A dilation theorem for operators on Banach spaces

Elena Stroescu

Mémoires de la S. M. F., tome 31-32 (1972), p. 365-373

<http://www.numdam.org/item?id=MSMF_1972__31-32__365_0>
Introduction. -

Let \(R^+ \) be the set of all non-negative real numbers and \(\mathcal{B}(\mathcal{X}) \) the Banach algebra of all linear bounded operators on a Banach space \(\mathcal{X} \). In this paper, we present a dilation theorem by which an object \(\{\mathcal{X}, \Gamma, U\} \) dilates into \(\{\tilde{\mathcal{X}}, \varphi, P, \tilde{\Gamma}, V\} \); where \(\mathcal{X} \) and \(\tilde{\mathcal{X}} \) are Banach spaces, \(\varphi \) is a bicontinuous isomorphism of \(\mathcal{X} \) into \(\tilde{\mathcal{X}} \), \(P \) a continuous projection of \(\tilde{\mathcal{X}} \) onto \(\varphi(\mathcal{X}) \),

\[\Gamma = \{T_t\}_{t \in R^+} \subset \mathcal{B}(\mathcal{X}) \]

and \(\tilde{\Gamma} = \{\tilde{T}_t\}_{t \in R^+} \subset \mathcal{B}(\tilde{\mathcal{X}}) \) are operator semi-groups, \(U \) is a \(\mathcal{B}(\mathcal{X}) \)-valued linear map on an arbitrary algebra \(\mathcal{A} \) estimated by a submultiplicative functional and \(V \) a \(\mathcal{B}(\tilde{\mathcal{X}}) \)-valued representation on \(\mathcal{A} \) such that

\[V_a \tilde{T}_t = \tilde{T}_t V_a, \text{ for every } a \in \mathcal{A} \text{ and } t \in R^+. \]

This theorem is an extension of some previous results (see \([8], [9]\)) and has arisen from the concern to characterize restrictions of spectral operators on invariant subspaces (or operators which dilate in spectral operators) by a map replacing the spectral representation.

Notations. -

Throughout the following \(C \) denotes the complex plane; \(N = \{0,1,2,\ldots\} \); \(\mathcal{A} \) an arbitrary algebra over \(C \) with unit element denoted by \(1 \); \(K \) a submultiplicative functional of \(\mathcal{A} \) into \(R^+ \) (i.e. \(K_{ab} \leq K_a K_b \) for any \(a, b \in \mathcal{O} \)) such that \(K_1 = 1 \); \(\mathcal{X} \) a Banach space over \(C \); \(\mathcal{B}(\mathcal{X}) \) the Banach algebra of all linear bounded operators on \(\mathcal{X} \) over \(C \); \(I \) the identity operator. Let \(T_1, T_2 \in \mathcal{B}(\mathcal{X}) \) two commuting operators; then one says that \(T_1 \) is quasi-nilpotent equivalent with \(T_2 \) and denotes \(T_1 \sim T_2 \), if \(\lim_{n \to \infty} \| (T_1 - T_2)^n \|^{1/n} = 0 \). A family of operators \(\{T_t\}_{t \in R^+} \subset \mathcal{B}(\mathcal{X}) \) is called semi-group if \(T_0 = I \) and \(T_{t+s} = T_t T_s \) for any \(t \) and \(s \in R^+ \).

THEOREM. - Let \(\{T_t\}_{t \in R^+} \subset \mathcal{B}(\mathcal{X}) \) be a semi-group of operators and \(U: \mathcal{A} \to \mathcal{B}(\mathcal{X}) \) a linear map such that \(U_1 = I \), \(\|U_a\| \leq K_a \), for any \(a \in \mathcal{A} \).

Then, there exists a Banach space \(\tilde{\mathcal{X}} \), an isometric isomorphism \(\varphi \) of \(\mathcal{X} \) into \(\tilde{\mathcal{X}} \), a continuous projection \(P \) of \(\tilde{\mathcal{X}} \) onto \(\varphi(\mathcal{X}) \), a semi-group

\[\tilde{\Gamma} = \{\tilde{T}_t\}_{t \in R^+} \subset \mathcal{B}(\tilde{\mathcal{X}}) \]

and a representation \(V: \mathcal{A} \to \mathcal{B}(\tilde{\mathcal{X}}) \) such that:
(o) \[\|P\| = 1 ; \|\tilde{T}_t\| = \|T_t\| , \text{ for any } t \in \mathbb{R}^+ ; V_1 = \tilde{I} \text{ and } \|V_0\| \leq K_\alpha , \text{ for any } \alpha \in \mathbb{G} . \]

(i) \[V_{t_a}^T = \tilde{T}_t V_a , \text{ for any } \alpha \in \mathbb{G} , \tau \in \mathbb{R}^+ . \]

(ii) \[P_{t_a}^T V_{t_a} \varphi(x) = \varphi(T_{t_a} U x) , \text{ for any } \alpha \in \mathbb{G} , \tau \in \mathbb{R}^+ , x \in \mathcal{F} . \]

(iii) \(\mathfrak{f} \) is the closed vector space spanned by \(\{ \tilde{T}_t^\alpha \varphi(x) ; \alpha \in \mathbb{G} , t \in \mathbb{R}^+, x \in \mathcal{F} \} \).

(iv) Let \(s \in \mathbb{R}^+ \); then we have the following equivalences:

1° \[T_s \varphi(x) = \varphi(T_s x) , \text{ for any } x \in \mathcal{F} ; \]

2° \[\tilde{T}_s^\alpha V_{t_a} \varphi(x) = \tilde{T}_s^\alpha \varphi(x) , \text{ for any } \alpha \in \mathbb{G} , x \in \mathcal{F} ; \]

3° \[U_{s_a} T_{t_a} = T_{s_a} U_{t_a} , \text{ for any } \alpha \in \mathbb{G} . \]

(v) Let \(b \in \mathbb{G} \); then \(V_b \varphi(x) = \varphi(U_b x) , \text{ for any } x \in \mathcal{F} \) is equivalent with \(U_{ab} = U_a U_b , \text{ for any } a \in \mathbb{G} \).

(vi) Let \(\sigma \in \mathbb{R}^+ \) and \(\beta \in \mathbb{G} \) commuting with all the elements of \(\mathbb{G} \) such that \(U_{a\beta} = U_a U_\beta , T_{a\beta} = U_a T_\beta , \text{ for any } a \in \mathbb{G} \); then \(\| (\tilde{T}_s^\sigma - V_\beta)^n \| = \| (T_{s_a} - U_{\beta a})^n \| , \text{ for every } n \in \mathbb{N} . \)

Proof : A) Let us consider the Cartesian product \(\mathcal{I}^{\mathbb{R}^+ \times \mathbb{G}} = \prod_{(t,a) \in \mathbb{R}^+ \times \mathbb{G}} \mathcal{I}^{(t,a)} \) and the direct sum \(\mathcal{I}^{\mathbb{R}^+ \times \mathbb{G}} = \bigoplus_{(t,a) \in \mathbb{R}^+ \times \mathbb{G}} \mathcal{I}^{(t,a)} \), where \(\mathcal{I}^{(t,a)} = \mathcal{I}^{(t,a)} \) for every \(t \in \mathbb{R}^+ , a \in \mathbb{G} \). An element \(y \in \mathcal{I}^{\mathbb{R}^+ \times \mathbb{G}} \) is a family \((y_{t,a})_{(t,a) \in \mathbb{R}^+ \times \mathbb{G}} \) (many times we write \(y = (y_{t,a})_{(t,a)} \)) of components \(y_{(t,a)} = y_{t,a} \in \mathcal{I}^{(t,a)} \), for every \(t \in \mathbb{R}^+ , a \in \mathbb{G} \). If \(y \in \mathcal{I}^{(\mathbb{R}^+ \times \mathbb{G})} \subseteq \mathcal{I}^{\mathbb{R}^+ \times \mathbb{G}} \), then \((y)_{t,a} = y_{t,a} \neq 0 \) for only a finite number of elements \((t,a) \in \mathbb{R}^+ \times \mathbb{G} \).

Let us consider a map:

\[\Theta = (\otimes t,a)_{(t,a) \in \mathbb{R}^+ \times \mathbb{G}} \text{ of } \mathcal{I}^{(\mathbb{R}^+ \times \mathbb{G})} \text{ into } \mathcal{I}^{\mathbb{R}^+ \times \mathbb{G}} \]

defined by:

\[\Theta y = (T_{s,a} U_{t,a} y_{s,b})_{(t,a)} , \text{ for every } y \in \mathcal{I}^{(\mathbb{R}^+ \times \mathbb{G})} . \]

It is easy to see that \(\Theta \) is a well defined linear map. Then, we denote by \(\mathfrak{f} \) the range of \(\Theta \) and by \(x \) an arbitrary element of \(\mathfrak{f} \).
A dilation theorem

For every \(y \in \hat{X} \), we have:
\[
\sigma^{-1}(\{y\}) = \{ y \in (\mathbb{R}^+ \times \mathbb{A}) : \sigma y = y \}.
\]

We define a function \(\omega : \hat{X} \to \mathbb{R}^+ \) by
\[
\omega(y) = \inf \left\{ \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| : y \in \sigma^{-1}(\{y\}) \right\},
\]
for every \(y \in \hat{X} \); let us prove that \(\omega \) is a norm on \(\hat{X} \). Let \(\mu \in \mathbb{C} \) be non-zero, \(y \in \hat{X} \) and \(\Delta(\mu y) = \{ \mu y : y \in \sigma^{-1}(\{y\}) \} \); then we show that \(\sigma^{-1}(\{\mu y\}) = \Delta(\mu y) \). Indeed, let \(\mu y \in \Delta(\mu y) \), i.e. \(y \in \sigma^{-1}(\{y\}) \), then \(\mu y = (\mu T_s)_{s,b} y_{s,b} \), hence \(\omega(y) = \inf_{y \in \sigma^{-1}(\{y\})} \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| = \inf_{y \in \Delta(\mu y)} \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| = \inf_{y \in \sigma^{-1}(\{y\})} \| \mu \| \omega(y) \), i.e. \(\omega(y) = |\mu| \omega(y) \), hence \(\omega(\hat{0}) = 0 \). Then, for \(\mu = 0 \) we have \(\omega(0y) = 0 \) and \(\omega(\hat{y}) = 0 \), for any \(y \in \hat{X} \). Hence \(\omega(y) = |\mu| \omega(y) \), for any \(y \in \hat{X} \), \(\mu \in \mathbb{C} \).

Let \(y_1, y_2 \in \hat{X} \) and
\[
\Delta(y_1 + y_2) = \{ y_1 + y_2 : y_1 \in \sigma^{-1}(\{y_1\}), y_2 \in \sigma^{-1}(\{y_2\}) \},
\]
then obviously we have \(\Delta(y_1 + y_2) \subset \sigma^{-1}(\{y_1 + y_2\}) \) and
\[
\omega(y_1 + y_2) = \inf_{z \in \sigma^{-1}(\{y_1 + y_2\})} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| \leq \inf_{z \in \Delta(y_1 + y_2)} \sum_{s,b} \| T_s \| K_b \| z_{s,b} \| \leq \inf_{y_1 \in \sigma^{-1}(\{y_1\}), y_2 \in \sigma^{-1}(\{y_2\})} \sum_{s,b} \| T_s \| K_b \| y_{s,b}^1 + y_{s,b}^2 \| \leq \inf_{y_1 \in \sigma^{-1}(\{y_1\}), y_2 \in \sigma^{-1}(\{y_2\})} \sum_{s,b} \| T_s \| K_b \| y_{s,b}^1 \| + \inf_{y_2 \in \sigma^{-1}(\{y_2\})} \sum_{s,b} \| T_s \| K_b \| y_{s,b}^2 \| \leq \omega(y_1) + \omega(y_2),\]
for all \(y_1, y_2 \in \hat{X} \).

Then, from the definition of \(\omega \), for every \(y \in \hat{X} \), we have:

1) \(\omega(y) = \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| \), for any \(y \in \sigma^{-1}(\{y\}) \) and \(s,b \),

2) \(1_{\mathbb{R}^+} \leq \sum_{s,b} \| T_s \| K_b \| y_{s,b} \| \omega(y) \), for \(t \in \mathbb{R}^+ \), \(a \in \mathbb{A} \).

Hence \(\omega \) is a norm on \(\hat{X} \); we denote by \(\hat{X} \) the \(\omega \)-completion of \(X \) and the norm on \(\hat{X} \) also by \(\omega \).
B) We define an isomorphism \(\varphi \) of \(\mathfrak{X} \) into \(\mathfrak{R} \times \mathfrak{A} \) by \(\varphi(x) = (T + x)\cdot_{s,b} a, \) for every \(x \in \mathfrak{X} \).

Applying 1) and 2) we get

3) \[||x|| \leq \omega(\varphi(x)) \leq ||x||, \] for any \(x \in \mathfrak{X} \).

Therefore \(\varphi \) is an isometric isomorphism of \(\mathfrak{X} \) into \(\mathfrak{X} \).

We define a projection \(P \) of \(\mathfrak{X} \) onto \(\varphi(\mathfrak{X}) \), by \(P\hat{\mathfrak{X}} = \varphi(\hat{\mathfrak{X}}) \), for all \(\hat{\mathfrak{X}} \in \hat{\mathfrak{X}} \). Applying 3) and 2), we get \(\omega(P) = \omega(\varphi(\hat{\mathfrak{X}})) \leq ||\hat{\mathfrak{X}}|| \leq \omega(\hat{\mathfrak{X}}) \), i.e.

\(\omega(P) \leq \omega(\hat{\mathfrak{X}}) \), for any \(\hat{\mathfrak{X}} \in \hat{\mathfrak{X}} \). Hence, \(P \) can be extended by continuity to a continuous projection of \(\mathfrak{X} \) onto \(\varphi(\mathfrak{X}) \), that will be denoted by the same symbol.

Let now \(\tau \in \mathfrak{R}^+ \); then for every \(\mathfrak{Y} \in \hat{\mathfrak{X}} \) we put

\[\tilde{T}_\tau \mathfrak{Y} = (T_{s,b} + \tau) \cdot_{s,b} y_{s,b} = (T_{s,b} + \tau) \cdot_{s,b} y_{s,b} = \mathfrak{X}, \]

where we denote \(s + \tau = s; y_{s,b} = y_{s-b}, \) for \(\sigma \geq \tau \) and \(y_{s,b} = 0, \) for \(0 \leq \sigma < \tau \), with \(b \in \mathfrak{A} \).

We see easily that \(\tilde{T}_\tau \) is a well defined linear map of \(\hat{\mathfrak{X}} \) into \(\hat{\mathfrak{X}} \). Let us prove that also it is continuous.

For every \(\mathfrak{Y} \in \hat{\mathfrak{X}} \), denoting \(\Delta(\tau, \mathfrak{Y}) = \{ \mathfrak{X} \in \hat{\mathfrak{X}}(\mathfrak{R}^+ \times \mathfrak{A}); \mathfrak{X}_{s,b} = y_{s-b}, \sigma \geq \tau, \sigma \geq \tau \}, \) we see that \(\Delta(\tau, \mathfrak{Y}) \) is \(\mathfrak{R}^+ \)-bounded. Then, we have \(\omega(\tilde{T}_\tau) = \inf_{\mathfrak{X} \in \Delta(\tau, \mathfrak{Y})} \| T_{s,b} \|_{s,b} \), \(\omega(\tilde{T}_\tau) \leq \omega(\hat{\mathfrak{Y}}) \), i.e.

\[\omega(\tilde{T}_\tau) \leq \| T_{s,b} \|_{s,b} \), for any \(\mathfrak{Y} \in \hat{\mathfrak{X}} \).

Thus, for every \(\tau \in \mathfrak{R}^+ \), \(\tilde{T}_\tau \) can be extended by continuity to an element of \(\mathfrak{A}(\mathfrak{X}) \), that will be denoted by the same symbol. Then, we see easily that \(P\tilde{T}_\tau \varphi(x) = \varphi(T_{s,b} x), \) for any \(x \in \mathfrak{X} \).
A dilation theorem

Hence \(\| T^x \| = \omega(\varphi(T^x)) = \omega(P^\alpha \varphi(x)) \leq \omega(\varphi(x)) \leq \| T^x \| = \| T^x \| \), i.e.

6) \(\| T^x \| \leq \| T^x \| \), for any \(x \in X \). At last, we see easily that \(\{ T^T \}_{T \in R^+} \) is a semi-group of operators, that we denote by \(\hat{T} \).

C) Let us define a representation \(\hat{V} \). Let \(\alpha \in G \); then for every \(\hat{y} \in \hat{X} \), we put

\[
V_{\alpha} \hat{y} = (T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s)_{t \in R^+} =
\]

\[
= (T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s)_{t \in R^+}, \quad \text{where}
\]

\[\Omega = \{ (s,b) : \alpha = s \}, \quad \text{and} \quad y_{s,b} = \sum_{s,b \in \Omega} y_{s,b} t_s y_{s,b} t_s, \quad \text{for} \ s \in R^+, \ c \in C.\]

The map \(V_{\alpha} : \hat{X} \rightarrow \hat{X} \) is well defined. Indeed, let \(\hat{y}_1 = \hat{y}_2 \in \hat{X} \); then there exists \(y_1, y_2 \in X(R^+ \times G) \) such that \(\hat{y}_1 = \Theta y_1 \) and \(\hat{y}_2 = \Theta y_2 \), hence

\[
T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s = T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s, \quad \text{for any} \ t \in R^+, \ a \in G.\]

Then, \(T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s = T_t \sum_{s,b \in \Omega} T_s U_{ab} y_{s,b} t_s y_{s,b} t_s, \quad \text{for} \ t \in R^+ \) with \(a \in G \). We see easily that for every \(a \in G \), \(V_{\alpha} : \hat{X} \rightarrow \hat{X} \) is a linear map and \(V_{\alpha} \hat{y} = \hat{y} \), for any \(\hat{y} \in \hat{X} \). Moreover, \(V : G \rightarrow \mathcal{L}(\hat{X}) \) is a representation (see [4]); for a vector space \(X \), \(\mathcal{L}(X) \) denotes the algebra of all linear maps of \(X \) into \(X \). Now, we prove that \(V_{\alpha} : \hat{X} \rightarrow \hat{X} \) is continuous, for every \(a \in G \). Let \(a \in G \), \(\hat{y} \in \hat{X} \) and \(\Lambda(a, \hat{y}) = \{ u \in \mathcal{L}(R^+ \times G) : u_{s,c} = \sum_{s,b \in \Omega} y_{s,b} t_s y_{s,b} t_s, \ y_{s,b} \in \Theta^{-1}(\{ \hat{y} \}) \} \), then we see \(\Lambda(a, \hat{y}) \subset \Theta^{-1}(\{ V_{\alpha} \hat{y} \}) \). Therefore, we have:

\[
\omega(V_{\alpha} \hat{y}) = \inf_{u \in \Theta^{-1}(\{ V_{\alpha} \hat{y} \})} \sum_{s,c} \| T_s K_c u_{s,c} \| \leq \inf_{u \in \Theta^{-1}(\{ \hat{y} \})} \sum_{s,c} \| T_s K_c u_{s,c} \| = \inf_{u \in \Theta^{-1}(\{ \hat{y} \})} \sum_{s,c} \| T_s K_c u_{s,c} \| = K_{\alpha} \inf_{y \in \Theta^{-1}(\{ \hat{y} \})} \sum_{s,c} \| T_s K_c u_{s,c} \| = K_{\alpha} \omega(\hat{y});
\]

i.e. for every \(a \in G \) we get

7) \(\omega(V_{\alpha} \hat{y}) \leq K_{\alpha} \omega(\hat{y}) \), for any \(\hat{y} \in \hat{X} \). Hence, \(V_{\alpha} \) can be extended by continuity to an element of \(\mathcal{B}(\hat{X}) \) that will be denoted by \(V_{\alpha} \), for every \(a \in G \).
Thus, \((0)\) is completely proved. The property \((i)\) is immediate, since for every \(\alpha \in \mathcal{G}\) and \(\tau \in \mathbb{R}^+\), we have

\[
\tilde{T}_\tau V_\alpha \tilde{y} = (T_\tau \begin{array}{c} s, b \\ s, b \end{array} U_{a+b} y_{s,b}, t,a = V_\alpha \tilde{T}_\tau \tilde{y},
\]

for any \(\tilde{y} \in \tilde{x}\). Using the definitions of \(\varphi\), \(P\), \(V_\alpha\) and \(\tilde{T}_\tau\), for \(\alpha \in \mathcal{G}\), \(\tau \in \mathbb{R}^+\), we obtain immediately \((ii)\), \((iii)\) and \((v)\).

D) Let us prove \((iv)\). From

\[
\tilde{T}_s \varphi(x) = (T_s U_s x), t,a\quad \text{and} \quad \varphi(T_s x) = (T_s U_s T_s x), t,a,
\]

we see that \(1^0\) and \(3^0\) are equivalent.

Now choosing \(a = 1\) in \(2^0\), and using

\[
P \tilde{T}_\tau \varphi(x) = \varphi(T_\tau x),
\]

for \(x \in \mathcal{I}\) (see \((ii)\)), we get \(1^0\).

Conversely, taking into account of \((ii)\) and writing \(1^0\) with \(U_s x\) instead of \(x\), for \(\alpha \in \mathcal{G}\), we get \(2^0\).

At last, we show \((vi)\). Let \(\sigma \in \mathbb{R}^+\), and \(\beta \in \mathcal{G}\), as in the assumption, also let

\[
n \in \mathbb{N}\quad \text{and} \quad \tilde{y} \in \tilde{x};
\]

then, we write:

\[
(\tilde{T}_o - V_\beta)^n \tilde{y} = \sum_{k=0}^{n} (-1)^{n-k} (k) \tilde{T}_o U^n \tilde{y} =
\]

\[
= \sum_{k=0}^{n} (-1)^{n-k} (k) (T_s U_s T_s U_{a+b} y_{s,b}, t,a = 0 \quad \text{for} \quad \tilde{y} \in \tilde{x},
\]

where \(v\) is defined by

\[
v_{s,b} = \sum_{k=0}^{n} (-1)^{n-k} (k) T_s U_{a+b} y_{s,b},
\]

for \(y \in \tilde{x}\), \(s \in \mathbb{R}^+\), and \(b \in \mathcal{G}\).

Denoting by \(\Delta(\sigma,\beta,n,\tilde{y}) = \) the set of all element \(v\) so defined, we see that:

\[
\Delta(\sigma,\beta,n,\tilde{y}) \subset \Theta^{-1}(\tilde{T}_o - V_\beta)^n \tilde{y}.
\]

Then, we have:

\[
\omega((\tilde{T}_o - V_\beta)^n \tilde{y}) = \inf_{v \in \Delta(\sigma,\beta,n,\tilde{y})} \sum_{s,b} \|T_s \| \|K_b\| \|v_{s,b}\| =
\]

\[
\leq \inf_{v \in \Delta(\sigma,\beta,n,\tilde{y})} \sum_{s,b} \|T_s \| \|K_b\| \|v_{s,b}\| =
\]

\[
= \inf_{y \in \Theta^{-1}(\tilde{y})} \sum_{s,b} \|T_s \| \|K_b\| \sum_{k=0}^{n} (-1)^{n-k} (k) T_s U_{a+b} y_{s,b} =
\]

\[
\leq \|\tilde{x}\| \sum_{k=0}^{n} (-1)^{n-k} (k) T_s U_{a+b} \inf_{y \in \Theta^{-1}(\tilde{y})} \sum_{s,b} \|T_s \| \|K_b\| \|y_{s,b}\| =
\]
A dilation theorem

\[n \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} u \beta^{n-k} \omega(y) \]. Therefore, for every \(n \in \mathbb{N} \),
we have \(\omega((T_0 - V_B)^n y) \leq \| (T_0 - U_B)^n \| \omega(y) \), for any \(y \in \mathcal{X} \); hence
\[\| (T_0 - V_B)^n \| \leq \| (T_0 - U_B)^n \| . \]
Conversely, since \((T_0 - V_B)^n \varphi(x) = \varphi((T_0 - U_B)^n x) \),
for any \(x \in \mathcal{X} \), we get easily \(\| (T_0 - V_B)^n \| \leq \| (T_0 - U_B)^n \| . \)

DEFINITION. Let \(\{ \mathcal{X}, \varphi, P, T, V \} \) be an object, where \(\mathcal{X} \) is a Banach space,
\(\varphi \) a bicontinuous isomorphism of \(\mathcal{X} \) into \(\mathcal{X} \), \(P \) a continuous projection of \(\mathcal{X} \) onto \(\varphi(\mathcal{X}) \), \(T = (T_t)^{+} \in \mathcal{B}(\mathcal{X}) \) a semi-group of operators and \(V : \mathcal{O} \to \mathcal{B}(\mathcal{X}) \) a representation such that \(V_\lambda = 1 \), \(V_\alpha T_t = T_t V_\alpha \), for any \(\alpha \in \mathcal{O} \), \(t \in \mathbb{R}^+ \), is called an \(\mathcal{O} \)-spectral dilation of \(\{ \mathcal{X}, \varphi, P, T, V \} \) if the property
(ii) is satisfied. An \(\mathcal{O} \)-spectral dilation is called minimal if also we have (iii).

Remark 1. When \(\mathcal{O} \) is a Michael algebra and \(U : \mathcal{O} \to \mathcal{B}(\mathcal{X}) \) a linear continuous map,
then \(K \) is the seminorm which estimates \(U \).

Remark 2. Let \(T \in \mathcal{B}(\mathcal{X}) \); then the above theorem is obviously true with
\(\{ T^n \}_{n \in \mathbb{N}} \) instead of \(\{ T_t \}_{t \in \mathbb{R}^+} \).

Application. Let \(\mathcal{U} \) be an admissible algebra in the sense of [1]. Then, an operator \(T \in \mathcal{B}(\mathcal{X}) \) is called \(\mathcal{U} \)-subspectral (see [9]) if there is a Banach space containing \(\mathcal{X} \) as a closed subspace, a continuous projection \(P \) of \(\mathcal{X} \) onto \(\mathcal{X} \),
a \(\mathcal{U} \)-spectral operator \(T \in \mathcal{B}(\mathcal{X}) \) having a \(\mathcal{U} \)-spectral representation \(V : \mathcal{O} \to \mathcal{B}(\mathcal{X}) \)
with the properties \(V_\lambda \mathcal{X} = \mathcal{X} \) and \(\mathcal{P} V_\lambda = \mathcal{P} V_\lambda \mathcal{X} \), for any \(\lambda \in \mathcal{U} \), \(x \in \mathcal{X} \), such that \(\mathcal{P} \mathcal{X} = T \).

We have the following characterization for \(\mathcal{U} \)-subspectral operators: an operator \(T \in \mathcal{B}(\mathcal{X}) \) is \(\mathcal{U} \)-subspectral if and only if there is a linear map
\(U : \mathcal{U} \to \mathcal{B}(\mathcal{X}) \) with the properties :

\[\begin{align*}
1. & \quad U_1 = I , \\
2. & \quad U_{\mathcal{P}z} = U_\mathcal{P} U_z , \\
3. & \quad \| U_\mathcal{P} \| \leq M L_\mathcal{P} \quad \text{for any} \quad \mathcal{P} \in \mathcal{U} ,
\end{align*} \]
(where \(M \) is a positive constant and \(L : \mathcal{U} \to \mathcal{B}(\mathcal{X}) \), a linear map satisfying}
(j) \(\|L_{fg}\| \leq \|L_f\| \cdot \|L_g\| \), for any \(f, g \in \mathcal{U} \) and the function

(jj) \(\xi \rightarrow L_{f_{1\xi}} \) is analytic in \(\text{supp } f \), for every \(f \in \mathcal{U} \);

\(\mathcal{U} \) is a Banach space, such that \(T U \cdot f = U \cdot T f \), for any \(f \in \mathcal{U} \) and \(U \cdot T \), (see [8] and [9]).

If \(\mathcal{U} \) is an admissible topologic algebra with the topology of Michael algebra, then the property (3) of \(U \) is replaced by its continuity.

For instance, let \(\gamma = \{ z \in \mathbb{C} ; |z| = 1 \} \); one denotes by \(L^p(\gamma) \) the Banach space of the all complex-valued functions \(f \) on \(\gamma \) such that \(|f|^p \) is integrable with respect to the Lebesgue measure. (Thus a function \(f \in L^p(\gamma) \) if and only if the function \(\tilde{f} \) defined by \(\tilde{f}(\theta) = f(e^{i\theta}) \) for \(\theta \in [-\pi, +\pi] \) belongs to \(L^p\left(\frac{1}{2\pi} \, d\theta \right) \).

In the same way one considers the Banach algebra \(L^\infty(\gamma) \) of all complex-valued essential bounded functions with respect to the Lebesgue measure on \(\gamma \), (i.e. a function \(f \in L^\infty(\gamma) \) if and only if the function \(\tilde{f} \) defined by \(\tilde{f}(\theta) = f(e^{i\theta}) \) belongs to \(L^\infty\left(\frac{1}{2\pi} \, d\theta \right) \).

Let \(p \geq 1 \), as usual, the space \(H^p \) is the set of analytic functions in \(D = \{ z ; |z| < 1 \} \) such that \(f_n \) defined by \(f_n(\theta) = f(re^{i\theta}) \), for \(\theta \in [-\pi, +\pi] \), belongs to \(L^p\left(\frac{1}{2\pi} \, d\theta \right) \) for every \(0 \leq r \leq 1 \), or with the other words, \(H^p \) is a closed subspace of functions \(f \) of \(L^p(\gamma) \) such that \(f^{(n)} e^{in\theta} f(e^{i\theta}) = d\theta = 0 \), \(n = 1, 2, 3, \ldots \).

Taking \(\mathfrak{X} = L^p(\gamma) \) and \(\mathcal{M} = L^\infty(\gamma) \), we define a representation \(V : \mathcal{M} \rightarrow \mathfrak{B}(\mathfrak{X}) \) by:

\[V(\varphi) f = \varphi f, \text{ for every } \varphi \in L^\infty(\gamma), f \in L^p(\gamma). \]

From the theorem of M. Riesz ([3], cap. IX) we have \(L^p(\gamma) = H^p \oplus \overline{H^p} \), \(1 < p < \infty \), where \(\overline{H^p} \) is the space of complex-conjugate functions of \(H^p \) becoming zero at \(z = 0 \). Let \(P \) be the continuous projection of \(L^p(\gamma) \) onto \(H^p \).

We define the continuous linear map \(U : L^\infty(\gamma) \rightarrow \mathfrak{B}(H^p) \) by:

\[U(\varphi) f = P V(\varphi) f, \text{ for every } \varphi \in L^\infty(\gamma), f \in H^p. \]

Obviously, \(U \) is a continuous linear map with the above properties (1) and (2). Then an operator \(T \in \mathfrak{B}(H^p) \) such that \(U(\varphi) T = T U(\varphi) \), for \(\varphi \in L^\infty(\gamma) \) and \(T e^{i\theta} \) is a \(L^p(\gamma) \)-subspectral operator. For \(p = 2 \), \(V e^{i\theta} \) is the bilateral shift and \(U e^{i\theta} \) is the unilateral shift (see [2]).
A dilation theorem

BIBLIOGRAPHIE

Academia R.S. Romania
Institutul de Matematică
Calea Grivitei 21
BUCHAREST 12 (Romania)