STANISLAW KWAPIEN

On operators factorizable through \(L_p \) space

<http://www.numdam.org/item?id=MSMF_1972__31-32__215_0>

© Mémoires de la S. M. F., 1972, tous droits réservés.

L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques
http://www.numdam.org/
ON OPERATORS FACTORIZABLE THROUGH L_p SPACE

by

Stanislaw KWAPIEN

In this paper we give some necessary and sufficient conditions for an operator between Banach spaces be factorizable through L_p space, also conditions for factorizability through a subspace, a quotient and a subspace of a quotient of L_p. Hence, we obtain characterizations of Banach spaces isomorphic with complemented subspaces, with subspaces, with quotients and with subspaces of quotients of L_p. These conditions are given in terms of p-absolutely summing and p-integral operators. We use the general theory of ideals of operators, necessary definitions and facts of the theory given in § I. For more detailed treatment the reader is referred to the paper [3], by A. Grothendieck, where it is exposed in frame of tensor product theory, and also to papers of A. Pietsch. We end the paper with some applications.

§ I. Normed ideals of operators.

In the sequel $L(E,F)$ will denote all bounded linear operators from Banach space E into Banach space F and $\|u\|$ the norm of an operator.

Let for each pair of Banach spaces E, F be given a linear subspace $A(E,F)$ of $L(E,F)$ and $\alpha_{E,F}$ a norm on $A(E,F)$ such that

1. if $u \in A(E,F)$, $v \in L(X,E)$, $w \in L(E,Y)$ then $wuv \in A(X,Y)$ and $\alpha_{X,Y}(wuv) \leq \alpha_{E,F}(u) \|w\| \|v\|

2. if $u \in A(E,F)$ then $\alpha_{E,F}(u) \geq \|u\|

3. if $u \in L(E,F)$ is one dimensional then $u \in A(E,F)$ and $\alpha_{E,F}(u) = \|u\|

Then we say that $|A, \alpha|$ is a normed linear ideal of operators.

In further we shall write $\alpha(u)$ instead of $\alpha_{E,F}(u)$.

A normed linear ideal $|A, \alpha|$ is defined to be maximal if it satisfies the following condition:

if for $u \in L(E,F)$ there exists a constant M such that for each finite dimensional Banach spaces X, Y and operators $v \in L(X,E)$, $w \in L(F,Y)$ it is $\alpha(wuv) \leq M \|w\| \|v\|$ then $u \in A(E,F)$ and $\alpha(u) \leq M.$
We say that \(u \in A^*(E,F) \) if there exists a constant \(M \) such that for each finite dimensional Banach spaces \(X, Y \) and operators \(v \in L(X,E), w \in L(Y,F) \) and \(z \in A(Y,X) \) there holds
\[
\text{trace } (wuvz) \leq M \|w\| \|v\| \alpha(z).
\]
The least such constant \(M \) is denoted by \(\alpha^*(u) \).

It is easy to check that \(|A^*, \alpha^*| \) is a maximal normed ideal of operators. We call it the dual ideal of \(|A, \alpha| \). Moreover, given normed linear ideal \(|A, \alpha| \) we define the following ideals:

- **right injective envelope of \(|A, \alpha| \)**, denoted \(|A\backslash, \alpha\backslash| \), as follows:
 \(u \in A\backslash(E,F) \) if for some Banach space \(G \) and isometric embedding \(i \) of \(F \) into \(G \) it is \(iu \in A(E,G) \),
 \(a\backslash(u) = \inf a(iu) \), where infimum is taken over all such \(G \) and \(i \).

- **left injective envelope of \(|A, \alpha| \)**, denoted by \(|A/\alpha| \), as follows:
 \(u \in A/\alpha(E,F) \) if for some Banach space \(H \) and normed surjection \(j \) of \(H \) on \(E \) (i. e. \(j \) maps the unite disk in \(H \) on the unite disk in \(E \)) \(u j \in A(H,F) \),
 \(a/\alpha(u) = \inf a(uj) \), \(H,j \)

- **right projective envelope of \(|A, \alpha| \)**, denoted by \(|A/, \alpha/| \), as follows:
 \(u \in A/,\alpha/ (E,F) \) if for each Banach space \(H \) and a normed surjection \(j \) of \(H \) onto \(F \) there exists \(v \in A(E,H^\ast) \) such that \(iu = ttjv \), \(i \) is the cannonical injection of \(F \) in \(F'' \) and \(ttj \) is the second adjoint of \(j \).

- **left projective envelope of \(|A, \alpha| \)**, denoted by \(|A\backslash, \alpha\backslash| \), as follows:
 \(u \in A\backslash(E,F) \) if for each Banach space \(G \) and isometric embedding \(i \) of \(E \) into \(G \) there exists \(v \in A(G,F^\ast) \) such that \(ju = vi \), \(j \) is the cannonical injection of \(F \) in \(F'' \).

One can verify the following

- **I.1.** if \(|A, \alpha| \) is maximal then each of the above defined ideals is maximal also,
- **I.2.** if \(|A, \alpha| \) is maximal then \(|(A^\ast)^\wedge, (\alpha^\ast)^\wedge| \) is equal to \(|A, \alpha| \),
- **I.3.** \(|(A/\alpha)^\wedge, (\alpha/\alpha)^\wedge| \) is equal to \(|A^\ast, \alpha^\ast| \),
- **I.4.** \(|(A\backslash, \alpha\backslash)^\wedge, (\alpha\backslash, \alpha\backslash)^\wedge| \) is equal to \(|A^\ast, \alpha^\ast| \).

Example I. Ideal of p-absolutely summing operators, \(|\Pi_p, \pi_p| \)

\(u \in \Pi_p(E,F) \) if for some constant \(M \) for each \(x_1, \ldots, x_n \in E \) there holds
\[
\sum_{i=1}^{n} \|u(x_i)\|^p \leq M \sup_{x' \in E'} \sum_{i=1}^{n} \langle x_i, x' \rangle \|x_i\| \|x'\|,
\]
\(\pi_p(u) \) is the least such constant \(M \).
Example 2. Ideal of p-integral operators, $|I_p, ^p_p|

$u \in I_p(E,F)$ if there exists a probability measure space $(\Omega, \mathcal{M}, \mu)$ and operators $v \in L(E, L^\infty(\Omega, \mu))$ and $w \in L(L_p(\Omega, \mu), F')$ such that $w v = i u$, where j is the canonical injection of $L^\infty(\Omega, \mu)$ into $L_p(\Omega, \mu)$ and i the canonical injection of F into F'.

$I_p(u)$ is defined as $\inf \|v\| \|w\|$, infimum is taken over all such probability measure spaces $(\Omega, \mathcal{M}, \mu)$ and operators v and w.

It was proved by A. Pietsch that

\[I_p \backslash \gamma_p \backslash \frac{1}{p} \text{ is equal to } |I_p, ^p_p|, \]
\[I_p \backslash \gamma_p \backslash \frac{1}{p} \text{ is equal to } |I_q, ^q_q| \left(\frac{1}{p} + \frac{1}{q} = 1 \right). \]

\S 2. Ideal of L_p factorizable operators

By L_p space we shall mean any Banach space isometric with the space $L_p(\Omega, \mu)$ for some measure space $(\Omega, \mathcal{M}, \mu)$.

We say that $u \in \Gamma_p(E,F)$ if for some L_p space there exist operators $v \in L(E, L_p)$ and $w \in L(L_p(F'), F')$ such that $i u = w v$, i is the canonical injection of F into F'.

$\gamma_p(u)$ is defined as $\inf \|v\| \|w\|$, v and w are as in the definition of $\Gamma_p(E,F)$.

Proposition I. Let $1 \leq p < \infty$, $\gamma_p(\Gamma_p, \gamma_p)$ is a maximal normed ideal of operators.

Proof. We shall make use of the following equality

\[\inf \left(\frac{1}{p} t^p a^p + \frac{1}{q} t^q b^q \right) \]

which is valid for positive numbers a, b and q defined by $\frac{1}{p} + \frac{1}{q} = 1$.

Let for $k = 1, 2$ $u_k \in \Gamma_p(E,F)$ and let $i u_k = v_k$, where $v_k \in L(E, L_p(\Omega_k, \mu_k))$, $w_k \in L(L_p(\Omega_k, u_k), F')$ and $\|v_k\| \|w_k\| = \gamma_p(u_k) + \varepsilon$ (cf. the definition of $|\Gamma_p, \gamma_p|$).

Let Ω_0 be the disjoint sum of Ω_1 and Ω_2 and let $u_1 = \frac{1}{2}(u_1 + u_2)$.

We define $v_0 \in L(E, L_p(\Omega_0, u_0))$ and $w_0 \in L(L_p(\Omega_0, u_0), F')$ as follows $v_0(x)$ is a function on Ω_0 which coincides with $v_1(x)$ on Ω_1 and with $v_2(x)$ on Ω_2, $w_0(x) = v_1(f_1) + w_2(f_2)$, where $f_1 = f|\Omega_1$ and $f_2 = f|\Omega_2$.

Simple computations show that $i(u_1 + u_2) = w_0 v_0$ and

\[\|v_0\| \leq \frac{1}{2} \|v_1\|^p + \frac{1}{2} \|v_2\|^p \]
\[\|w_0\| \leq \left(\frac{1}{2} \|v_1\|^q + \frac{1}{2} \|v_2\|^q \right)^{\frac{1}{q}}. \]
Applying 2.1 we obtain
\[\|v_0\| \|w_0\| \leq p^{-1}\|v_0\|^p + q^{-1}\|w_0\|^q. \]
Hence and by 2.2, 2.3
\[\|v_0\| \|w_0\| \leq \frac{1}{2}\|v_1\|^{p-1} + \frac{4}{p}\|w_1\|^{q-1} + \frac{1}{2p^{q-1}}\|v_2\|^p + \frac{4}{q}\|w_2\|^q. \]
But we can replace \(v_1 \) by \(t_1 v_1 \) and \(w_1 \) by \(t_1^{-1} v_1 \) and the same with \(v_2 \) and \(w_2 \).
Taking the infimum with respect to \(t_1, t_2 \) the right side of the above inequality is equal to \(\|v_1\| \|w_1\| + \|v_2\| \|w_2\| \).
This proves that \(u_1 + u_2 \in r_p(E,F) \) and \(\gamma_p(u_1 + u_2) \leq \gamma_p(u_1) + \gamma_p(u_2) \).
If \(u \in r_p(E,F) \) then \(tu \) also and \(\gamma_p(tu) = |t|\gamma_p(u) \). Thus \(r_p(E,F) \) is a linear space and \(\gamma_p \) a norm on it.
Properties 1., 2., 3. are obvious.
The maximality of \(r_p, \gamma_p \) may be obtained by the methods from the theory of ultraproducts of Banach spaces, developed by J. Krivine and D. Dacunha-Castelle, cf. [1].

Proposition 2. Let \(1 < p \leq \infty, 1/p + 1/q = 1 \). Then

\(u \in r_p(E,F) \) if and only if there exist Banach spaces \(G \) and operators

\(v \in H_q(E,G), t v \in H_p(F', G') \) such that \(u = wv \),

\(\gamma_p(u) = \inf \gamma_q(v) \pi_p(w) \), infimum is taken over all such \(G,v \) and \(w \).

Proof. Suppose \(u \in r_p(E,F) \). By the definition for each \(h \in L(l^1_p,E), g \in L(F,l^1_p) \) and \(i \)-identity operator in \(l^1_p \) there holds

\[|\text{trace}(guh)| \leq \frac{1}{p}\gamma_p(u) \|g\| \|h\| \gamma_p(i). \]

Since \(\gamma_p(i) = 1 \) this is equivalent to: for each \(x_1, \ldots, x_n \in E, y'_1, \ldots, y'_n \in F' \)

\[\sum_{i=1}^n <u(x_i), y'_i> \leq \gamma_p(u) \sup_{x' \in K_1} \left(\sum_{i=1}^n <x_i, x'>^{q-1} \sup_{y \in K_2} \left(\sum_{i=1}^n |<y, y'_i>|^p \right)^{1/p} \right), \]

where \(K_1 \) and \(K_2 \) are unite discs in \(E' \) and \(F' \) correspondingly.

Applying 2.1 we get

\[\sum_{i=1}^n <u(x_i), y'_i> \leq \gamma_p(u) \sup_{x' \in K_1, y \in K_2} \left(\sum_{i=1}^n |<x_i, x'>|^q + \sum_{i=1}^n |<y, y'_i>|^p \right). \]

By the theorem on separations of cones in locally convex spaces it is equivalent to the existence of a probability measure \(\mu \) on \(K \) - the cartesian product of \(K_1 \) and \(K_2 \) such that for each \(x \in E \) and \(y' \in F' \)
Operators factorizable through L_p-spaces

$$|\langle u(x), y' \rangle| \leq \gamma_p(\mu)(q^{-1} \int_K |\langle x, x' \rangle|^q d\mu(x') + p^{-1} \int_K |\langle y, y' \rangle|^p d\mu(y')).$$

Replacing x by tx and y' by $t^{-1}y'$ and taking infimum we have by 2.1

$$|\langle u(x), y' \rangle| \leq \gamma_p(\mu) \left(\frac{1}{q} \int_K \langle x, x' \rangle^q d\mu(x') \right)^{\frac{1}{q}} \left(\frac{1}{p} \int_K |\langle y, y' \rangle|^p d\mu(y') \right)^{\frac{1}{p}}.$$

Let $v \in L(E, L_q(K, \mu))$ be defined by $v(x)(x'y') = \langle x, x' \rangle$ on K, similarly $w_0 \in L(F', L_p(K, \mu))$ is defined by $w_0(y')(x'y'') = \langle y', y'' \rangle$ on K.

Let G denote the closure of $v(E)$ in $L_q(K, \mu)$ and H the closure of $w_0(F')$ in $L_p(K, \mu)$.

By Pietsch theorem 1.5 $v \in \Pi_q(E, G)$, $w_0 \in \Pi_p(F', H)$ and $\pi_q(v), \pi_p(w_0) \leq 1$.

The inequality 2.4 implies the existence of an operator $z \in L(G, H')$ such that $\|z\| \leq \gamma_p(\mu)$ and $t_{w_0}z = iv$, i being the canonical injection of F into F''. The image of G by $t_{w_0}z$ is in F, so let $v = t_{w_0}z$ be considered as a member of $L(G, F)$. Then

$$\pi_p(t_v) \leq \pi_p(w_0) \|z\| \leq \gamma_p(\mu).$$

Thus G, v and w satisfy the required conditions of Proposition 2, moreover

$$\pi_q(v) \pi_p(t_w) \leq \gamma_p(\mu).$$

This proves the necessity.

Now assume $u = vw$, where $v \in \Pi_q(E, G)$ and $t_w \in \Pi_p(F', G')$.

Let X and Y be finite dimensional Banach spaces, $h \in L(X, E)$, $g \in L(F, Y)$ and $z \in \Pi_p(Y, X)$. We have to prove

$$|\text{trace}(zguh)| \leq \pi_q(v) \pi_p(t_w) \gamma_p(z) \|g\| \|h\|.$$

Let $z = z_1 z_2$, $z_1 \in L(L_p, X)$, $z_2 \in L(Y, L_p)$ and $\|z_1\| \|z_2\| \leq \gamma_p(z) + \epsilon$.

Then $vzh_1 \in \Pi_q(L_p, G)$ and $t(z_2g)w \in \Pi_p(L_p, G')$. It was proved by A. Perrson [8], that if $r \in \Pi_p(L_p, G')$ then $r \in \Pi_p(G, L_p)$ and $\gamma_p(r) \leq \Pi_p(t_r)$. Applying this we obtain that

$$z_2gw \in \Pi_p(G, L_p) \text{ and } \gamma_p(z_2gw) \leq \gamma_p(t(z_2gw)).$$

Since Π_p, i_p is the dual ideal of Π_q, π_q we have

$$|\text{trace}(z_2gwzh_1)| \leq i_p(z_2gw)\pi_q(vzh_1) \leq \pi_q(t_w g t z_2) \pi_q(vzh_1).$$

Hence
Because \(\| z_1 \| \| z_2 \| \leq \gamma_p(z) + \varepsilon \) and \(\varepsilon \) is arbitrary small, this ends the proof.

Corollary 1. \(u \in \mathcal{L}(E,F) \) is factorizable through \(\mathcal{L}_p \) space (i.e., \(u \in \mathcal{L}_p(E,F) \)) if and only if for each Banach space \(G \) and \(v \in \mathcal{H}_q(F,G) \) it is \(t(vu) \in \mathcal{I}_q(G',E') \).

Proof. Let \(u \in \mathcal{L}_p(E,F) \) and \(v \in \mathcal{H}_q(F,G) \). By Proposition 2 if \(t_w \in \mathcal{H}_p(E',G') \) then \(wv \in \mathcal{H}_p(F,E) \). From this we deduce that \(t(vu) \in \mathcal{H}_p(G',E') \) and hence \(t(vu) \in \mathcal{I}_q(G',E') \).

Conversely, if \(u \) satisfies the condition of Corollary then \(u \) belongs to the dual ideal of \(\mathcal{H}_p, \mathcal{H}_q \). In view of the maximality of \(\mathcal{H}_p, \mathcal{H}_q \), by 1.2, \(u \) is its member.

Corollary 2. Let \(1 \neq p \neq \infty \). \(E \) is isomorphic with a complemented subspace of \(\mathcal{L}_p \) if and only if for each Banach space \(G \) and \(v \in \mathcal{H}_q(E,G) \) it is \(t_v \in \mathcal{I}_q(G',E') \).

Proof. By Corollary 1 we obtain that the identity operator in \(E \) belongs to \(\mathcal{L}_p(E,E) \). This implies that \(E \) is reflexive and \(E \) isomorphic with a complemented subspace of \(\mathcal{L}_p \).

§ 3. Some related ideals.

By \(\mathcal{S}_p \) space, resp. \(\mathcal{Q}_p \) space, resp. \(\mathcal{SQ}_p \) space, we shall mean any Banach space isometric with a subspace of \(\mathcal{L}_p \), resp. with a quotient of \(\mathcal{L}_p \), resp. with a subspace of a quotient of \(\mathcal{L}_p \).

We say that Banach space is of \(\mathcal{S}_p \) type, resp. \(\mathcal{Q}_p \) type, resp. \(\mathcal{SQ}_p \) type, if it is isomorphic with \(\mathcal{S}_p \) space, resp. \(\mathcal{Q}_p \) space, resp. \(\mathcal{SQ}_p \) space.

One can easily verify the following properties

3.1 \(u \in \mathcal{L}_p(E,F) \) if and only if for some \(\mathcal{S}_p \) space there exist \(v \in \mathcal{L}(E,\mathcal{S}_p) \) and \(w \in \mathcal{L}(\mathcal{S}_p,F) \) such that \(u = vw \). Moreover \(\gamma_p(u) = \inf \| v \| \| w \| \), infimum is taken over all such \(\mathcal{S}_p \) spaces, \(v \) and \(w \).
\[|\gamma_p, \gamma_p| \text{ is denoted by } |\gamma_p, \sigma_p|, \]

\[u \in /\gamma_p(E,F) \text{ if and only if for some } Q_p \text{ space there exist } v \in L(E,Q_p) \text{ and } w \in L(Q_p,F^*) \text{ such that } iu = wv. \text{ Moreover} \]

\[/\gamma_p(u) = \inf \|v\| \|w\|, \text{ infimum is taken over all such } Q_p \text{ spaces, } v \text{ and } w. \]

The ideal \(|/\gamma_p, /\gamma_p| \) is denoted by \(|\gamma_p, \gamma_p| \).

\[u \in /\gamma_p \setminus (E,F) \text{ if and only if for some } SQ_p \text{ space there exist } v \in L(E, SQ_p) \text{ and } w \in L(SQ_p,F) \text{ such that } u = wv. \text{ Moreover} \]

\[/\gamma_p(u) = \inf \|v\| \|w\|, \text{ infimum is taken over all such } SQ_p \text{ spaces, } v \text{ and } w. \]

The ideal \(|/\gamma_p \setminus , /\gamma_p| \) is denoted by \(|\gamma_p, \sigma_p| \).

Taking into account the properties 1.3 - 1.6 and Proposition 2 we get

Proposition 3. \(u \in \gamma_p^*(E,F) \) if and only if there exist Banach space \(G \) and operators \(v \in \gamma_q(G,F) \) and \(w \in \Pi_q(F,G') \) such that \(iu = wv \), is the canonical injection of \(\gamma_p \) in \(\gamma_p^* \). \(\gamma_p(u) = \inf \gamma_q(v) \Pi_q(tw), \text{ infimum is taken over all such } G, v \text{ and } w. \)

Similar arguments to those used in the proofs of Corollaries 1, 2 give

Proposition 4. \(u \in \gamma_p^*(E,F), \text{ i.e. } u \text{ is factorizable through } G \text{ space,} \)

if and only if for each Banach space \(G \) and \(v \in \gamma_q(F,G) \) it is \(\gamma_q(vu) \subseteq \gamma_q(G', E') \)

Corollary 3. \(u \in \gamma_p(E,F), \text{ i.e. } u \text{ is factorizable through } G \text{ space,} \)

if and only if for each Banach space \(G \) and \(v \in \gamma_q(F,G) \) it is \(\gamma_q(vu) \subseteq \gamma_q(G', E') \).

The dual results to these are the following

Proposition 4. \(u \in \gamma_p^*(E,F) \) if and only if there exist Banach space \(G \)

and operators \(v \in \Pi_q(E,G) \) and \(tw \in \Pi_q(F', G') \) such that \(u = wv, \)

\(\gamma_p(u) = \inf \gamma_q(v) \Pi_q(tw), \text{ infimum is taken over all such } G, v \text{ and } w. \)

Corollary 5. \(u \in \gamma_p(E,F), \text{ i.e. } u \text{ is factorizable through } G \text{ space,} \)

if and only if for each Banach space \(G \) and \(v \in \gamma_q(F,G) \) it is \(t(vu) \subseteq \gamma_q(G', E') \)
Corollary 6. Let $1 \leq p \leq \infty$. E is of Q_p type if and only if for each Banach space G and operator $v \in \Pi_p^q(E, G)$ it is $t^p v \in \Pi^q (G', E')$.

Now, combining the above results and again the properties 1.3 - 1.6, we arrive at

Proposition 5. $u \in \mathcal{M}_p^p(E, F)$ if and only if there exist Banach space G and operators $v \in \Pi_q^p(E, G)$ and $w \in \Pi_q^p(F, G)$ such that $iu = tv$ is the canonical injection of F into F,

$$
\varphi_p^q(u) = \inf \Pi_q^p(v) \Pi_p^q(tw), \text{ infimum is taken over all such } G, v \text{ and } w.
$$

Corollary 7. $u \in \mathcal{M}_p^p(E, F)$, i.e. u is factorizable through SQ_p space, if and only if for each Banach space G and $v \in \Pi_q^p(F, G)$ it is $t^q(vu) \in \Pi_q^p (G', E')$.

Corollary 8. E is of SQ_p type if and only if for each Banach space G and an operator $v \in \Pi_q^p(E, G)$ it is $t^q v \in \Pi_q^p (G', E')$.

The following result is an answer to Problem 6 of [7].

Theorem 1. Let $1 \leq s \leq p \leq r \leq \infty$ and let $u \in L_p(L_r, L_s)$, then u is factorizable through L_p space.

Proof. By Corollary 2 it is enough to prove that $t^q v \in \Pi_q^p (L_r^p, L_s^r)$ whenever $v \in \Pi_q^p (L_s^r, G)$. If $v \in \Pi_q^p (L_s^r, G)$ then $v \in \Pi_s^p (L_s^r, G)$, because $q \leq s'$, where s' is defined by the equality $1_s + 1_s = 1$. By A. Persson theorem $t^q v \in \Pi_s^p (G', L_s^r)$ and hence $t^q v \in \Pi_q^p (G', L_r^p)$. But for $s, p < r \leq 2$

$I_q^r (F, L_r^p)$ is equal to $I_q^r (F, L_r^p)$ for each Banach space F.

This is obtained from the dual equality $\Pi_q^p (L_r^p, F) = \Pi_p^q (L_r^p, F)$ for $s, p < r \leq 2$, which is an easy consequence of Theorem 4 of [5], also cf. [10].

This proves the theorem in the case of $s, p < r \leq 2$. The case $2 \leq s, p \leq r$ is obtained by considering the adjoint operator $t^q v$. The remaining case may be also derived from Corollary 2. Since this case was proved by J. Lindenstrauss and A. Pelczynski we omit it, cf. [7].

If (μ, \mathcal{M}, μ) is a measure space and E is Banach space then by $L_p(E, \mu, \mu)$, briefly $L_p(E)$, we denote Banach space of all measurable vector valued in E functions on μ which are strongly p-integrable.
Theorem 2. \(E \) is of \(SQ_p \) type if and only if for each operator \(u \in L_p(L_p, L_p) \) there corresponds an operator \(U \in L(L(E), L_p(E)) \) such that

\[
<U(f), x'> = u(<f, x'>) \quad \text{for each} \quad x' \in E' \quad \text{and} \quad f \in L_p(E).
\]

Proof. Let us observe that Theorem holds for \(E = L_q \) and that if it holds for any Banach space then for its subspaces and quotients also. These two observations prove the necessity, since \(SQ_p \) space is a subspace of a quotient of \(L_p \) space.

Let \(p \neq 1, \infty \). By Corollary 8 it is enough to prove that if \(G \) is Banach space and \(v \in I_q(E, G) \) then \({}^tv \in \Pi_q(G', E') \). By Theorem 1 of [5] \(E' \) separable \({}^tv \in \Pi_q(G', E') \) if and only if for each \(w \in L(G, L_q) \) the operator \(wv \) is \(q \)-decomposable, cf. [5]. Let \(iv = v_2jv_1 \), where \(v_1 \in L(E, L_q) \), \(v_2 \in L(L_q G'') \) and \(j \) is the canonical injection of \(L_q \) into \(L_q \), be a factorization of \(q \)-integral operator, cf. § 1. Let \(w \in L(G, L_q) \) and let us denote by \(\hat{w} \) the canonical extension of \(w \) to an element of \(L(G, L_q) \). The operator \(jv_1 \) may be represented in the form \(<', f'> \) for some fixed \(f' \in L_q(E') \), i.e. \(jv_1(x) = <x, f'> \). Now, let \(U \in L(L_p(E), L_p(E)) \) denote the operator corresponding to the operator \({}^t(\hat{w}v_2) \in L(L_p, L_p) \), according to the assumption of Theorem. Then \({}^tU \in L(L_q(E'), L_q(E')) \); and it is seen that \(wv = \hat{w}v_2jv_1 \) is represented by \(<', {}^tU(f') > \) and this denotes that \(wv \) is \(q \)-decomposable operator. This ends the proof. For \(p \neq 1, \infty \).

The case of \(p = 1, \infty \) is much more simpler, and we omit it. Let us observe that in this case each Banach space is of \(SQ_p \) type.

The case when \(E' \) is not separable follows from the fact that if each adjoint separable quotient of \(E \) is of \(SQ_p \) type then \(E \) is of \(SQ_p \) type.

Remark 1. All the propositions and corollaries of § 3 remain true if we replace everywhere in their formulations "Banach space \(G \)" by "\(L_q \) space", resp. by "\(L_p \) space". We do not know if it is true with Proposition 2, cf. Problem 1. If we replace "Banach space \(G \)" by "\(L_q \) space" in Corollary 4 then it becomes a characterization of subspaces of \(L_p \), given independently by J. Holub, cf. [4].

Remark 2. In this paper we started with the ideal \(\Gamma_p, \gamma_p \) and then using the transformations of ideals defined in § 1 some related ideals were introduced, cf. § 3. It is possible to give a full list of ideals which may be obtained in this way. There is only finite number of them. In the case of \(p = 1, 2, \infty \) it was done by A. Grothendieck, cf. [3].

Remark 3. Another version of Theorem 2 is the following...
Theorem 2'. E is of SQ$_p$ type if and only if there exists a constant M such that
for each matrix $(a_{i,j})$ defining an operator $u \in L(l_p, l_p)$ and each sequence (x_i) of elements from E there holds
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{i,j}| x_j^p \leq M \| u \| \sum_{i=1}^{\infty} \| x_i \|^p.$$

Remark 4. Theorem 2' is especially interesting in the case of $p = 2$. Because spaces S_2, Q_2 and SQ$_2$ are Hilbert spaces we obtain a characterization of Banach spaces isomorphic with Hilbert space.

For $p = 2$ Corollary 4 coincides with a theorem proved by J. Cohen [2] and S. Kwapien [6].

Problem 1. Let $1 < p < \infty$. Is it true that Banach space of S_p type as well as of Q_p type is isomorphic with a complemented subspace of L_p?

Problem 2. Is the space $L_2(L_p)$ of SQ$_p$ type for $s < r < 2$ or $2 < r < s$?

Problem 3. Let $1 < p < \infty$, and let $u \in \Gamma_p(E,F)$, i.e. $iu = vw$ where $v \in L(E,L_p)$, $w \in L(L_p,F')$ and i is the canonical injection of F into F'. Can u be represented in the form $u = w' v'$, where $v' \in L(E,L_p)$ and $w' \in L(L_p,F)$?

REFERENCES

Stanislaw KWAPIEN
WARSAW
ul. Pereca 13/19 m 1412
(Pologne)