ELENA STROESCU

A dilation theorem for operators on Banach spaces

Mémoires de la S. M. F., tome 31-32 (1972), p. 365-373

<http://www.numdam.org/item?id=MSMF_1972__31-32__365_0>
A DILATATION THEOREM FOR OPERATORS ON BANACH SPACES

by

Elena STROESCU

Introduction.

Let R^+ be the set of all non-negative real numbers and $\mathcal{B}(\mathbb{X})$ the Banach algebra of all linear bounded operators on a Banach space \mathbb{X}. In this paper, we present a dilation theorem by which an object $\{\mathbb{Y}, \Gamma, U\}$ dilates into $\{\mathbb{Y}, \varphi, P, \tilde{\tau}, V\}$; where \mathbb{Y} and $\tilde{\mathbb{Y}}$ are Banach spaces, φ is a bicontinuous isomorphism of \mathbb{Y} into $\tilde{\mathbb{Y}}$, P a continuous projection of $\tilde{\mathbb{Y}}$ onto $\varphi(\mathbb{Y})$, $\Gamma = \{T_t\}_{t \in R^+} \subseteq \mathcal{B}(\mathbb{Y})$ and $\tilde{\Gamma} = \{\tilde{T}_t\}_{t \in R^+} \subseteq \mathcal{B}(\tilde{\mathbb{Y}})$ are operator semi-groups, U is a $\mathcal{B}(\mathbb{X})$-valued linear map on an arbitrary algebra \mathcal{A} estimated by a submultiplicative functional and V a $\mathcal{B}(\tilde{\mathbb{Y}})$-valued representation on \mathcal{A} such that $V_a\tilde{T}_t = \tilde{T}_t V_a$, for every $a \in \mathcal{A}$ and $t \in R^+$. This theorem is an extension of some previous results (see [8], [9]); it has arisen from the concern to characterize restrictions of spectral operators on invariant subspaces (or operators which dilate in spectral operators) by a map replacing the spectral representation.

Notations.

Throughout the following \mathbb{C} denotes the complex plane; $\mathbb{N} = \{0,1,2,\ldots\}$; \mathcal{A} an arbitrary algebra over \mathbb{C} with unit element denoted by 1; K a submultiplicative functional of \mathcal{A} into R^+ (i.e. $K_{ab} \leq K_a K_b$ for any $a, b \in \mathcal{A}$) such that $K_1 = 1$; \mathbb{X} a Banach space over \mathbb{C}; $\mathcal{B}(\mathbb{X})$ the Banach algebra of all linear bounded operators on \mathbb{X} over \mathbb{C}; I the identity operator. Let $T_1, T_2 \in \mathcal{B}(\mathbb{X})$ two commuting operators; then one says that T_1 is quasi-nilpotent equivalent with T_2 and denotes $T_1 \sim T_2$, if $\lim_{n \to \infty} \|(T_1 - T_2)^n\|^{1/n} = 0$. A family of operators $\{T_t\}_{t \in R^+} \subseteq \mathcal{B}(\mathbb{X})$ is called semi-group if $T_0 = I$ and $T_{t+s} = T_t T_s$ for any t and $s \in R^+$.

THEOREM. - Let $\{T_t\}_{t \in R^+} \subseteq \mathcal{B}(\mathbb{X})$ be a semi-group of operators and $U : \mathcal{A} \to \mathcal{B}(\mathbb{X})$ a linear map such that $U_1 = I$, $\|U_a\| \leq K_a$, for any $a \in \mathcal{A}$.

Then, there exists a Banach space $\tilde{\mathbb{X}}$, an isometric isomorphism φ of \mathbb{X} into $\tilde{\mathbb{X}}$, a continuous projection P of $\tilde{\mathbb{X}}$ onto $\varphi(\mathbb{X})$, a semi-group $\tilde{\Gamma} = \{\tilde{T}_t\}_{t \in R^+} \subseteq \mathcal{B}(\tilde{\mathbb{X}})$ and a representation $V : \mathcal{A} \to \mathcal{B}(\tilde{\mathbb{X}})$ such that:
(o) \(\| P \| = 1 \); \(\| T_t \| = \| T^{-1} \| \); for any \(t \in R^+ \); \(V_1 = \tilde{I} \) and
\(\| V_{t} \| \leq K \); for any \(\alpha \in G \).

(ii) \(\tilde{T}_{\alpha} T_{\alpha} \tilde{T}_{\alpha}^{-1} = \tilde{T}_{\alpha} T_{\alpha} \tilde{V}_{\alpha} \), for any \(\alpha \in G \), \(\tau \in R^+ \).

(iii) \(\tilde{f} \) is the closed vector space spanned by \(\{ \tilde{T}_{\alpha} \tilde{V}_{\alpha} \phi(x); \alpha \in G, t \in R^+, x \in \mathfrak{X} \} \).

(iv) Let \(s \in R^+ \); then we have the following equivalences:

1° \(T_s \phi(x) = \phi(T_s x) \), for any \(x \in \mathfrak{X} \);

2° \(T_s \tilde{V}_a \phi(x) = \tilde{V}_a \phi(x) \), for any \(\alpha \in G \), \(x \in \mathfrak{X} \);

3° \(T_s \tilde{U}_{\alpha} = \tilde{U}_{\alpha} \), for any \(\alpha \in G \).

(v) Let \(b \in G \); then \(\tilde{V}_b \phi(x) = \phi(U_b x) \), for any \(x \in \mathfrak{X} \) is equivalent with \(U_{a b} = U_a U_b \), for any \(a \in G \).

(vi) Let \(\sigma \in R^+ \) and \(\beta \in G \) commuting with all the elements of \(G \) such that \(U_{a \beta} = U_a U_{\beta} \), \(T_{\alpha} U_{\beta} = U_a T_{\alpha} \), for any \(a \in G \); then \(\| (T_{\alpha} - U_{\beta})^n \| = \| (T_{\alpha} - U_{\beta})^n \| \), for every \(n \in N \).

Proof:

A) Let us consider the Cartesian product \(R^+ \times G = \prod_{(t,a) \in R^+ \times G} x_{(t,a)} \)

and the direct sum \(\mathfrak{X}(R^+ \times G) = \bigoplus_{(t,a) \in R^+ \times G} x_{(t,a)} \), where \(x_{(t,a)} = \mathfrak{X} \), for every \(t \in R^+, a \in G \).

An element \(y \in \mathfrak{X}(R^+ \times G) \) is a family \((y_{(t,a)}(t,a)) \in R^+ \times G \) (many times we write \(y = (y_{(t,a)}(t,a)) \) of components \(y_{(t,a)} = y_{t,a} \in \mathfrak{X} \), for every \(t \in R^+, a \in G \). If \(y \in \mathfrak{X}(R^+ \times G) \), then \((y_{(t,a)} = y_{t,a} \neq 0 \) for only a finite number of elements \((t,a) \in R^+ \times G \).

Let us consider a map:

\(\Theta = (\Theta_{t,a}(t,a))_{t,a} \in R^+ \times G \) of \(\mathfrak{X}(R^+ \times G) \) into \(\mathfrak{X}(R^+ \times G) \)

defined by

\(\Theta y = (T_{t} \tilde{V}_{s,b} T_{s} U_{a} y_{s,b} T_{t,a} \), for every \(y \in \mathfrak{X}(R^+ \times G) \).

It is easy to see that \(\Theta \) is a well defined linear map. Then, we denote by \(\mathfrak{Y} \) the range of \(\Theta \) and by \(\tilde{\mathfrak{Y}} \) an arbitrary element of \(\mathfrak{Y} \).
For every \(\hat{y} \in \hat{X} \), we have:
\[
\sigma^{-1}({\hat{y}}) = \{ y \in (\mathbb{R}^+ \times \mathbb{A}) : \sigma y = \hat{y} \}.
\]
We define a function \(\omega : \hat{X} \to \mathbb{R}^+ \) by
\[
\omega(\hat{y}) = \inf_{\hat{y} \in \Theta^{-1}({\hat{y}})} \sum_{s,b} \| T_s \| K_b \| y_{s,b} \|,
\]
for every \(\hat{y} \in \hat{X} \); let us prove that \(\omega \) is a norm on \(\hat{X} \). Let \(\mu \in \mathbb{C} \) be non-zero, \(\hat{y} \in \hat{X} \) and \(\Delta(\mu \hat{y}) = \{ u \hat{y} : y \in \Theta^{-1}({\hat{y}}) \} \); then we show that \(\Theta^{-1}((\mu \hat{y})) = \Delta(\mu \hat{y}) \). Indeed, let \(u \hat{y} \in \Delta(\mu \hat{y}) \), i.e. \(y \in \Theta^{-1}({\hat{y}}) \), then \(\mu \hat{y} = (u \mu T_s) \in T_s u \hat{y} \), hence \(\mu y \in \Theta^{-1}((\mu \hat{y})) \). Let now \(z \in \Theta^{-1}((\mu \hat{y})) \), i.e. \(\Theta z = \mu \hat{y} \) or \(\Theta \frac{z}{\mu} = \hat{y} \), hence \(y' = \frac{z}{\mu} \in \Theta(\hat{y}) \) and \(z = \mu y' \in \Delta(\mu \hat{y}) \). Then \(\omega(\mu \hat{y}) = \inf_{y \in \Theta^{-1}((\mu \hat{y}))} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| = \inf_{z \in \Delta(\mu \hat{y})} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| = \inf_{z \in \Theta(\hat{y})} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| = |u| \inf_{y \in \Theta^{-1}({\hat{y}})} \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| = |u| \omega(\hat{y}) \), i.e. \(\omega(\mu \hat{y}) = |u| \omega(\hat{y}) \), hence one deduces also that \(\omega(0) = 0 \). Then, for \(\mu = 0 \) we have \(\omega(0 \hat{y}) = 0 \) and \(\omega(\hat{y}) = 0 \), for any \(\hat{y} \in \hat{X} \). Hence \(\omega(\mu \hat{y}) = |u| \omega(\hat{y}) \), for any \(\hat{y} \in \hat{X} \), \(\mu \in \mathbb{C} \).

Let \(\hat{y}^1, \hat{y}^2 \in \hat{X} \) and
\[
\Delta(\hat{y}^1 + \hat{y}^2) = \{ y^1 + y^2 : y^1 \in \Theta^{-1}((\hat{y}^1)), y^2 \in \Theta^{-1}((\hat{y}^2)) \},
\]
then obviously we have \(\Delta(\hat{y}^1 + \hat{y}^2) \subseteq \Theta^{-1}((\hat{y}^1 + \hat{y}^2)) \) and
\[
\omega(\hat{y}^1 + \hat{y}^2) = \inf_{y \in \Theta^{-1}((\hat{y}^1 + \hat{y}^2))} \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| \leq \inf_{z \in \Delta(\hat{y}^1 + \hat{y}^2)} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| = \inf_{y^1 \in \Theta^{-1}((\hat{y}^1))} \sum_{s,b} \| T_s \| K_b \| y^1_{s,b} + \inf_{y^2 \in \Theta^{-1}((\hat{y}^2))} \sum_{s,b} \| T_s \| K_b \| y^2_{s,b} \| \leq \inf_{y^1 \in \Theta^{-1}((\hat{y}^1))} \sum_{s,b} \| T_s \| K_b \| y^1_{s,b} + \inf_{y^2 \in \Theta^{-1}((\hat{y}^2))} \sum_{s,b} \| T_s \| K_b \| y^2_{s,b} \| \leq \inf_{y^1 \in \Theta^{-1}((\hat{y}^1))} \sum_{s,b} \| T_s \| K_b \| y^1_{s,b} + \inf_{y^2 \in \Theta^{-1}((\hat{y}^2))} \sum_{s,b} \| T_s \| K_b \| y^2_{s,b} \| = \omega(\hat{y}^1) + \omega(\hat{y}^2) \), for all \(\hat{y}^1, \hat{y}^2 \in \hat{X} \).

Then, from the definition of \(\omega \), for every \(\hat{y} \in \hat{X} \), we have:

1) \(\omega(\hat{y}) \leq \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| \), for any \(y \in \Theta^{-1}((\hat{y})) \) and
2) \(\| \hat{T}_t(a) \| \leq \| T_a \| K_{\omega}(\hat{y}) \), for \(t \in \mathbb{R}^+ \), \(a \in \mathbb{A} \).

Hence \(\omega \) is a norm on \(\hat{X} \); we denote by \(\hat{X} \) the \(\omega \)-completion of \(\hat{X} \) and the norm on \(\hat{X} \) also by \(\omega \).
B) We define an isomorphism φ of x into $\mathbb{R}^+ \times a$ by $\varphi(x) = (T \cup x)_t, a = (T_s \cup_{s,b} a, f, a)$, for every $x \in x$.

Applying 1) and 2) we get

$$||x|| \leq \omega(\varphi(x)) \leq ||x||$$

for any $x \in x$.

Therefore φ is an isometric isomorphism of x into \hat{x}.

We define a projection P of \hat{x} onto $\varphi(x)$, by $P_{\hat{y}} = \varphi(\hat{y}_{0,1})$, for every $\hat{y} \in \hat{x}$.

Applying 3) and 2), we get $\omega(P_{\hat{y}}) = \omega(\varphi(\hat{y}_{0,1})) \leq ||\hat{y}_{0,1}|| \leq \omega(\hat{y})$, i.e.

$$\omega(P_{\hat{y}}) \leq \omega(\hat{y})$$

for any $\hat{y} \in \hat{x}$. Hence, P can be extended by continuity to a continuous projection of \hat{x} onto $\varphi(x)$, that will be denoted by the same symbol.

Let now $\tau \in \mathbb{R}^+$; then for every $\hat{y} \in \hat{x}$ we put

$$\tilde{T}_\tau \hat{y} = (T_t \cup_{s,b} T_{s+\tau} \cup_{s,b} y_{s,b}, b, a) = (T_t \cup_{s,b} y_{s-b, t, a} = (T_t \cup_{s,b} y_{s-b, t, a}$$

where we denote $s + \tau = \sigma$; $z_{\sigma,b} = y_{s-b, b}$ for $0 \geq \tau$ and $z_{\sigma,b} = 0$, for $0 \leq \sigma < \tau$, with $b \in a$.

We see easily that \tilde{T}_τ is a well defined linear map of \hat{x} into \hat{x}.

Let us prove that also it is continuous.

For every $\hat{y} \in \hat{x}$, denoting $\Delta(\tau, \hat{y}) = \{\tilde{T}_\tau \hat{y} \in \hat{x} \mid \mathbb{R}^+ \times a; \tilde{T}_\tau \hat{y} = y_{\sigma-b, b} \text{ for } \sigma \geq \tau \text{ and } z_{\sigma,b} = 0 \text{ for } 0 \leq \sigma < \tau, b \in \mathbb{R}, \ y \in \mathbb{R} \} \}$, we see that

$\Delta(\tau, \hat{y}) \subset \mathbb{R}^+ \times a \{(T_t \cup_{s,b} y_{s-b, b}) \text{ for } 0 \leq \sigma < \tau, b \in \mathbb{R}, \ y \in \mathbb{R} \} \}$. Then, we have

$$\omega(\tilde{T}_\tau \hat{y}) = \inf_{\tilde{T}_\tau \hat{y} \in \Delta(\tau, \hat{y})} \sum_{\sigma, b} ||T_\sigma|| K_b ||\tilde{T}_\sigma \hat{y}|| = \inf_{\tilde{T}_\tau \hat{y} \in \mathbb{R}^+ \times a \{y \in \mathbb{R} \}} \sum_{\sigma, b} ||T_\sigma|| K_b ||y_{s-b, b}||$$

Thus, for every $\tau \in \mathbb{R}^+, \tilde{T}_\tau$ can be extended by continuity to an element of $\mathbb{R}(x)$, that will be denoted by the same symbol. Then, we see easily that

$$P_{\tilde{T}_\tau} \varphi(x) = \varphi(T_t \cup_{s,b} x)$$

for any $x \in x$.
Hence \[\| T^x \| = \omega(\phi(T^x)) = \omega(P_T^x \phi(x)) \leq \omega(P_T^x \phi(x)) \leq \| T^\infty \| \omega(\phi(x)) = \| T^\infty \| \| x \| , \]
i.e.

6) \[\| T^x \| \leq \| T^\infty \| \| x \| , \]
for any \(x \in \mathcal{X} \). At last, we see easily that \(\{ T^x \}_{x \in R^+} \) is a semi-group of operators, that we denote by \(\tau \).

C) Let us define a representation \(\mathcal{V} \). Let \(a \in \mathcal{Q} \); then for every \(\gamma \in \mathcal{X} \), we put

\[\mathcal{V}_a \gamma = (T_t \sum_{s,b} T_s U^a_{s,b} y_{s,b}) t, a = (T_t \sum_{s,c} T_s U^a_{s,c} y_{s,b}) t, a = \]
\[= (T_t \sum_{s,c} T_s U^a_{s,c}) t, a = \Theta u = \hat{u} \in \hat{\mathcal{X}} , \] where
\[\mathcal{Q} = \{ b \in \mathcal{Q} \mid a b = c \} \quad \text{and} \quad u_{s,c} = \sum_{s,c} y_{s,b} , \]
for \(s \in R^+, c \in \mathcal{Q} \).

The map \(\mathcal{V}_a : \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) is well defined. Indeed, let \(\hat{\gamma}^1 = \hat{\gamma}^2 \in \hat{\mathcal{X}} \); then there exists \(\gamma^1, \gamma^2 \in \mathcal{X}(R^2 \times \mathcal{X}) \) such that \(\hat{\gamma}^1 = \Theta \gamma^1 \) and \(\hat{\gamma}^2 = \Theta \gamma^2 \), hence

\[T_t \sum_{s,b} T_s U^a_{s,b} y_{s,b} = T_t \sum_{s,b} T_s U^a_{s,b} y_{s,b} \]
for any \(t \in R^+, a \in \mathcal{Q} \).

Then, \(T_t \sum_{s,b} T_s U^a_{s,b} y_{s,b} = T_t \sum_{s,b} T_s U^a_{s,b} y_{s,b} \), for \(t \in R^+ \) and \(a^I = a \in \mathcal{Q} \) with \(a \in \mathcal{Q} \). We see easily that for every \(a \in \mathcal{Q} \), \(\mathcal{V}_a : \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) is a linear map and \(\mathcal{V}_a \gamma = \gamma \), for any \(\gamma \in \mathcal{X} \). Moreover, \(\mathcal{V} : \mathcal{Q} \to \mathcal{L}(\hat{\mathcal{X}}) \) is a representation (see [4]); for a vector space \(\mathcal{X} \), \(\mathcal{L}(\mathcal{X}) \) denotes the algebra of all linear maps of \(\mathcal{X} \) into \(\mathcal{X} \). Now, we prove that, \(\mathcal{V}_a : \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) is continuous, for every \(a \in \mathcal{Q} \). Let \(a \in \mathcal{Q} \), \(\gamma \in \mathcal{X} \) and \(\Delta(a, \gamma) = \{ u \in \mathcal{X}(R^2 \times \mathcal{Q}) \mid u_{s,c} = \sum_{s,c} y_{s,b} , y \in \Theta^{-1}(\{ \gamma \}) \} \), then we see

\[\Delta(a, \gamma) = \Theta^{-1}(\{ \mathcal{V}_a \gamma \}) \]. Therefore, we have :

\[\omega(\mathcal{V}_a \gamma) = \inf_{u \in \Delta(a, \gamma)} \sum_{s,c} T_s K_b u_{s,c} \leq \]
\[\leq \inf_{u \in \Delta(a, \gamma)} \sum_{s,c} T_s K_b u_{s,c} = \inf_{y \in \Theta^{-1}(\{ \gamma \})} \sum_{s,c} T_s K_b y_{s,b} \]
\[\leq \inf_{y \in \Theta^{-1}(\{ \gamma \})} \sum_{s,b} T_s K_a y_{s,b} \]
\[\leq \inf_{y \in \Theta^{-1}(\{ \gamma \})} \sum_{s,b} T_s K_a y_{s,b} = K_a \inf_{y \in \Theta^{-1}(\{ \gamma \})} \sum_{s,b} T_s K_b y_{s,b} = K_a \omega(\gamma) ; \]
i.e. for every \(a \in \mathcal{Q} \) we get

7) \[\omega(\mathcal{V}_a \gamma) \leq K_a \omega(\gamma) , \text{for any } \gamma \in \mathcal{X} . \] Hence, \(\mathcal{V}_a \) can be extended by continuity to an element of \(\mathcal{B}(\hat{\mathcal{X}}) \) that will be denoted by \(\mathcal{V}_a \), for every \(a \in \mathcal{Q} \).
Thus, (0) is completely proved. The property (i) is immediate, since for every $a \in \mathbb{C}$ and $t \in \mathbb{R}^+$, we have $\mathbb{T}_t V_\alpha \hat{y} = (T_t U_{a+b} V_{s,b} t, a) = V_{\alpha} \mathbb{T}_t \hat{y}$, for any $\hat{y} \in \mathbb{F}$. Using the definitions of ϕ, P, V_α and \mathbb{T}_t, for $a \in \mathbb{C}$, $t \in \mathbb{R}^+$, we obtain immediately (ii), (iii) and (v).

D) Let us prove (iv). From $\mathbb{T}_s \phi(x) = (T_s U_{a} x)_{t,a}$ and $\phi(T_s x) = (T_s U_{a} T_s x)_{t,a}$, we see that 1^o and 3^o are equivalent.

Now, choosing $a = 1$ in 2^o, and using $P \mathbb{T}_t \phi(x) = \phi(T_t x)$ for $t \in \mathbb{R}^+$, $x \in \mathbb{I}$ (see (ii)), we get 1^o.

Conversely, taking into account of (ii) and writing 1^o with $U_{a} x$ instead of x, for $a \in \mathbb{C}$, we get 2^o.

At last, we show (vi). Let $\sigma \in \mathbb{R}^+$, and $b \in \mathbb{C}$, as in the assumption, also let $n \in \mathbb{N}$ and $\mathbb{F} \in \mathbb{F}$; then, we write:

$$(\mathbb{T}_n - V_{\beta})^n \mathbb{F} = \sum_{k=0}^{n} (-1)^{n-k} (k) \mathbb{T}_n \mathbb{F} =$$

$$= \sum_{k=0}^{n} (-1)^{n-k} (k) \mathbb{F} (T_s U_{a+b} T_n U_{s,b} y, ab)_{t,a} = \mathbb{F} = \mathbb{F} \in \mathbb{F} ,$$

where v is defined by

$$(T_n - V_{\beta})^n \mathbb{F} = \sum_{k=0}^{n} (-1)^{n-k} (k) T_n U_{s,b} y, ab)_{t,a} = \mathbb{F} = \mathbb{F} \in \mathbb{F} ,$$

and $b \in \mathbb{C}$.

Denoting by $\Delta(\sigma, \beta, n, \mathbb{F}) = \mathbb{F}^{-1}((\mathbb{T}_n - V_{\beta})^n \mathbb{F})$. Then, we have:

$$\omega((\mathbb{T}_n - V_{\beta})^n \mathbb{F}) = \inf_{v \in \mathbb{F}^{-1}((\mathbb{T}_n - V_{\beta})^n \mathbb{F})} \|T_s \| \|K_b\| \|v, b\| =$$

$$\leq \inf_{v \in \Delta(\sigma, \beta, n, \mathbb{F}), s, b} \|T_s \| \|K_b\| \|v, b\| =$$

$$= \inf_{v \in \mathbb{F}^{-1}((\mathbb{F}))} \|T_s \| \|K_b\| \|v, b\| =$$

$$\leq \|T_s \| \|K_b\| \|v, b\|.$$
A dilation theorem

\[\omega((T^o - V_B)^n \gamma) \leq ||(T^o - U_B)^n|| \omega(\gamma) \] for any \(\gamma \in \mathcal{X} \); hence

\[||(T^o - V_B)^n|| \leq ||(T^o - U_B)^n||^n. \] Conversely, since \((T^o - V_B)^n \varphi(x) = \varphi((T^o - U_B)^n x)\), for any \(x \in \mathcal{X} \), we get easily

\[||(T^o - V_B)^n|| \leq ||(T^o - U_B)^n||. \]

DEFINITION. - Let \(\{ \mathcal{X}, \mathcal{P}, U \} \) be an object, where \(\mathcal{X} \) is a Banach space, \(\mathcal{P} = \{ T \} \) a semi-group of operators and \(U : \mathcal{G} \to \mathcal{B}(\mathcal{X}) \) a linear map as in the above theorem. Then, an object \(\{ \tilde{\mathcal{X}}, \varphi, \mathcal{P}, \tilde{T}, \tilde{V} \} \) where \(\tilde{\mathcal{X}} \) is a Banach space, \(\varphi \) a bicontinuous isomorphism of \(\mathcal{X} \) into \(\tilde{\mathcal{X}} \), \(\mathcal{P} \) a continuous projection of \(\tilde{\mathcal{X}} \) onto \(\varphi(\mathcal{X}) \), \(\tilde{T} = \{ \tilde{T}_t \}_{t \in R^+} \subset \mathcal{B}(\tilde{\mathcal{X}}) \) a semi-group of operators and \(\tilde{V} : \mathcal{G} \to \mathcal{B}(\tilde{\mathcal{X}}) \) a representation such that \(\tilde{V}_1 = I \), \(\tilde{V}_a \tilde{T}_t = \tilde{T}_t \tilde{V}_a \) for any \(a \in \mathcal{G} \), \(t \in R^+ \), is called an \(\mathcal{G} \)-spectral dilation of \(\{ \mathcal{X}, \mathcal{P}, U \} \) if the property (ii) is satisfied. An \(\mathcal{G} \)-spectral dilation is called minimal if also we have (iii).

Remark 1. - When \(\mathcal{G} \) is a Michael algebra and \(U : \mathcal{G} \to \mathcal{B}(\mathcal{X}) \) a linear continuous map, then \(K \) is the seminorm which estimates \(U \).

Remark 2. - Let \(\mathcal{T} \in \mathcal{B}(\mathcal{X}) \); then the above theorem is obviously true with \(\{ T^n \}_{n \in N} \) instead of \(\{ T_t \}_{t \in R^+} \).

Application. - Let \(\mathcal{U} \) be an admissible algebra in the sense of [1]. Then, an operator \(\mathcal{T} \in \mathcal{B}(\mathcal{X}) \) is called \(\mathcal{U} \)-subspectral (see [9]) if there is a Banach space containing \(\mathcal{X} \) as a closed subspace, a continuous projection \(P \) of \(\tilde{\mathcal{X}} \) onto \(\mathcal{X} \), a \(\mathcal{U} \)-spectral operator \(\mathcal{T} \in \mathcal{B}(\mathcal{X}) \) having a \(\mathcal{U} \)-spectral representation \(\mathcal{V} : \mathcal{G} \to \mathcal{B}(\tilde{\mathcal{X}}) \) with the properties \(\mathcal{V}_a \tilde{\mathcal{X}} \subset \mathcal{X} \) and \(\tilde{P} \mathcal{T} f x = \mathcal{T} \tilde{P} f x \), for any \(f \in \mathcal{U} \), \(x \in \mathcal{X} \), such that \(\tilde{T}_1 \mathcal{X} = \mathcal{T} \).

We have the following characterization for \(\mathcal{U} \)-subspectral operators: an operator \(\mathcal{T} \in \mathcal{B}(\mathcal{X}) \) is \(\mathcal{U} \)-subspectral if and only if there is a linear map \(U : \mathcal{U} \to \mathcal{B}(\mathcal{X}) \) with the properties:

1. \(U_1 = I \),
2. \(U_{tf} = U_t U_f \),
3. \(||U_f|| \leq M L_f \) for any \(f \in \mathcal{U} \),

(where \(M \) is a positive constant and \(L : \mathcal{U} \to \mathcal{B}(\mathcal{X}) \), a linear map satisfying...
(j) \(\| L_{fg} \| \leq \| L_f \| \| L_g \| \), for any \(f, g \in \mathcal{U} \) and the function

(jj) \(\xi \rightarrow L_{f\xi} \) is analytic in \(\mathcal{U} \) sup \(f \), for every \(f \in \mathcal{U} \);

\(\mathcal{U} \) is a Banach space, such that \(TU_f = U_f T \), for any \(f \in \mathcal{U} \) and \(U_T \), (see [8] and [9]).

If \(\mathcal{U} \) is an admissible topologic algebra with the topology of Michael algebra, then the property (3) of \(U \) is replaced by its continuity.

For instance, let \(\gamma = \{ z \in \mathbb{C} ; |z| = 1 \} \); one denotes by \(L^p(\gamma)(p < \infty) \) the Banach space of the all complex-valued functions \(f \) on \(\gamma \) such that \(|f|^p \) is integrable with respect to the Lebesgue measure. (Thus a function \(f \in L^p(\gamma) \) if and only if the function \(f^{\sim} \) defined by \(f^{\sim}(\theta) = f(e^{i\theta}) \) for \(\theta \in [-\pi, +\pi] \) belongs to \(L^p\left(\frac{1}{2\pi} \, d\theta\right)\).

In the same way one considers the Banach algebra \(L^\infty(\gamma) \) of all complex-valued essential bounded functions with respect to the Lebesgue measure on \(\gamma \), (i.e. a function \(f \in L^\infty(\gamma) \) if and only if the function \(f^{\sim} \) defined by \(f^{\sim}(\theta) = f(e^{i\theta}) \) belongs to \(L^\infty\left(\frac{1}{2\pi} \, d\theta\right)\).

Let \(p \geq 1 \), as usual, the space \(H^p \) is the set of analytic functions in \(D = \{ z ; |z| < 1 \} \) such that \(f_r \) defined by \(f_r(\theta) = f(re^{i\theta}) \), for \(\theta \in [-\pi, +\pi] \), belongs to \(L^p\left(\frac{1}{2\pi} \, d\theta\right) \) for every \(0 \leq r \leq 1 \), or with the other words, \(H^p \) is a closed subspace of functions \(f \) of \(L^p(\gamma) \) such that \(\int_{-\pi}^{\pi} e^{in\theta} f(e^{i\theta}) \, d\theta = 0 \), \(n = 1, 2, 3, ... \).

Taking \(\mathcal{U} = L^p(\gamma) \) and \(\mathcal{U} = L^\infty(\gamma) \), we define a representation \(V : \mathcal{U} \rightarrow \mathcal{B}(\mathcal{U}) \) by:

\[V_{\varphi} f = \varphi f, \text{ for every } \varphi \in L^\infty(\gamma), f \in L^p(\gamma). \]

From the theorem of M. Riesz ([3], cap. IX) we have \(L^p(\gamma) = H^p \oplus \overline{H^p} \), \(1 < p < \infty \), where \(\overline{H^p} \) is the space of complex-conjugate functions of \(H^p \) becoming zero at \(z = 0 \). Let \(P \) be the continuous projection of \(L^p(\gamma) \) onto \(H^p \). We define the continuous linear map \(U : L^\infty(\gamma) \rightarrow \mathcal{B}(H^p) \) by:

\[U_{\varphi} f = P V_{\varphi} f, \text{ for every } \varphi \in L^\infty(\gamma), f \in H^p. \]

Obviously, \(U \) is a continuous linear map with the above properties (1) and (2). Then an operator \(T \in \mathcal{B}(H^p) \) such that \(U_{\varphi} T = T U_{\varphi} \), for \(\varphi \in L^\infty(\gamma) \) and \(T_{e^{i\theta} f} \) is a \(L^p(\gamma) \)-subspectral operator. For \(p = 2 \), \(V_{e^{i\theta}} \) is the bilateral shift and \(U_{e^{i\theta}} \) is the unilateral shift (see [2]).
BIBLIOGRAPHIE

Academia R.S. Romania
Institutul de Matematică
Calea Grivitei 21
BUCHARESTI 12 (Roumanie)