogonaln n n n c n)
subset of c (K, It). It is not an orthogonal base since e cannot be expanded as a

o0convergent sum •7— \ f .
n=T n n

00
Indeed e, = T~ ^ f with lim .̂ k ( n ) = 0 would imply1 '— n n . n in=1

e, = ^ e + Y~ ( Z + ^ Je . Hence 2 = (-1 )11 contradicting lim X ^(n) = 0.
1 1 1 t—^- n n-1 n n n '
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(3 .10) Theorem. Every projective Banach space is free.

Proof. Let E be a projective Banach space. By (3.5) E can be represented by a

direct summand of some c,.(l, U,) • Choose a projection p : C-(I,L( ) -> E with norm 1 .

A subset J of I is called stable if the subspace c^^' P/^) of ̂ ^ ̂  ls lnvarlant

under p. Consider the collection X of all pairs (J,B) where J is a stable subset

of I and B is an orthogonal base of E(J) = E H c^(J,^/J) = p(c (J,^/J)). The

set X is ordered by (J,B) < (J'.B') if J Q J' and B C. B'. We will show that this

order is inductive ; indeed, let ^(J.,B.)j be a totally ordered subset of X.

Then J = Uj. , is again stable and it suffices to prove that B* = U B. is an or-

thogonal base of E(J ). Clearly B^ is orthogonal. Let F be the closed subspace of

E(J^) generated by B ¥r , clearly F 3 E(J. ) for all i. Let x C E(J*) and ^ > 0. -

There is y e c (J.,^/J.) for some i such that Hx-yll ^ £- . Then>also

|ix-p(y)l( = Up(x-y)Kg and p(y) 6 E(J^) C F. So F = E(J^) and B* is an ortho-

gonal base of E(J*).

Zorn's lemma asserts the existence of a maximal element (J,B) C X. If J ^ I, choose

i 6 I\J. The smallest stable set J1 containing ^i I is at most countable. Then

also J^ = J (J J' is stable. The natural projection -If : c {J^^/J^) -•>- c (J,1^/J)

induces a projection p o IT , with the norm 1, of E(J^) onto E(<7) . Hence
jy ^

E(J ) = E(J) ^ F, where F is isomorphic to a subspace of c,.(J"» J^/J^J" = J \J.

By (3.8) part 3) it follows that F has an orthogonal base B* and that B^ = B U B'

is an orthogonal base of E(J ). Contradiction with the maximality of (J,B).

( 3 . 1 1 ) Theorem. (Change of base). Let B be a maximal orthogonal subset of c-(l»^).

There exists a map P : B -> c (I,^) such that I p (b) j| < II b |l for all b and

^+ P(b) | b 6 B? is an orthogonal base of c (I, [̂  ).

Proof. A subset J of I is called stable if B 0 c^(J,l>i/J) is a maximal orthogonal

subset of c (J,/J). Consider the set X of all pairs (J,/? ) with J stable and

o' . B f} CQ(J , | ^ / J ) -^ C Q ( J , ( A / J ) such that [b+^(b) | b € CQ(J . |A/J ) J is an

orthogonal base. of c (J^l^/J). By Zorn's lemma there is a maximal pair (J ' , /o ) (in

the obvious ordering of X) . Suppose J' ^ I.

Since B is maximal every e. can be written as e. = Z— ^ .,b + R. with JR. jj < M e . H

It follows that every i 6 I is contained in a stable countable subset of I. By the




