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BANACH SPACES

L. GRUSON and M. van der PUT

Introduction.

Although this paper is meant as a survey on Banach spaces it co.tains some 'new'
results and many new proofs of old results. An example of the latter is (3.6) and
(3.10) where one proves that every closed subspace of a free Banach space is itself
free.

Most of section 7, Differential equations, is new. In this section one cons-
tructs primitive functions for continuous functions and rediscovers a formula of D.
Treiber. Subsequently differential equations are solved. A more detailed study of
primitive functions shows that any function which is the pointwise limit of a se=

quence of continuous functions and whose image is relatively compact has a primitive
fur +ion.
Section 5 makes the well known connection betwenn Banach 'space and modules over

a valuation ring explicit. Some problems and results of earlier sections are phrased
in terms of modules. The first five sections contain standard material enriched

with a set of open problems.

This survey together with A.F. Monna's contribution to the proceedings of this
conference gives a fairly complete summary of the theory of ultrametric Banach

spaces.
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§.1. Examples of Banach spaces and notations.

The field K we are working with is supposed to be complete with respect to a
non-trivial, non-archimedian valuation. Its valuation ring {,'lé KHL\ < 1} is
denoted by V, the maximal ideal of V by m = }'/\, € K| Il] < 1} its residue field
v/m by k. The value group of K will be denoted by |[K*| . For constructionsetc.
we often choose T € K with O < J7W|< 1, If the valuation of K is discrete we suppose
that || generates [K¥ i.e. |K¥| = 2]!\' | Y ne z}.

(1.1) Let I be a set and por I ire R|r> 0} . Then 1% (I,p ,K) = IM(I,P.)
will denote the Banach space of all functions f : I =K satisfying sup |f(i)|p(i)<em .
The norm is given by ||fl| = sup|f(i) | B (i). For any i € I, e, stands for the

element of ln(I,P,) given by ei(j) =0if j # i, ei(i) = 1.

The closed subspace_co(I,,,,,K) = co(I,|~) of 1%(1I, p) is defined by :
£ : I K belongs to co(I. p) if lim | £(1) | | (i) = 0. It is clear that 1“’(1,;~) is
isomorphic to lw(I,V, ') if p (i) }U(i)-1 €|K*| for all i. The same holds for
co(I,h). So we can normalize o such that 0 ¢ inf t.,(i) & sup |A(i)< «0 . For
normelized  one defines the subspace e(I,p,K) =c(I,w) by : £f: I K belongs
to C(I"“') if 1im £(i) exists. So co(I,\A)C e(TI, IA)C‘ 1%(1, \A.). If | has the
property }.\(I) = {1} then we abbreviate l°°(I,|4) (resp. c(I, P.) and co(I,y. )) by
1%(1) (resp. ¢ (I) and co(I)).

(1.2) Let E be a Banach space (or just a topological space) and X a topological
space then C(X — E) denotes the set of all continuous functions of X > E. If E
is a Banach space and X is compact then C(X = E) is a Banach space under the norm

fitll = sup {Hf(x)III x € X}.

For the space C(X - K) we sometines use the abbrevation C(X).

(1.3) Let E and F be Banach spaces then &£ (E,F) = jl : E2F | 1 is K-linear
and continuous} is a Banach space under the norm [I1 Il = sup { I a(x)n Hxﬁ1{ X€E,
x # o§ . The dual o (E,K) of E is denoted by E'.

(1.4) Let {EY; ¢
are defined as follows :

be a family of Banach spaces. The Banach spaces 'II’Ei and ZEi

TE, = ﬁ(ei)ie I € i)éI E% sup. llei\l < wg

SE; = {(e;) ¢ € LB dime = of
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Both vector spaces are normed by |l (ei)iel' || = sup llei"

(1.5) Let E be a Banach space and F a closed subspace of E. Then the vector space

E/F is again a Banach space under the quotient-norm given by
it) = inf {I]el{ | e€CE, F(e) = t} , where £ denotes the canonical map p: E> E/F.

X . » .
Let E » G be a continuous map between Banach spaces. We will say that & induces the

norm on G if the induced map E/ 2+ G is bijective and isometric.

ker ()

(1.6) For a Banach space E we denote the sphere {x CEI Ix-all<p &by B(a,/)).
\

§.2. Injective Banach spaces.

(2.1) Définition. A Banach space E (over K) is called injective if for every

. o8 . . . .
diagram O » A > B with X 1isometric and bO bounded, there exists (P : B2 E such
0

E
that @Il = I, and P = ¢, .

(2.2) Theorem. The following conditions are egquivalent :
(1) E is injective,
(2) Every ¢)0 : co((N, y») + E has an extension ¢ i c(N,p) »E with \I¢)|{ = | ¢O“ .

(3) E is maximally complete (i.e. every set éBi{ of spheres in E, with the

property Bi n Bj # @ for all i and j, has a non-empty intersection).

Proof. (1) => (2) is clear ; (2)=> (3). Let {Bi! be a set of spheies such that
Biﬂ Bj # @ for every i # j. The strong triangle inequality yields that B; &B, or

B. C B. . Hence we can find a countable subset of spheres B(a ’/0 ) with : a_ =0
J= 1 n’["n (¢}

B

B(an,(Jn) > B(an{_‘,ﬂnﬂ) for all n, Fo > /-‘1 > 5 > +.. such that

(\Bi = (\B(an, Fn)'
Define l,s : N $R>0 by p (1) = lls.i - B'i-1” (i > 1) and define
t‘)O : co(N, r,) +E by bd(ei) =a; -a, (i > 1). There is a map

QO : ¢(y, u) » E extending 4)0 such that “q)ll = | ¢O|l = 1. The element
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a=0(1,1,1,...) belongs to every B(an, fn) since

“a'_an” “ ¢(0s---0,1,1,1---)"&”(0,---0,1,1,---)ﬁ =

sup p(i) <@ -
i>n

(3) » (1). Using Zorn's lemma one sees that it suffices to consider the situation

A G B, where B = A+Kx for some x € B.
o 1

E

Every extension ¢ of q)o is determined by e = ¢(x). The condition ||| = I (])OH is
equivalent to : for all a € A, ]@(x-a)] = le—¢0(a)| < \I¢Ol llx-a]| , and also to

ee [ BO,(a), N0 [x-al) = v,

For any a,a'( A we have B(d)o(a), M)O "“x—a”) n B((Do(a'),ll boll Ix=a'l]) # @
since || %(a) - ¢O(a')\\$ll ¢)O|| la~a'| s max(]| ¢)O|) Ilx=all , | %\' [[x~a'l|). Since E is

supposed to be maximally complete it follows that Y # @ and e and § can be chosen
such that [¢] = | ¢>Oﬂ .

(2.3) Corollary. The field K is an injective Banach space if and only if K is

o

maximally complete in the sense of Krull ([31).

{2.4) Proposition. Every gquotient of an injective Banach space is injective. Every

product of injective Banach spaces is injective,

Proof. Let E be injective and F a quotient of E, T : E — F the canonical map.

Consider a sequence of spheres B(an, pn) =B in F with the property B > B

for all n. By induction one constructs a sequence %bni in F such that

= 1 . - =T
B(bn, pn_1) In} B(an, {Jn) and 'rr(bn) a  for all n. (Induction step: & 178 (c)

: < . =b +
for some ¢ € E, since Ian a | £ Ion one can suppose |c | pn_1 Put b bn c)

‘ +17% | n+1
Any e € ﬂB(bn, [)n-l) has the property W (e) € N B . The second statement of (2.4)

has analogous proof.

(2.5) Proposition. Let §En)f be a sequence of Banach spaces. The Banach space

TE

n, is injective.
CE, T
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Proof. Analogous to (2.4), See [5] .

Notation. If E = E for all n, we write 1% (E) for TR_» ¢ (E) for ZE and c(E) for
the subspace of 1¥(E) of all sequences having a limit in E. The map E 1% (E)

given by e » (e,e,...) induces an isometry AE : Ep 1% (E)/C (E)" And we find for
0
every E a canonical injective resolution

1% (k)

E 1% (m)
—_— /c(‘E) 20 .

0 »E —— /CO(E)

(2.6) Theorem. E is injective if and only if the map 'lim' : c(E) » E has an

extension with norm 1 to 1% (E) » E.

(Y]
Proof., E is injective if and only if AE has a left-inverse P : 1 (E)/c (£) > E of
: 0
norm 1 ; this follows from (2.2), (2.L4) and (2.5). The existence of P means the
existence of amap § : 1% (E) 3 E with ¢ = 1, ¢ [c(E) = "1im" .

nown

(2.7) Definition. E is called weakly injective if for every diagram O $¢ e.ﬁ B

O

with o isometry, H¢o" 4 o , there exists a ¢ : B » E such that ¢ = QO and Il oo

(2.8) Corollary. If E is weakly injective there exists a constant C » 1 and for

. & . . ; . .
every diagram O + A 3> B with o isometry and H00H<m a map ¢ : B 3 E satisfying

%4

pot = 9 ana 191 < cllagl.

Proof. A g has a left inverse P with 'lPH =C <w . The map P induces a norm
. A . ©
on E which makes E injective and has the property || | < I < cll .

(2.9) Definitions. A K-linear isometry ES F is called essential (or F an essential
extension of E) if for all f € F there exists e € E with [[f-ell < J|f}/ . A K-linear
isometry EC F is a maximal completion if F is injective and EG F is essential.

e s . . v
(2.10) Proposition. Every Banach space E has a maximal completion (denoted by E)

which is unigque up to (non-canonical) isomorphism.

Proof. Take for ¥ a maximal essential extension of 4 (E) in the Banach space

0 E 1%

l (E)/ . By definition A_ : E ¢ ﬁ is essential and since (E)/ is
c.(E) c,(E)
0 o]

E
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maximally complete also E is maximally complete. The unicity follows easily from
(2.2).

(2.11) In the last proof there was a choice of a maximal essential extension of a

subspace F inside an injective space G. The next lemma clarifies this situation.

Lemma. Let F be a closed subspace of an injective space G and let F'i = (i=1,2)

denote maximal essential extensions of F inside G. Then

(i) F, end F, are injective and there exists a K-linear bijective isometric

g:G>Gsuch OJF =id and o(F,) = F

1 2"

(ii) If F G G is not essential and F is not injective then F has many different

maximal extensions in G.

Proof. (i) If F. is not injective then there exists a set of spheres zB(an,fnn)f in
G with a.nC F, for all n and such that n B(an,pn) # @ and N B(an,Pn)n F, = @.

Choose e €0B(an,ﬂ n). Then,as one easily sees,Fi + Ke is an essential extension,

contrary to the assumption that F'i is maximal. Hence Fi is injective. Let H be a

subspace of G which is maximal with respect to the property Nf+hil = max(Ufl,iihll)
for all f € F, h € H. (We express this sometimes by H 1 F). Then it is easily seen
that H is injective, H @ F, =H ® F2 = E. By (2.10) there is a bijective isometric
map T : F1 > F2 with < |E = id. Then 0 = id H @ has the required properties.

,

(ii) Let a maximal extension F1 of F inside G be given. Choose x € F1/F and an

element y € G with Ky L F1, ¥y #0,llyh < inf {ﬂx—fﬁ, f € F} . Then F CF + Kz, where
z = x+y, is an essential extension contained in a maximal extension F2 . Clearly

F1 # F2 since y € F1

(2.12) Remark. Let the complete field L D K be an essential field extension in the
sense of Kaplansky ([3]). ’

Then'L as K-Banach space is an essential extension of K and by (2.10) isomorphic
to a subspace of &. Hence card(L) ¢ card(K) and the class of all essential field
extensions of K is in fact a set, The lemma of Zorn applied to this set yields the
existence of a maximal complete field L DK which is an essential extension of K.
Again (2.10) yields L is isomorphic to é as a Banach space. Kaplansky has shown that

K might have non isomorphic maximal complete field extensions L. , L, . As Banach

1 2
spaces L1 and L2 are isomorphic.
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Examples.

(2.13) cO(I, |»t) is not injeetive if p (I) contains a sequence 8y > 8y > a5 > ...

with a; > 0.

Proof. Let N ¥ J C I be the subset corresponding to the given sequence. Since
cO(J,|LlJ) is a direct summend of cO(I,k ) an application of (2.4) shows that it is
enough to consider the' case cO(W,H,) and p(1) > p (2)y..4 1imp(n) » 0. If co(m,;&)
were injective then there exists a map ¢ te(N,p) » cO(N, F) with ]l¢ =1 ana

@ i cO(N,|¢) = id.

Then x = ( DO s sees) = 0(1,1,1,..0) € CO(N’P ) has the property

hx = (1,...,1,0,0,0,...)
£1(0,...,0,1,1,1,.00))
dicts lim )‘n = 0.

||qa(o,...,o,1,1,1,...)lls
}~Yn+1). Hence ,ln-1 l< 1 for all n ; this contra-

(2.14) Let E be a Banach space such that every strictly decreasing sequence in E-

has limit zero. Then E is injective.

(Note that the existence of such E # O implies that the valuation of K is discrete).

Proof. Let iBnk be a sequence of spheres in E such that Bn.j Bn+1 for all n. We

may suppose that all radii ﬁn lie in " E and that /% > Lo for all n. Then

lim r?n = 0 and the completeness of E implies ()Bn # @.

(2.16) Let I be an infinite set and p &amap : I >R, . The Banach space co(N,P )

is injective if and only if the valuation of K is discrete and every strictly

decreasing sequence in F(I) has limit zero.

Proof. If the valuation of K is dense then CO(W,‘A) < cO(N, '), where ' can be
chosen such that | '(I) contains a strictly decreasing sequence with positive limit.
Hence the condition is necessary. Also sufficient because lK*‘ discrete and every
strictly decreasing sequence in p(I) has limit O implies that every strictly

decreasing sequence in "co(I, F)|| has limit zero. Apply now (2.14).

(2.16) If K is maximally complete then 1% (I,h) is injective for every I and [

Proof. (2.4)
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(2.17) Suppose that the valuation of K is discrete and p: >R satisfies

>0
P(l) > }4(2) > ... lim p(i) > 0. Then 100(N, IA) is the maximal completion of

o, k).

Proof. By (2.15) all we have to show is that for any f = (f1,f2,...) € 1% (w, r

there exists e € cO(IN, p) with lf-efl < If)\ . The discreteness of }K*l and the
properties of | imply that the set {n ew , lelf = Ifn Hc(n)} is non-empty and
finite. Tet ny be the last integer with fleq =|f‘n “t(no). Then
0
e = (f1""’fn »0,0,...) has the required property.
6]

(2.18) An extension of (2.17) is the following :

Suppose that the valuation of K is discrete and consider E = cO(I, k), where [

is normalized by || < (i) &1 for all i. A subset J of I will be called

decreasing if every sequence jl'jz"" in J such that
b)) < p,) € H—(J3)$ ... is finite.

Then ¥ is the subspace of 1w (I,p) given by

\é = if € lw(I,k,)} for every € > O the set %j €I (f(j)l;&_i is decreasing .

Proof. We note that a finite union of decreasing sets is again decreasing. It

follows that the subspace 1® (1, |«) given in the statement is equal to

F=U{1%0,p|3) | J CI decreasing } . As in (2.17), for any

decreasing set J the inclusion cO(J, p/3) C 1% (J,]*}J) is essential. Hence F is an
essential extension of cO(I, l-l/ ). Consider an extension F < F + Ke with e € F. In
order to show that F is injective, we have to show that this extension is not es-
sential. Put d(e,F) = inf U]e—fﬂ

with lim o = d(e,F). For any n 31 the set J = {i C T[ [e(i)|  (i)»x }is

fe F} > 0. Choose a sequence o >0(2 in R

decreasing and one easily sees that also J = UJn is decreasing. Let £ € F be the
element given by f(i) = 0 if i € J and £(i) if i € J. Then d(e,F) = le-fll and
for any f'€ F we have [[(e-f)-f'| 3y ||e-f|l . Hence FC F + Ke is not essential.

(2.19) Suppose that the valuation of K is discrete. Let n be a positive integer.

For any Banach space E over K there exists a norm || |*on E such that

1/ . m/.
Lol "0 Wshen jana HEp*eT= §iml "Imnez] U

Proof. Take lx|[* = sup {t€ Tt ¢ |ix "E .
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(2.20) Suppose that the valuation of K is discrete. Then any Banach space E over K

is weakly injective and moreover inf 2C €R ) AE has a left-inverse of norm %C}=1.

Proof. (2.19) and (2.14).

(2.21) Problems.

(i) Do there exist weakly injective Banach spaces E such that inf{C € R \AE

has a left-inverse of norm é.C} >1 7

(ii) Let K be a maximally complete field, with dense valuation. Can one give

an explicit description of a maximal completion of co(N.K) inside 1% (N,K)?

(iii) Suppose ghat K is not maximally complete ; can one describe K explicitly

as a subspace of 1 (N’K)/CO(N,K) ?

§3. Projective Banach spaces.

(3.1) Définitions. A (bounded linear) map ¢ : E 2 F is called a strict surjection

if for any f € F we have "f|i= min g\le" le €E, d(e) = ff. (i.e. the surjective

map @ induces the norm on F and for every f € F there exists e € ¢_1(f) with

fel = lglp.

A Banach space E is called projective (resp. weakly-projective) if for every

o
jiagram B 2 C = 0 with & a strict surjection and \\d)o\[ { ¥ , there exists a § : E »B

To,

)

such taht “)“ = “‘Po“ (resp. “ ¢)" < W),

A Banach space E is called free (or is said to have an orthogonal base) if

n . .
E = cO(I, P) (isometric) for some I and y : ISR > o

Remarks.

(3.2) If the condition " ¥ is a strict surjection" in the definition of projective

is replaced by " é( is surjective and induces the norm on F" then the field K is not
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projective.
(3.3) Every free Banach space is projective.
(3.4) Let E be a Banach space. Put I = E/ iOt and define p: I 3 R>O by

k(x) = Ixll . Then the map ITE : co(I,p,) + E, given by ‘ITE(f) = Lf(x)x, is
xel

a strict surjection.

(3.5) Proposition. A Banach space E is projective if and only if E is a direct

summand of a free Banach space.

Proof. EC F is called a direct summand if there exists a projection P : F 3 E
with lip|l =
" 3" Since E is projective L cO(I, f) > E has a right-inverse P of norm 1.

Hence E is isomorphic to the direct summand ,D(E) of cO(I, }A)

"& " Let E be a direct summand of the free space F ; P: F 3 E a projection of
norm 1 ; BOE" C a strict surjection 3 ¢ : E » C a bounded map. Then d)oP : F»>C can
be lifted V¥ : F 3B with ¥l = | bPl = l¢(| and ¢ = V/E : E > B has the

required property.

(3.6) Proposition. Every closed subspace of a projective space is projective.

ol
Proof. Let a diagram B 3 C 3 0, « strict,| ¢O I < @ ve given.
== ) ‘
E

We complete this diagram to a commutative one in the following way :

0~>A -r B-»C»O
11 lb’ § 0
0 >A % D-)O E
,\ \\.\v £
. \,\\:
N7

v
A = ker x ; B is a maximal completion of B with canonical map

5

‘(:B-ﬁﬁ;& = YopB ;D= /A with canonical projection 7(’:£->D;



Banach spaces 65

the map X o Y : B » D has kernel A and induces an isometry §:C>D.

By (2.4), D is injective. Let D.C D be a maximal essential extension of 6¢O(E).

[¢]
Then DO is maximally complete, (since D is maximally complete) and there exists a
map ¥, : F 3Dy with HVO" = “¢O“ and gq)o = ‘Voi.

. . " v v
We claim that for any d, € D there exists b € B with X (b) = d, and (b= Naglt -

Indeed, there exists ¢ € C with |§ (e)-ayli<Va Il and b€ B, with

X(b) =, |l flell. = lldoll . Hence |[XY(b) - do|(< Ildoil and there exists
v

b' € Bwith o'l <fldy end X (b') =4y - AY(v).

Now l‘I) = b+b' has the required properties.

By (3.5) F may be supposed to be free, and the existénce of a map VY : F » ﬁ with
I J1i= h‘VO" » WY = ‘yo now follows,

The map i maps E in .fact into Y (B). Indeed, for any ¢ € E and b € B with
(b) = by(e) ve nave X V¥ile) = ¥ i(e) = §¢(e) = Sa(v) = XY (v).

So X,(V¥ i(e)-Y(b)) =0 anda ¥ i(e) - Y(b) € ker X = A C (B).

So there exists amsp § : E 3 Bwith [0]=I¥Vill =lpl ana Y¢ = yi. Also

o = 4)0 and the proof is finished.

(3.7) Before giving the proof that every projective Banach space is in fact free, we

turn to Banach spaces of countable type.

Definition. A Banachspace E is of countable type if it has a countable subset which

generates a dense linear subspace of E.

Remarks.

The definition above is the analogous of'separable Banach space over R or ¢".
The condition E is separable would be too restrictive since the base field K need
-
not be separable. Further we note that subspaces and quotient spaces of an E of

countable type are also of countable type.
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Definition. Let E be a Banach space over K, A a subset of E and ¥ €R, 0 < & & 1,
The set A is called o —orthogonal if for every finite (or convergent) linear
combination § A, 8 the inequality A Ra. a|ly & max | la) lall nolds.

aL A

A is said to be an O —orthogonal base of E if moreover every x € E can be written

as a convergent sum x = Zla, a.

Remark.

E has an o -orthogonal base if and only if there exists a bijective linear
mep  : E > cO(I, p) (For some I andywith | ol < 1, |l 4)‘1H < 7! 1n particular',
E has an orthogonal base (i.e. an 1-orthogonal base) if and only if E is free.

(3.8) Theorem. (Existence of bases)

1) If E is a Banach space of countable type then E has for every o, 0 €X<1,
an O ;orthogonal base.

" 2) If E is a Banach space of countable type and K is maximally complete then E
has an orthogonal base.

3) I_E is_a subspace of cO(N, j) then E has an orthogonal base.

4) If every strictly decreasing sequence in | E|| has limit zero then E has an

orthogonal base.

4) If the valuation of K is discrete and E isa Banachspace over K then for every
oA, 0« X £ 1, E has an X —orthogonal base.

Proof. 1) Assume for notational convenience that dim E = ¥ . Choose a sequence {Eng

of subspace of E such that En CE ﬁn = E, dim En = n. Choose further a
0

n+1’
sequence 1o(ng C R, 0K (Xn <1, with T o B X
n=1

Take an element Yy € En\ En—1 and z, € En_1 with

| -1 “ ‘ . L
- < - =y -

“ Yo%, s X n inf i || ¥, zII z € En_d . Put X, =V Tz, e We claim that {xnf is

an ol —orthogonal base of E.

(a) x, has the property I?txn+y“ > o max("lxn I ,0yll) for ¥ €E _, -

Proof of (a). We may suppose A = - 1, If len-y ¢ n max( | X, Il sIlyll) then
Vv 2,y <o ol Yn‘zn_ll\< infi\l v, ‘ z € En__1§ . This is a contradiction. ‘
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n n
(b) For every n » 1, I ) lixi“ > 107 oy max (| lixiﬂ).
i=1 i=1

Proof of (b). The formula is correct for n = 1. If n > 1 then by

n n-1
(a) we have || ; xixi " > O(n max(l xnxn" Sl E 1.x, ||) ands by induction hypo-

n
thesis again,» TJT &, max (| lixi” ).
i=1

Hence we did prove that ixni is o -orthogenal. It is an A -orthogonal base

of the closed subspace F generated by the set gxnk . But F contains every En and

must be equal to E.

3

2) and 3). One has to show that the construction in part 1) can be carried out
with n = 1 for all n. For this it suffices to show that for subspaces
F1 CF2 C E with dim F

with norm 1.

= dim F1+1 < o there exists a projectionp : F, » F

2 2 1

Case 2) We prove a more general result :"Every finite-dimensional F over a maxi-
mally complete K is free (and hence injective by 2.4))"

If dim F = 1 this is clear. If dim F > 1, F has a subspace F, with

0 < dim F1 ¢ dim F. By induction F1 is free -and hence by (2.4) a direct summand of

F. Write F = F]@ F2 . Again by induction F2 is free and so F is free.

Case 3) Suppose F, C F,C c (N, ), din F, = din F +1< ¥,

Take x €‘F1, x # 0 and let ny € IV be such that r.(no)l x, I = Il xi.
0
We may assume that xno = 1, The map A : co(N, W) > cO(N,y,) given by A(ei) =e;
if i # n, and A(en ) = x is bijective and isometric. So after applying A we may
O ~
assume e € F.. Then F, = Ke. @ f.(i=1,2), ¥ c F._ where
Dy 1 1 no 1 1 2

f;{i = Fi N Ey € cO(N, }4,) | vy, = O(. By induction on the dimension there exists a
o ;

projection p : F2 > F, with |lp| = 1 given by p(en ) =e .

i 0 gy

4) Take a maximal orthogonal subset A of E and let F C E be the closed ‘subspace
spanned by it. Then F is free and F is injective according to (2.13). There exists
a projection p : E > F with: ||p|| =1, IfT E # F then (1—p)E # 0 and for any

b# 0, b € (1-p)(E) the set tb; U A is also orthogonal. This contradicts the

maximality of A.
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5) For every ® , 0 < & & 1, Ehas anorm || [ with o)l Il < W¥< y Ul
such that (E, | %) is free. (Apply (2.17) and (2.13)).
Remark

The property familiar for complex Hilbert-spaces : "Every maximal orthogonal

subset is an orthogonal base" is in general not true for free Banach spaces over K
as will be shown in the next proposition. Criteria for maximal orthogonal subsets

to be an orthogonal base are provided in

(3.9) Proposition. Let E be a Banach space over K. The following conditions are

equivalent. ¢

(1) Every maximal orthogonal subset of E is an orthogonal base

(2) E satisfies one of the following two conditions

a) dim E < % and E has an orthogonal base.

b) every strictly decreasing sequence in J|E| has limit zero.

Proof. (2) & (7) Case a). Let F1 be the linear subspace of E = co(I, p)(card I< Ajs)
spanned by a maximal orthogonal subset A of E. If F1 # E then there there exists

F, with F, % F,CE, dim F, = dim F,+1. According to case 3) of (3.8) a projection

p:F,>F with norm 1 exists. For any b # 0, b € (1-p)F2 the set A U {bg is

orthogonal. Contradiction.

Case b). This is in fact proved in part 4) of (3.8).

(1) 3 (2). E =A'-"cO(I,]—v) for some I and g . If E does not satisfy (2) then I is
infinite and we can choose [ such that the set (I) contains a strictly decrea-
sing sequence with positive limit.
So it suffices to give a maximal orthogonal subset of CO(N"“)’ where
p(1) > P(2) > ... and lim ]u(i) > 0, which is not an orthogonal base. Put

£o= egte (o).

Since §f -e (i < W£ li = lle || for all n, the set Ef ( is a maximal orthogonal
n n n n n

subset of cO(N, P). It is not an orthogonal base since e, cannot be expanded as a

) 1
convergent sum g; knf
n=1

o
Y A £ with lim A |t (n) = 0 would imply

n "
Indeed e

2 Z ()0 .. . -
A+ )en - Hence 1 (-1)" contradicting 1lim ln p(n) 0.
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(3.10) Theorem, Every projective Banach space is free.

Proof. Let E be a projective Banach space. By (3.5) E can be represented by a
direct summand of some cO(I, k). Choose a projection p : CO(I’P) 2 E with norm 1.

A subset J of I is called stable if the subspace co(J, P/J) of cO(I, Y') is invariant
under p. Consider the collection X of all pairs (J,B) where J is a stable subset

of I and B is an orthogonal base of E(J) = E Ney(J, 1 /J) = P(co(J,;A/J)). The

set X is ordered by (J,B) <« (J',B') if J € J' and B < B'. We will show that this
order is inductive ; indeed, let {(Ji,Bi)} be a totally ordered subset of X.

Then J* = UJi , is again stable and it suffices to prove that ¥ = UBi is an or-
thogonal base of E(J*). Clearly B*¥ is orthogonal. Let F be the closed subspace of
E(J¥) generated by B¥*, clearly F D E(Ji) for all i, Let x € E(J*) and & > O. -
There is y € co(Ji,}&/Ji) for some i such that {lx-yll € & . Then also

ix-p(y)ll = llp(x—y)ll&& and p(y) € E(Ji) C F, So F = E(J¥) and B* is an ortho-
gonal base of E(J*).

Zorn's lemms asserts the existence of a maximal element (J,B) € X. If J # I, choose
ig I\J. The smallest stable set J' containing %_1'{ is at most countable. Then
also J¥ = J (U J' is stable. The natural projection T : cO(J*,ft/J*) > cO(J’l‘/J)
induces a projection p o w , with the norm 1, of E(T¥) onto E(J). Hence

E(J*) = E(J) @ F, where F is isomorphic to a subspace of cO(J", f/3),d" = J}\J.

By (3.8) part 3) it follows that F has an orthogonal base B' and that B¥ = B U B'
is an orthogonal base of E(J*). Contradiction with the maximality of (J,B).

(3.11) Theorem. (Change of base). Let B be a maximal orthogonal subset of cO(I,[»‘).

There exists a ma : B>c (I,w) such that Hp(v)ll < I bl for all b and
map o‘ls v/ such that Hdp for all b and

ib+ f)(b) l b € Bf is an orthogonal base of cO(I,]A—).

Proof. A subset J of I is called stable if B cO(J,}A./J) is a maximal orthogonal
subset of co(J,/J). Consider the set X of all pairs (J,ﬂ) with J stable and

Io: B () cO(J,‘*/J) > cO(J,}A/J) such that {b+l0(b) , b € cO(J,IA/J)} is an
orthogonal base.of co(J,y-/J). By Zorn's lemma there is a maximal pair (J' ,f) (in
the obvious ordering of X). Suppose J' # I.

Since B is maximal every e; can be written as e; = L )"ibb + Ry with 'Ri I < ﬂeill

It follows that every i € I is contained in a stable countable subset of I. By the






