M. ORHON
T. TERZIOGLU

Diagonal operators on spaces of measurable functions

Mémoires de la S. M. F., tome 31-32 (1972), p. 265-270

<http://www.numdam.org/item?id=MSMF_1972__31-32__265_0>
1. Introduction.

We denote by \(L \) the set of equivalence classes of real-valued measurable functions on a fixed measure space \((X, \Sigma, \mu) \). \(L \) is an algebra with unit and a vector lattice with respect to almost everywhere pointwise operations. The space of essentially bounded real-valued functions \(L^\infty = L^\infty(\mu) \) is a normed subalgebra of \(L \) and \(L \) is a module over \(L^\infty \) with respect to almost everywhere pointwise multiplication. A subspace \(M \) of \(L \) is a solid sublattice of \(L \) if and only if \(M \) is an \(L^\infty \)-submodule of \(L \) \({}^4\). We will call an \(L^\infty \)-submodule \(M \) of \(L \) a locally convex \(L^\infty \)-module if \(M \) is a locally convex vector space whose topology is given by a family of seminorms \(p \) satisfying

\[
p(af) \leq ||a||_\infty p(f) \quad a \in L^\infty, f \in M.
\]

Such a seminorm is called a scalar \(L^\infty \)-seminorm \({}^7\). Since a scalar \(L^\infty \)-seminorm defined on a solid sublattice of \(L \) is a lattice seminorm and vice versa, \(M \) is a locally convex \(L^\infty \)-module if and only if it is a locally convex vector lattice and solid in \(L \) \({}^4\). The Banach spaces \(L^p(\mu), 1 \leq p \leq \infty \), and Köthe spaces equipped with Köthe topologies \({}^{12}\) are examples of locally convex \(L^\infty \)-modules.

A linear operator \(T \) mapping a subspace \(M \) of \(L \) into another subspace of \(L \) will be called diagonal if there is a locally measurable real-valued function \(g \) on \(X \) such that \(Tf = gf \) for every \(f \) in \(M \). A linear operator \(T \) mapping an \(L^\infty \)-submodule \(M \) into another \(L^\infty \)-submodule of \(L \) will be called \(L^\infty \)-linear if \(T(af) = aT(f) \) for every \(a \) in \(L^\infty \) and \(f \) in \(M \).

From now on \(M \) and \(N \) will denote locally convex \(L^\infty \)-modules (or equivalently, locally convex solid sublattices of \(L \)). Further \(N \) is assumed to be order complete. If \(A \) is a subset of \(L \), then \(A^+ \) denotes the set of positive elements of \(A \).

We present our results without proofs; a full account will appear elsewhere. Finally, we wish to express our gratitude to the Scientific and Technical Research Council of Turkey for their support.
2. L^∞-linear operators.

Let \mathcal{C} be the set of positive continuous linear operators from M into N. Then $L(M,N) = \mathcal{C} - \mathcal{C}$ is a solid sublattice of the space $L^0(M,N)$ of order bounded linear operators from M into N. By $\mathcal{H}(M,N)$ we denote the space of continuous L^∞-linear operators from M into N.

Lemma. $\mathcal{H}(M,N)$ is a sublattice of $L(M,N)$.

A locally convex L^∞-module M is said to have the dominated convergence property if for every sequence (f_n) in L with $|f_n| \leq g$ for some g in M and $\lim f_n(x) = f(x)$ on X, we have $\lim f_n = f$ in M.

Proposition 1. Let A be a Köthe space, T a Köthe topology on A and A^α the α-dual of A. Consider the following conditions:

- **a)** T is compatible with the duality (\cdot, \cdot^α).
- **b)** If $f_n \in A$ and $f_n(x) \to 0$ on X then $\lim f_n = 0$ in $\Lambda(T)$.
- **c)** $\Lambda(T)$ has the dominated convergence property.
- **d)** If p is one of the scalar L^∞-seminorms defining the topology T on A and $f \in A$, then for every $\epsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies $p(x \in f) < \epsilon$.

We have $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$.

We will also consider the following condition.

- **(A)** for every $f \in M^+$ there is an increasing sequence (s_n) of positive simple functions of bounded support such that $s_n(x) + f_n(x)$ on X and $\lim s_n = f$ in M.

The Banach spaces $L^p(\mu)$, $1 \leq p < \infty$, satisfy this condition.

Proposition 2. If a Köthe space $\Lambda(T)$ has the dominated convergence property, it satisfies (A).

From now on we assume $L^1(\mu)' = L^\infty(\mu)$.

A diagonal operator is certainly L^∞-linear. Under certain assumptions the converse is also true.

Proposition 3.

- **a)** Let M satisfy condition (A). If for every set of finite measure B, the characteristic function $\chi_B \in M$, then every element of $\mathcal{H}_0(M,N)$ is a diagonal operator.

- **b)** If M is a Köthe space which has the dominated convergence property, then every element of $\mathcal{H}_0(M,N)$ is a diagonal operator.
Remark: The hypothesis of the proposition is satisfied by \(L^p(u) \), \(1 \leq p < \infty \).

On the other hand, if \(T : L^\infty \to N \) is \(L^\infty \)-linear, since \(T(f) = T(1)f \) for every \(f \in L^\infty \), it is also diagonal.

The set of idempotents in \(L^\infty \) is denoted by \(I_\infty \) and non-negative finite linear combinations of elements of \(I_\infty \) are dense in \((L^\infty)^+\). If \(\chi \in I_\infty \), then \(\chi' = 1 - \chi \in I_\infty \) also.

PROPOSITION 4. There is a projection \(P \) of \(\mathcal{L}(M,N) \) onto \(\mathcal{N}_\infty(M,N) \) with \(0 \leq P \leq I \).

The projection is constructed in successive steps. First, for \(T \in C \) and \(f \in M^+ \) we define an element of \(N \) by

\[
P(T)(f) = \sum_{I} \{ \chi T(\chi f) + \chi' T(\chi' f) \}.
\]

We prove that \(P(T) \) is additive on \(M^+ \) and then extend it to a positive linear operator on \(M \). In the next step \(P \) is proved to be additive on \(C \) and then extended to \(\mathcal{L}(M,N) \).

Remark 1. If we define an \(L^\infty \)-module structure on \(\mathcal{L}(M,N) \) by letting \((a.T)(f) = T(af) \) for \(f \) in \(M \) and \(a \) in \(L^\infty \), then \(P \) is also \(L^\infty \)-linear.

Remark 2. If we take \(\mu \) to be the counting measure on the set of positive integers, a Köthe space becomes a solid sequence space \([5]\). Certain operators on sequence spaces can be represented by infinite-matrices \([8; p. 20]\). If \((t_{ij}) \) is the matrix which represents the operators \(T \), then \(P(T) \) is the operator represented by the diagonal of the matrix \((t_{ij}) \).

Let \(M \) and \(N \) be Banach sublattices of \(L \), and \(\mathcal{N}(M,N) \) the space of nuclear operators from \(M \) into \(N \) with the nuclear norm \(r(\cdot) \). Every nuclear operator can be written as the difference of two positive nuclear operators. If \(u_i \in M^+ \) and \(g_i \in N \), \(i = 1, \ldots, n \), by \(\sum u_i \otimes g_i \) we denote the nuclear operator which sends each \(f \in M \) to \(\sum u_i(f) g_i \). We consider the following conditions on a Banach \(L^\infty \)-module \(Q \).

(B) Given \(f \in Q \) and \(\varepsilon > 0 \), there is \(\delta > 0 \) such that \(\mu(E) < \delta \) implies \(\|f_{|E^c}\| < \varepsilon \).

(C) The support of each \(f \in Q \) is \(\sigma \)-finite.

(D) \(Q \) has the dominated convergence property.

By \(\mathcal{N}_\infty(M,N) \) we will denote the space of nuclear \(L^\infty \)-linear operators from \(M \) into \(N \) with the nuclear norm.
PROPOSITION 5. - Let \(M \) and \(N \) the Banach \(L^\infty \)-modules. If \(M \) satisfies (B), \(N \) satisfies (C) and (D) and further for every finite family of atoms \(\{x_1, \ldots, x_n\}, \ u \in M' \) and \(g \in N \) we have
\[
(\forall n) \quad r(\sum_{k=1}^{n} u \otimes x_k g) \leq \|\sum_{k=1}^{n} u_{x_k g}\| \quad \|\sum_{k=1}^{n} u_{x_k g}_{x_k g}\|
\]
then the projection \(P \) maps \(\eta(M,N) \) onto \(\eta_\sigma(M,N) \) such that \(r(P(T)) \leq r(T) \) for each \(T \in \eta(M,N) \).

Remark: If \(M' \) has property (B) instead of \(M \), \(M \) has property (C) instead of \(N \) or if \(M' \) has property (D) instead of \(N \), the result still holds.

3. Diagonal and nuclear diagonal operators on \(L^p \)-spaces.

Let \(M \) and \(N \) be two normed \(L^\infty \)-modules and \(M \otimes N \) the complete projective tensor product as defined by Grothendieck [3]. Let \(K \) be the smallest closed subspace of \(M \otimes N \) containing all elements of the form \((af \otimes g) - (f \otimes ag)\) for every \(a \in L^\infty \), \(f \in M \) and \(g \in N \). The quotient space \(M \otimes N/K \) with the quotient norm is called the normed \(L^\infty \)-tensor product of \(M \) and \(N \), and denoted by \(M \otimes_\sigma N \).

If \(f \otimes g \) denotes \(f \otimes g \mod K \) for each \(f \in M \), \(g \in N \), then for \(u \in M \otimes_\sigma N \) the norm is given by \([4 \text{ and } 9]\)
\[
\gamma(u) = \inf \{ \sum_{i=1}^{m} \| f_i \| \| g_i \| : u = \sum_{i=1}^{m} f_i \otimes_\sigma g_i, f_i \in M, g_i \in N \}.
\]

With a measure space \((X, \Sigma, \mu)\) we associate for every real number \(s > 0 \) a weighted counting measure space as follows: \(\psi \) is the set of equivalence classes of atoms of \(\mu \) together with the equivalence class of sets of \(\mu \)-measure zero. We let \(\mu_a = \mu(A) \) for any \(A \in \alpha \), where \(a \in \psi \). For any subset \(S \) of \(\psi \) we define
\[
\psi^S(S) = \sum_{a \in S} \mu_a^S.
\]

PROPOSITION 6. - (Harte). Let \(1/p + 1/q = 1/r \leq 1 \) where \(1 \leq p, q \leq \infty \). Then \(L^p(\mu) \otimes_\sigma L^q(\mu) \) is isometrically \(L^r \)-isomorphic with \(L^r(\mu) \).

In the result complementary to this we have to use the weighted counting measure constructed above.

PROPOSITION 7. - Let \(s = 1/p + 1/q > 1 \) where \(1 \leq p, q \leq \infty \). Then \(L^p(\mu) \otimes_\sigma L^q(\mu) \) is isometrically \(L^s \)-isomorphic with \(L^s(\mu^S) \).

This result can be found in [6]. Next we give characterizations of diagonal operators between \(L^p \)-spaces as another \(L^p \)-space. Again we have two cases, the
Diagonal operators 269

first due to Harte [4] and the second to Orhon [6].

PROPOSITION 8. - Let 1/q - 1/p = 1/r where 1 ≤ p, q ≤ ∞. Then \(H^\infty(L^p, L^q) \) is isometrically \(L^\infty \)-isomorphic with \(L^r(\mu) \).

In the result complementary to this we again need the weighted counting measure.

PROPOSITION 9. - Let 1 ≤ p < q < ∞. Then \(H^\infty(L^p, L^q) \) is isometrically \(L^\infty \)-isomorphic with \(L^q(\mu) \).

Remark: Diagonal operators between \(L^p \)-spaces were characterized by A. Tong [11]. G. Crofts [1] has considered diagonal operators between sequence spaces.

Using the projection constructed in proposition 5 and its properties discussed in proposition 5, we can define a continuous linear operator from \(L^p(\mu) \otimes L^q(\mu) \) onto the space \(\mathcal{H}(L^p, L^q) \) of diagonal nuclear operators. This enables us to characterize \(\mathcal{H}(L^p, L^q) \) by using propositions 6 and 7.

PROPOSITION 10. - \(\mathcal{H}(L^p, L^q) \) is isometrically isomorphic with

(i) \(L^1(\mu^{1/r}) \), if \(1 ≤ q < p < ∞ \) and \(1/r = 1/q - 1/p \).

(ii) \(L^1(\psi_q) \), if \(1 ≤ p = q < ∞ \) where \(\psi_q \) denotes the set of equivalence classes of atoms of \(\mu \).

(iii) \(L^s(\mu^{1-s}) \), if \(1 ≤ p < ∞ \) and \(s = pq/pq - q + p \).

(iv) \(L^p(\mu^{1-p}) \), if \(1 < p < ∞ \) and \(q = ∞ \).

Remark: In proposition 10 the cases \(\mathcal{H}(L^\infty, L^p) \), \(1 ≤ p < ∞ \) and \(\mathcal{H}(L^1, L^\infty) \) are not covered. In the case \(\mathcal{H}(L^1, L^\infty) \) our method breaks down, since in this case the projection \(p \ (\text{cap.}) \) does not take nuclear operators to nuclear diagonal operators. Nuclear diagonal operators on \(L^p \)-spaces were characterized by A. Tong [11].

BIBLIOGRAPHIE

Mathematics Department
Middle East Technical University
ANKARA (Turquie)