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Abstract. In this paper, we present and study a mixed variational method in order to approximate,
with the finite element method, a Stokes problem with Tresca friction boundary conditions. These
non-linear boundary conditions arise in the modeling of mold filling process by polymer melt, which
can slip on a solid wall. The mixed formulation is based on a dualization of the non-differentiable term
which define the slip conditions. Existence and uniqueness of both continuous and discrete solutions of
these problems is guaranteed by means of continuous and discrete inf-sup conditions that are proved.
Velocity and pressure are approximated by P1 bubble-P1 finite element and piecewise linear elements
are used to discretize the Lagrange multiplier associated to the shear stress on the friction boundary.
Optimal a priori error estimates are derived using classical tools of finite element analysis and two
uncoupled discrete inf-sup conditions for the pressure and the Lagrange multiplier associated to the
fluid shear stress.
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1. Introduction

No-slip hypothesis at fluid-wall interface leads to good agreement with experimental observations for Newto-
nian fluids which is no longer true for non-Newtonian fluid [27]. For example, in the flow of certain high molecular
weight linear polymers through circular dies, the exit flow rate has been found to be a discontinuous function of
pressure drop over a certain range of shear rates [22]. This observation is consistent with the hypothesis that the
velocity at the wall does not vanish. Several studies have been made and showed not only that slip takes place
when a threshold is reached but also it’s the origin of many defects and instabilities in the polymer injection
process [32]. The Tresca boundary conditions used in this paper could model this phenomenon, since it states,
in one hand, that when the magnitude of the fluid shear stress, on some part of the fluid boundary, reaches
a given threshold value, then the tangential fluid velocity may be different to zero, i.e. fluid may slip on this
part of the boundary. In the other hand, when the fluid shear stress magnitude is strictly below the threshold
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1 Université Tunis El Manar, Laboratoire de Modélisation Mathématiques et Numérique dans les Sciences de l’Ingénieur, Ecole
Nationale d’Ingénieurs de Tunis, B.P. 32, 1002 Tunis, Tunisie.
mekki.ayadi@enis.rnu.tn; mohamedkhaled.gdoura@lamsin.rnu.tn
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value, then the tangential velocity is zero. These boundary conditions are completed with a non penetration
condition (i.e. normal velocity is equal to zero). Let us mention that a slip boundary condition could be used
also in modeling the blood flow through a diseased artery (see [31] and the reference therein).

The first attempt to integrate this kind of boundary conditions in a numerical simulation of a fluid flow is
due to Doltsinis et al. [12] and Fortin and Côté [14]. Since that, many papers were published simulating various
flows with such boundary conditions, see [29] and references therein. In [18], numerical results were obtained
using the augmented Lagrangian method and a block relaxation algorithm.

The mathematical analysis of this class of non linear boundary conditions, that leads to variational inequality
problems, has been introduced by Fujita in [15], where he investigated some hydrodynamics problems with leak
and slip boundary conditions involving subdifferential property. In [16], Fujita studied the variational inequality
of the second kind formulation (where the velocity and pressure are the only unknowns) of the Stokes problem
with slip boundary conditions which leads to a non-differentiable problem. He established the existence and
uniqueness of a weak solution to the resulting problem. Saito in [30, 31] studied the regularity of Fujita’s weak
solution. Recently, based on the penalty method, finite element approximation of the non-differentiable problem
introduced by Fujita has been proposed in [25] and several error estimates with strong regularity assumption
on the velocity field are obtained.

The aim of this work is to contribute to the numerical analysis of Stokes problems with Tresca (slip) boundary
conditions in the two dimensional case. Our first purpose is to introduce another Lagrange multiplier related to
the tangential component of the fluid stress on the slip zone, that will transform the non-differentiable problem
into a smooth one, and to prove that this new formulation has a unique solution. This method has been
previously used in the study of contact problems with friction in elasticity (see for example [23]). In the present
work, we adapt it in order to take into account the presence of two Lagrange multipliers: the fluid pressure,
associated to the incompressibility condition and defined in the whole domain, and the tangential component of
the fluid stress, defined only on a part of the fluid domain boundary. Our second goal is to propose a mixed finite
element approximation of the continuous three-field mixed problem and to carry out the convergence analysis
in order to obtain optimal a priori error estimates.

The paper is organized as follows. In Section 2, the main notations and the functional framework are presented.
In Section 3, we introduce the equations modeling the Stokes problem with Tresca boundary conditions. Then,
in Section 4, we establish and study a continuous mixed variational formulation. In this section a coupled
continuous inf-sup condition, involving the fluid pressure and the new Lagrange multiplier associated to the
Tresca boundary conditions, is proved. Using this result an existence and uniqueness result is established in the
continuous case. The following section is devoted to study a mixed finite element approximation and a coupled
discrete inf-sup condition is proved, which allows us to state an existence and uniqueness result for the discrete
formulation. In Section 6, a priori error estimates are derived. We show an optimal convergence order of h3/4

with H2(Ω) regularity assumption on the velocity.

2. Preliminary and notations

We need to set some notations and recall some functional tools necessary for our analysis. Let Ω ⊂ R2 be an
open bounded set with Lipschitz boundary ∂Ω.

In what follows, the Euclidean norm of a point x ∈ R2 is denoted by |x|. The Lebesgue space L2(Ω) is
endowed with the norm:

||p||0 =
(∫

Ω

|p(x)|2 dΩ
) 1

2

, ∀p ∈ L2(Ω),

corresponding to the scalar product:

(p, q) =
∫

Ω

p(x) q(x)dΩ,



ERROR ESTIMATES FOR STOKES PROBLEM WITH TRESCA FRICTION CONDITIONS 1415

while L2
0(Ω) is the closed subspace of L2(Ω) defined by:

L2
0(Ω) =

{
p ∈ L2(Ω) such that

∫
Ω

p(x) dΩ = 0
}
.

We denote by L∞(Ω) the space of bounded functions on Ω which will be endowed with the norm

||ψ||L∞(Ω) = ess sup
x∈Ω

|ψ(x)|, ∀ψ ∈ L∞(Ω).

We make constant use of the standard Sobolev space Hm(Ω), m ≥ 1, provided with the norm:

||ψ||m =

⎛
⎝ ∑

0≤|α|≤m

||∂αψ||20

⎞
⎠

1/2

,

where α is a multi-index.
Fractional Sobolev spaces H�(Ω), � ∈ R+\N are defined by

H�(Ω) = {ϕ ∈ Hm(Ω) such that ||ϕ||�,Ω < +∞} ,

with

||ϕ||�,Ω =

⎛
⎝||ϕ||2m +

∑
|α|=m

∫
Ω

∫
Ω

(∂αϕ(x) − ∂αϕ(y))2

|x − y|2+2θ
dΩx dΩy

⎞
⎠

1
2

with m being the integer part of � and θ its decimal parts.
The closure in H�(Ω) of D(Ω), the space of infinitely differentiable functions with compact support in Ω, is

denoted by H�
0 (Ω).

On any measurable part Γ ⊆ ∂Ω we introduce the space H
1
2 (Γ ) as follows

H
1
2 (Γ ) =

{
ϕ ∈ L2(Γ ) such that ||ϕ|| 1

2 ,Γ < +∞
}
,

where

||ψ|| 1
2 ,Γ =
(
||ψ||20,Γ +

∫
Γ

∫
Γ

(ψ(x) − ψ(y))2

|x − y|2 dΓxdΓy

) 1
2

and ||ψ||0,Γ =
(∫

Γ

|ψ(s)|2 dΓ
) 1

2

.

We denote by H
1
2
00(Γ ) the subspace of H

1
2 (Γ ) given in Lions and Magenes [26] or in Kikuchi and Oden [24] (see

Chap. 5, p. 84). The topological dual space of H
1
2 (Γ ) (respectively H

1
2
00(Γ )) is denoted H− 1

2 (Γ ) (respectively

H
− 1

2∗ (Γ )) and we denote by 〈·, ·〉 the duality pairing. The norm in H− 1
2 (Γ ) is defined by

||μ||− 1
2 ,Γ = sup

ϕ∈H
1
2 (Γ ),ϕ �=0

〈μ, ϕ〉
||ϕ|| 1

2 ,Γ

, ∀μ ∈ H− 1
2 (Γ ).

If there is no confusion we use the same notation for H− 1
2∗ (Γ ) norm, i.e.

||μ||− 1
2 ,Γ = sup

ϕ∈H
1
2
00(Γ ),ϕ �=0

〈μ, ϕ〉
||ϕ|| 1

2 ,Γ

, ∀μ ∈ H
− 1

2∗ (Γ ).
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The Cartesian product of d previous spaces and their elements are denoted by bold character. The respective
norms are introduced as follows:

||v||m =

(
d∑

i=1

||vi||2m

)1/2

v = (v1, . . . , vd) ∈ Hm(Ω),

||w|| 1
2 ,Γ =

(
d∑

i=1

||wi||21
2 ,Γ

)1/2

w = (w1, . . . , wd) ∈ H
1
2 (Γ ),

||μ||− 1
2 ,Γ =

(
d∑

i=1

||μi||2− 1
2 ,Γ

)1/2

μ = (μ1, . . . , μd) ∈ H− 1
2 (Γ ).

Let X ⊂ H1(Ω) be a subspace of functions vanishing on an open non-empty portion Γ0 ⊂ ∂Ω, meas(Γ0) > 0:

X =
{
v ∈ H1(Ω) such that v|Γ0

= 0
}
.

Let d = 2. We introduce the energetic norm ||| · |||1 in X corresponding to the scalar product

(u,v)1 =
∫

Ω

d∑
i,j=1

εij(u)εij(v)dΩ,

where εij(u) is the ijth component of the linearized strain rate tensor

ε(u) =
1
2
(
∇u + ∇tu

)
.

From the Korn’s inequality it follows that || · ||1 and ||| · |||1 are equivalent in X .
We denote by n (resp. t) the outward unit normal vector (resp. unit tangent vector) to ∂Ω and un, respec-

tively ut, the normal, respectively the tangential, component of u.
The stress vector is equal to σn where σ is the Cauchy stress tensor defined by:

σ = 2νε(u) − pδ,

where p is the hydrostatic pressure, δ is the identity tensor and ν is the kinematic fluid viscosity. We denote by
σn (resp. σt) the normal (resp. tangential) component of σn, i.e. σn = σn.n and σt = σn.t.

Remark 2.1. We use the notation ut and σt for the tangential components of the velocity and the stress vector
since in the two-dimensional case (d = 2), they are scalar quantities.

3. Setting the stokes problem with nonlinear boundary conditions

Let us consider a convex open bounded set Ω ⊂ R2. The boundary ∂Ω is the union of two non overlapping
portions Γ0 and Γ such that Γ ∩Γ 0 = ∅. No-slip boundary conditions are prescribed on Γ0 while Γ is where the
fluid may slip. The formulation of the Stokes problem with nonlinear boundary conditions of Tresca friction type
consists in finding a velocity vector field u and a pressure p satisfying the following equations and conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−2div(νε(u)) + ∇p = f in Ω,
div(u) = 0 in Ω,

u = 0 on Γ0,
un = 0 on Γ ,
|σt| ≤ g on Γ ,

|σt| < g ⇒ ut = 0 on Γ ,
|σt| = g ⇒ ∃k ≥ 0 such that ut = −kσt on Γ .

(3.1)
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Here f ∈ L2(Ω) is the external volume force acting on the fluid, and g ∈ L∞(Γ ), g ≥ 0 a.e., is the threshold
function.

The next result is needed to derive the variational problem (see [5]).

Proposition 3.1. The following equivalence holds on Γ :
{

|σt| < g ⇒ ut = 0
|σt| = g ⇒ ∃k ≥ 0 s.t. ut = −kσt

⇐⇒
{
|σt| ≤ g
σt ut + g|ut| = 0. (3.2)

Then, using (3.2), one can derive the variational formulation of (3.1):

⎧⎨
⎩

Find (u, p) ∈ Vdiv(Ω) × L2
0(Ω) such that∀v ∈ V(Ω)

a(u,v − u) − (p, div(v)) + j(v) − j(u) ≥ L(v − u),
(3.3)

with
V(Ω) = {v ∈ H1(Ω), v|Γ0 = 0,v.n|Γ = 0},

Vdiv(Ω) = {v ∈ V(Ω) , div(v) = 0 in Ω},

a(u,v) =
∫

Ω

2νε(u) : ε(v) dΩ,

L(v) =
∫

Ω

f .v dΩ,

and

j(v) =
∫

Γ

g|vt| dΓ.

The existence and uniqueness of a solution to (3.3) was established in [16] while a regularity result was proved
in [30, 31]:

Theorem 3.2. Problem (3.3) has a solution (u , p ) ∈ Vdiv(Ω) × L2(Ω). Moreover, u is unique.

In addition, if
∫

Ω

p dΩ = 0, i.e. p ∈ L2
0(Ω), then, it comes that p is unique.

In addition, if Γ0 and Γ are connected components of class C 2 and C 3, respectively, and g ∈ L∞(Γ )∩H1(Γ )
then it comes that (u , p ) ∈ H2(Ω) ×H1(Ω) with

||u||2 + ||p||1 ≤ C ||f ||0 + ||g||1,Γ .

Since the bilinear form a(·, ·) is symmetric the variational problem (3.3) is equivalent to the following constrained
non-differentiable minimization problem:

⎧⎨
⎩

Find u ∈ Vdiv(Ω) such that

J (u) ≤ J (v) ∀v ∈ Vdiv(Ω),
(3.4)

where J (v) =
1
2
a(v,v) + j(v) − L(v).
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4. Mixed formulation

In one hand, in order to solve (3.4) a Lagrange multiplier q is needed to enforce the condition div(u) = 0 in
Ω, which can be identified with the pressure. In the other hand, Fujita proved in [17] that (3.3) is equivalent to⎧⎨

⎩
Find σt ∈ H− 1

2 (Γ ) such that |σt| ≤ g on Γ and∫
Γ

σt(vt − ut)dΓ + j(v) − j(u) ≥ 0 ∀v ∈ V(Ω).
(4.1)

The unknown function σt is seen as a Lagrange multiplier and can be identified with the shear stress on Γ .
Then, the minimization problem (3.4) is equivalent to the following saddle-point formulation:⎧⎨

⎩
Find (u, (p, λ)) ∈ H such that:

L (u, (q, μ)) ≤ L (u, (p, λ)) ≤ L (v, (p, λ)) ∀(v, (q, μ)) ∈ H ,
(4.2)

where
L (v, (q, μ)) =

1
2
a(v,v) −

∫
Ω

q div(v) dΩ +
∫

Γ

μ vt dΓ − L(v),

H = V(Ω) × L2
0(Ω) ×Q,

and
Q =
{
μ ∈ L2(Γ ), |μ| ≤ g a.e.

}
,

endowed with the H− 1
2∗ (Γ )-norm. According to [23], we have

Q =
{
μ ∈ L2(Γ ),

∫
Γ

μψ dΓ −
∫

Γ

g|ψ| dΓ ≤ 0 ∀ψ ∈ L2(Γ )
}
.

The solution of problem (4.2) is characterized by (see [2, 24]):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (u, (p, λ)) ∈ V(Ω) × Λ such that

a(u,v) + b((p, λ),v) = L(v) ∀v ∈ V(Ω)

b((q − p, μ− λ),u) ≤ 0 ∀(q, μ) ∈ Λ,

(4.3)

with
b((p, λ),v) = −(p, div(v)) +

∫
Γ

λ vt dΓ, (4.4)

and Λ = L2
0(Ω) ×Q, which is a closed convex of M = L2

0(Ω) × L2(Γ ).
To ensure the existence and uniqueness of a solution to (4.3), the following inf-sup condition is needed (see

for example [6]):

Lemma 4.1. If ∂Ω is regular enough, then there exists a constant α > 0 such that: ∀(q, μ) ∈ M

sup
v∈V(Ω)

b((q, μ),v)
||v||1

≥ α
(
||q||0 + ||μ||− 1

2 ,Γ

)
. (4.5)

Proof. We note that, similarly as in the study of a Signorini’s problem for incompressible materials (see [24]),
in order to obtain (4.5) it would be enough to prove that for all (q, μ) ∈ M there exists u ∈ V(Ω) such that:{

div u = q in Ω,
ut = h−1(μ) on Γ, (4.6)
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which satisfies
||u||1 ≤ C

(
||q||0 + ||μ||− 1

2 ,Γ

)
, (4.7)

where h−1(·) is the inverse of the Riesz operator h : H
1
2
00(Γ ) → H

− 1
2∗ (Γ ).

Firstly, let q ∈ L2
0(Ω) then there exists û ∈ H1

0(Ω) such that (see, for example, [13])

divû = q, in Ω, and ||û||1 ≤ C1||q||0. (4.8)

with C1 > 0 independent of p and û.
Secondly, let μ ∈ L2(Γ ) and let ψ be the unique solution to the following biharmonic problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δ2ψ = 0 in Ω,

ψ = 0 on ∂Ω,

∂ψ

∂n
= χ on ∂Ω,

(4.9)

where χ is defined as the extension by zero of h−1(μ)

χ =

⎧⎨
⎩

0 on Γ0,

−h−1(μ) on Γ.

Since h−1(μ) ∈ H
1
2
00(Γ ), it is easy to see that χ ∈ H

1
2 (∂Ω). From [20], since ∂Ω is regular enough3, it holds

ψ ∈ H2(Ω) and ||ψ||2 ≤ C2||χ|| 1
2 ,Γ . (4.10)

where C2 is a constant independent of ψ and χ.
Finally, we set u = û + curl ψ with

curl ψ =

⎡
⎢⎢⎢⎣

∂ψ

∂x2

− ∂ψ

∂x1

⎤
⎥⎥⎥⎦.

Hence, by the properties of û and ψ, it comes that u ∈ V(Ω), ut = h−1(μ) on Γ and div u = q in Ω, that
is (4.6) holds.

Furthermore, from (4.8) and (4.10) we obtain:

||u||1 ≤ ||û||1 + ||curlψ||1

≤ C1||q||0 + ||ψ||2

≤ C1||q||0 + C2||χ|| 1
2 ,Γ .

(4.11)

Finally, using the continuity of h−1 in (4.11) we obtain (4.7) with C = max(C1, C2C3) > 0 independent of
q and μ (here, C3 stands for the continuity constant of h−1). Hence, the inf-sup condition is satisfied with
α = (2C)−1. �

On the basis of the previous inf-sup condition (4.5) we have

3Following [21] a C 1,1 class boundary (or a C 1,1 curvilinear polygon boundary) would be enough, in the 2 dimensional case, to
have the existence of a solution in H2 to the biharmonic problem with non-homogeneous boundary conditions.
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Theorem 4.2. Under the hypothesis of Lemma 4.1, there exists a unique solution (u, (p, λ)) of the mixed
problem (4.3). Moreover, (u, (p, λ)) is also the unique solution of the saddle-point problem (4.2).

Remark 4.3. Let (u, (p, λ)) be the solution of (4.3). Then

σt = −λ. (4.12)

5. Finite element approximation

This section is devoted to present a finite element approximation of the saddle-point problem (4.2). The key
point lies in a finite element discretization of the closed convex Q of the Lagrange multipliers which leads to a
well-posed discrete problem and gives a good convergence rate for the approximate solution.

We use classical P1 bubble-P1 finite element to disretize (u, p) and P1 finite element on Γ for the Lagrange
multiplier λ, see Section 5.1 below. This choice is motivated by the results presented in Arnold, Brezzi and
Fortin [1] and Baillet and Sassi [3]. In Section 5.2, we establish the discrete inf-sup condition related to the
discrete weak formulation of (4.3).

5.1. Discretization

The domain Ω ⊂ R2 is supposed to be polygonal and convex. For the sake of simplicity, Γ is assumed to be
a straight line4. Let Th be a regular partition of Ω with triangles in the sense of [8]. We denote by Pn(κ) the
space of polynomials of degree less or equal to n ∈ N defined on κ ∈ Th. We denote by Bκ the space of bubble
functions defined on κ which is a sub-space of H1

0 (κ). Then we can define the following discrete spaces:

B =
⊕
κ∈Th

Bκ, Vh =
{
vh ∈ C0(Ω);vh|κ ∈ P1(κ) ∀κ ∈ Th, vh|Γ0 = 0, and vh.n|Γ = 0

}
,

Vh = [Vh + B]2, Wh =
{
vh|Γ , vh ∈ Vh

}
,

Lh =
{
qh ∈ C0(Ω); qh|κ ∈ P1(κ) ∀κ ∈ Th,

∫
Ω

qh dΩ = 0
}
,

Qh =
{
μh ∈ Wh,

∫
Γ

μhψh dΓ −
∫

Γ

g|ψh| dΓ ≤ 0 ∀ψh ∈ Wh

}
,

Mh = Lh ×Wh, Λh = Lh ×Qh.

In what follows, we present some classical approximation results involving interpolation and projection op-
erators between the continuous spaces and the above discrete spaces, that will be used in the error estimates.
First, let Ih and ih be the Lagrange interpolation operators on Vh and Wh respectively. From [8], there exists
a positive constant C which does not depend on h and such that for all v ∈ H2(Ω) and for all ψ ∈ H

3
2 (Γ ) it

holds:
||v − Ihv||1 ≤ Ch||v||2, ||ψ − ihψ||0,Γ ≤ Ch

3
2 ||ψ|| 3

2 ,Γ . (5.1)

Next, let Πh be the Clément’s projection operator from L2(Ω) on Lh introduced in [9]. The operator Πh verifies
the following two properties:

Πhp ∈ Lh and
∫

Ω

(Πhp− p) qh dΩ = 0 ∀ qh ∈ Lh. (5.2)

4More general cases need higher technicalities, which are beyond the scope of this work.
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There exists a positive constant C independent of h such that for all p ∈ H1(Ω) ∩ L2
0(Ω)

||p−Πhp||0 ≤ Ch||p||1. (5.3)

Now, we introduce the projection operator πh from L2(Γ ) on Wh defined by:

πhψ ∈ Wh,

∫
Γ

(πhψ − ψ)μh dΓ = 0 ∀μh ∈ Wh. (5.4)

The operator πh has the following approximation property: there exists a positive constant independent of h
such that for all ψ ∈ H

1
2+τ (Γ ), for all τ ∈ [0, 1] and any η ∈ [0, τ + 1

2 ] one has (see [4, 11]):

h−
1
2 ||ψ − πhψ||− 1

2 ,Γ + hη||ψ − πhψ||η,Γ ≤ Chτ+ 1
2 ||ψ|| 1

2+τ,Γ . (5.5)

Finally, if (u, (p, λ)), the solution of (4.3), is such that u ∈ H2(Ω), then the trace theorem and (4.12) imply

||λ|| 1
2 ,Γ ≤ C||u||2. (5.6)

Remark 5.1. Note that Vh ⊂ V(Ω) and Wh ⊂ W while Qh is an external approximation of Q, Qh �⊂ Q, so
the discretization is non-conforming and would weaken its convergence rate.

Discretizing (4.3) we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (uh, (ph, λh)) ∈ Vh × Λh such that:

a(uh,vh) + b((ph, λh),vh) = L(vh) ∀vh ∈ Vh,

b((qh − ph, μh − λh),uh) ≤ 0 ∀(qh, μh) ∈ Λh.

(5.7)

5.2. Discrete inf-sup condition

First, we introduce an equivalent discrete formulation for (5.7) by eliminating the velocity with non-zero
tangential component on Γ . Define

V0
h = {vh ∈ Vh, 〈μh, vht〉 = 0 ∀μh ∈ Wh}.

Then we can formulate problem (5.7) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (uh, ph) ∈ V0
h × Lh such that:

a(uh,vh) + (ph, divvh) = L(vh) ∀vh ∈ V0
h,

(qh, divuh) = 0 ∀qh ∈ Lh.

(5.8)

Now we define
Zh = {vh ∈ Vh, (qh, divvh) = 0 ∀ qh ∈ Lh}.

Then we can also formulate problem (5.7) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (uh, λh) ∈ Zh × Qh such that:

a(uh,vh) + 〈λh, vht〉 = L(vh) ∀vh ∈ Zh,

〈μh − λh, uht〉 ≤ 0 ∀μh ∈ Qh.

(5.9)
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Note that {vh ∈ Vh, vh|∂Ω = 0} ⊂ V0
h. From the usual discrete inf-sup condition for the Stokes problem (see

for example [13, 20]) we have the following inf-sup condition associated to problem (5.8).

Lemma 5.2. There is a constant β1 > 0 independent of h such that

sup
vh∈V0

h

(qh, divvh)
||vh||1

≥ β1||qh||0 ∀ qh ∈ Lh. (5.10)

Lemma 5.2, the coercivity of the bilinear form a on Vh and the fact that V0
h ⊂ Vh guarantee the stability of

problem (5.8)
To see that the discrete formulation (5.9) is stable, the next Lemma (proved in the Appendix) shows that

the inf-sup condition between spaces Zh and Wh holds.

Lemma 5.3. There is a constant β2 > 0 independent of h such that

sup
vh∈Zh

〈μh, vht〉
||vh||1

≥ β2||μh||− 1
2 ,Γ ∀μh ∈ Wh. (5.11)

From Lemmas 5.2 and 5.3 we can show the following coupled discrete inf-sup condition

Proposition 5.4. There is a constant β > 0 independent of h, such that

sup
vh∈Vh

b ((qh, μh),vh)
||vh||1

≥ β
(
||qh||0 + ||μh||− 1

2 ,Γ

)
∀ (qh, μh) ∈ Lh ×Wh. (5.12)

Proof. Given (qh, μh) ∈ Lh ×Wh, from Lemma 5.2 there exists v̂h ∈ V0
h such that

(qh, divv̂h)
||v̂h||1

≥ β1||qh||0.

From Lemma 5.3 there exists zh ∈ Zh such that

〈μh, zht〉
||zh||1

≥ β2||μh||− 1
2 ,Γ .

Observe that

sup
vh∈Vh

b ((qh, μh),vh)
||vh||1

≥ b ((qh, μh), v̂h)
||v̂h||1

=
(qh, divv̂h)

||v̂h||1
≥ β1||qh||0.

Analogously

sup
vh∈Vh

b ((qh, μh),vh)
||vh||1

≥ 〈μh, zht〉
||zh||1

≥ β2||μh||− 1
2 ,Γ .

Then

sup
vh∈Vh

b ((qh, μh),vh)
||vh||1

≥ min(β1, β2)
2

(
||qh||0 + ||μh||− 1

2 ,Γ

)
. �



ERROR ESTIMATES FOR STOKES PROBLEM WITH TRESCA FRICTION CONDITIONS 1423

The inf-sup condition (5.12), together with the fact that a is Vh-elliptic guarantees the existence and unique-
ness of a solution to (5.7) (see [7, 20]).

6. Error estimates

In this section we will establish a priori error estimates for the mixed finite element approximation (5.7).
To this end, we note that Lemma 4.1, and therefore Theorem 4.2, is still valid in the case of a polygonal
domain in which Γ is supposed to be a straight line5, that is, we have existence and uniqueness of a solution to
problem (4.3) for this boundary regularity. We start with the following lemma inspired of [3, 23].

Lemma 6.1. Let (u, p, λ) and (uh, ph, λh) be solutions to (4.3) and (5.7), respectively. Then for any
(vh, qh, μh) ∈ Vh × Λh it holds:

a(u − uh,u− uh) ≤ a(u− uh,u− vh) + b((p, λ) − (qh, μh),uh − u) + b((p, λ) − (ph, λh),u− vh)

+ b((p, λ) − (qh, μh),u) + b((ph, λh) − (p, λ),u).
(6.13)

Proof. Let vh be an element of Vh. It follows that:

a(u − uh,u− uh) = a(u − uh,u− vh) + a(u− uh,vh − uh).

Using the first equations of (4.3) and of (5.7), we obtain:

a(u − uh,vh − uh) = a(u,vh − uh) − a(uh,vh − uh),

= L(vh − uh) − b((p, λ),vh − uh) − L(vh − uh) + b((ph, λh),vh − uh),

= b((p, λ),uh − vh) + b((ph, λh),vh − uh).

Then we deduce

a(u − uh,u− uh) = a(u − uh,u− vh) + b((p, λ),uh − vh) + b((ph, λh),vh − uh).

Finally we have

a(u − uh,u− uh) = a(u− uh,u− vh) + b((p, λ) − (qh, μh),uh − u) + b((p, λ) − (ph, λh),u− vh)

+ b((p, λ) − (qh, μh),u) + b((ph, λh) − (p, λ),u)

+ b((qh, μh) − (ph, λh),uh).

The inequality in (5.7) implies that b((qh, μh) − (ph, λh),uh) ≤ 0 for all (qh, μh) ∈ Λh, and then, the error
estimate (6.13) follows. �

By deriving an upper bound of the terms involved in the right hand side of (6.13), for a particular (vh, ph, μh),
we will prove the following

5In this case we can verify that the boundary data in the biharmonic problem (4.9) satisfy the compatibility condition in ([19],
Thm. 3 p. 359), since the tangential vector on Γ is now a constant vector. Hence, the boundary data can be lifted by a H2(Ω)
function.
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Lemma 6.2. Let (u, p, λ), (uh, ph, λh) be the solution to (4.3) and (5.7), respectively. Suppose that u ∈ H2(Ω)
and p ∈ H1(Ω). Then

||u− uh||21 ≤ C(
(
h

3
2 + h||λ− λh||− 1

2 ,Γ + h||p− ph||0
)
, (6.14)

where C is a positive constant depending only on ||u||2, ||p||1 and ||g||0,Γ .

Proof. We will show that there exists (vh, (qh, μh)) ∈ Vh × Λh satisfying:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u − uh,u− vh) ≤ C(u)h||u − uh||1,

b((p, λ) − (qh, μh),uh − u) ≤ C(u, p)h||u − uh||1,

b((ph, λh) − (p, λ),u − vh) ≤ Ch {||u− uh||1 + C(p)h+ C(u)h} ,

b((p, λ) − (qh, μh),u) ≤ C(u)2h2,

b((ph, λh) − (p, λ),u) ≤ C(u)
(
h||λ− λh||− 1

2 ,Γ + C(u)h
3
2 + C(g)h

3
2

)
.

(6.15)

In what follows we choose vh = Ihu, qh = Πhp and μh = πhλ. From the definition of Q, Qh and (5.4), it is
readily seen that πhλ ∈ Qh:

∀ψh ∈ Wh

∫
Γ

(πhλ)ψh dΓ =
∫

Γ

λψh dΓ ≤
∫

Γ

gψh dΓ ≤
∫

Γ

g|ψh| dΓ.

(i) The first term of (6.15) is obtained by using the continuity of a(·, ·) and the property (5.1)

a(u− uh,u − vh) ≤ C||u − uh||1 ||u − vh||1

≤ C(u)h||u − uh||1.

(ii) Using (5.3) and (5.5) we obtain the second inequality of (6.15):

b((p, λ) − (qh, μh),uh − u) = −(p− qh, div(uh − u)) + 〈λ− μh, uht − ut〉

≤ C
{
||p− qh||0 + ||λ− μh||− 1

2 ,Γ

}
||u − uh||1

≤ C(u, p)h||u − uh||1.

(6.16)

(iii) Further, using again (5.1), there holds that

b((p, λ) − (ph, λh),u − vh) = −(p− ph, div(u − vh)) + 〈λ− λh, ut − vht〉 ,

≤ C
{
||p− ph||0 + ||λ− λh||− 1

2 ,Γ

}
||u − vh||1

≤ Ch
{
||p− ph||0 + ||λ− λh||− 1

2 ,Γ

}
.

(6.17)
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(iv) To estimate the fourth term of (6.15) we invoke the definition of the L2-projection operator on Γ (5.4) and
the approximation property (5.5):

b((p, λ) − (qh, μh),u) =
∫

Γ

(λ− μh)ut dΓ

=
∫

Γ

(λ− πhλ)ut dΓ,

=
∫

Γ

(λ− πhλ)ut dΓ −
∫

Γ

(λ− πhλ)πhut dΓ,

=
∫

Γ

(λ− πhλ)(ut − πhut) dΓ,

≤ ||λ− πhλ||0,Γ ||ut − πhut||0,Γ ,

≤ Ch2.

(6.18)

(v) Now we shall estimate the fifth term of (6.15). Noticing that, since λh ∈ Qh then∫
Γ

(λh ih(ut) − g|ih(ut)|) dΓ ≤ 0,

and that, from (3.2) and (4.12), we have

λut − g|ut| = 0 a.e. on Γ.

Therefore, combining this with (5.1) and (5.6), we have

b((ph, λh) − (p, λ),u) =
∫

Γ

(λh − λ)ut dΓ,

=
∫

Γ

(λh − λ) (ut − ih(ut)) dΓ +
∫

Γ

(λh − λ) ih(ut) dΓ +
∫

Γ

(λut − g|ut|) dΓ,

=
∫

Γ

(λh − λ) (ut − ih(ut)) dΓ +
∫

Γ

(λh ih(ut) − g|ut|) dΓ +
∫

Γ

λ (ut − ih(ut)) dΓ,

≤
∫

Γ

(λh − λ) (ut − ih(ut)) dΓ +
∫

Γ

g (|ih(ut)| − |ut|) dΓ +
∫

Γ

λ (ut − ih(ut)) dΓ,

≤
∫

Γ

(λh − λ) (ut − ih(ut)) dΓ +
∫

Γ

g|ih(ut) − ut| dΓ +
∫

Γ

λ (ut − ih(ut)) dΓ,

≤ ||λh − λ||− 1
2 ,Γ ||ut − ih(ut)|| 1

2 ,Γ + ||g||0,Γ ||ut − ih(ut)||0,Γ + ||λ||0,Γ ||ut − ih(ut)||0,Γ ,

≤ C(u)h||λ− λh||− 1
2 ,Γ + C(u)2h

3
2 + C(g)C(u)h

3
2 ,

≤ C
{
h||λ− λh||− 1

2 ,Γ + h
3
2

}
.

Assembling the estimates (i)–(v) and using Lemma 6.1 and the V-ellipticity of the bilinear form a(·, ·), we finally
arrive at the following estimate

||u − uh||21 ≤ C
(
h||λ− λh||− 1

2 ,Γ + h||u− uh||1 + h||p− ph||0
)

+ C h
3
2 ,
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then, using the Young’s inequality, we can write for every constant A > 0

Ch||u− uh||1 ≤ C

(
Ah2 +

1
A
||u− uh||21

)
.

Finally, if we take A such that
C

A
< 1, then it leads to the desired result. �

The next two lemmas will give us error estimates for the pressure and the Lagrange multiplier λ in terms of
h and the velocity error.

Lemma 6.3. Let (u, p, λ) and (uh, ph, λh) be solutions to (4.3) and (5.7), respectively. Suppose that u ∈ H2(Ω)
and p ∈ H1(Ω). Then

||p− ph||0 ≤ C {h+ ||u − uh||1} , (6.19)

where C is a positive constant depending only on ||u||2 and ||p||1.

Proof. Since (u, p, λ) and (uh, ph, λh) are solutions to (4.3) and (5.7), respectively, then for vh ∈ Vh

a(u,vh) − (p, div(vh)) + 〈λ, vth〉 = L(vh),

a(uh,vh) − (ph, div(vh)) + 〈λh, vth〉 = L(vh),

by subtracting these two equations we obtain

a(u− uh,vh) − (p− ph, div(vh)) + 〈λ− λh, vth〉 = 0 ∀vh ∈ Vh, (6.20)

and taking vh ∈ V0
h, (6.20) becomes

a(u − uh,vh) + (p− ph, div(vh)) = 0 ∀vh ∈ V0
h.

Therefore

(ph −Πhp, div(vh)) = (ph − p, div(vh)) + (p−Πhp, div(vh)) = a(u − uh,vh) + (p−Πhp, div(vh)),

and, using (5.3),

(ph −Πhp, div(vh)) ≤ C ||u− uh||1 ||vh||1 + Ch||p||1 ||vh||1 ∀vh ∈ V0
h.

The inf-sup condition (5.10) yields to

β1||ph −Πhp||0 ≤ sup
vh∈V0

h

(ph −Πhp, div(vh))
||vh||1

≤ C||u − uh||1 + Ch||p||1. (6.21)

The triangle inequality

||p− ph||0 ≤ ||p−Πhp||0 + ||Πhp− ph||0,

together with (6.21) and (5.3) proves (6.19). �

Lemma 6.4. Let (u, p, λ) and (uh, ph, λh) be solutions to (4.3) and (5.7) respectively. Suppose that u ∈ H2(Ω)
and p ∈ H1(Ω). Then

||λ− λh||− 1
2 ,Γ ≤ C {h+ ||u− uh||1} , (6.22)

where C is a positive constant depending only on ||u||2.
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Proof. Introducing πhλ in (6.20) we have:

〈πhλ− λh, vht〉 = a(uh − u,vh) + (p− ph, div(vh)) − 〈λ− πhλ, vht〉 ∀vh ∈ Vh.

Therefore
〈πhλ− λh, vht〉 ≤ C||u − uh||1||vh||1 + C||p− ph||0||vh||1 + Ch||λ|| 1

2 ,Γ ||vh||1,

for all vh ∈ Vh, and in particular for all vh ∈ Zh. Using the inf-sup condition (5.11) combined with (6.19) we
obtain

β2||πhλ− λh||− 1
2 ,Γ ≤ sup

vh∈Zh

〈πhλ− λh, vht〉
||vh||1

≤ C (||u− uh||1 + ||p− ph||0 + h)

≤ C (||u− uh||1 + h) .

(6.23)

Inserting the estimates (5.5) and (6.23) in the triangle inequality

||λ− λh||− 1
2 ,Γ ≤ ||λ− πhλ||− 1

2 ,Γ + ||πhλ− λh||− 1
2 ,Γ

we finally arrive at the estimate (6.22). �

Using Lemmas 6.2, 6.3 and 6.4, we are now able to prove our main a priori error estimate result:

Theorem 6.5. Let (u, p, λ) and (uh, ph, λh) be solutions to (4.3) and (5.7) respectively. Suppose that u ∈ H2(Ω)
and p ∈ H1(Ω). Then

||u − uh||1 + ||p− ph||0 + ||λ− λh||− 1
2 ,Γ ≤ Ch

3
4 ,

where C is a positive constant depending only on ||u||2, ||p||1 and ||g||0,Γ .

Proof. By using (6.19) and (6.22) in (6.14), we can write:

||u − uh||21 ≤ C
{
h||λ− λh||− 1

2 ,Γ + h||p− ph||0 + h
3
2

}
,

≤ Ch {h+ ||u− uh||1} + Ch
3
2 ,

≤ Ch2 + Ch||u− uh||1 + Ch
3
2 ,

hence, using again Young’s inequality,
||u− uh||1 ≤ Ch

3
4 .

Consequently, (6.19) and (6.22) become

||p− ph||0 ≤ Ch
3
4 and ||λ− λh||− 1

2 ,Γ ≤ Ch
3
4 ,

which leads to the desired result. �

Remark 6.6. We recall that a H2 ×H1 regularity result for the Stokes problem with slip boundary conditions
is obtained under the hypotheses of Theorem 3.2 (see [30,31]). When Γ and ΓD are not connected components
and − or − have less regularity (e.g. only Lipschitz continuous boundaries), an analogous regularity result is,
as far as we known, an open problem.
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7. Conclusion

A three field mixed formulation of the Stokes problem with Tresca boundary conditions has been introduced
and studied. The convergence analysis and a priori error estimates of the discrete corresponding problem have
been established. In particular, we show an optimal error estimate of order h

3
4 for the velocity when it is

approximated by classical P1 bubble finite element. The implementation of the mixed finite element formulation
proposed in Section 5 will be presented in a forthcoming paper.

Appendix A

Proof of Lemma 5.3. The proof presented here follows the same ideas as in Proposition 3.3 from [10]. The main
difference is that we are working with the space Zh and with a Stokes extension operator Rh.

Let μh ∈ Wh. There is ψ ∈ H
1
2 (Γ ) with ||ψ|| 1

2 ,Γ = 1, so that

〈μh, ψ〉 =
∫

Γ

μh ψ dΓ = ||μh||− 1
2 ,Γ .

The definition of πh in (5.4) leads to ∫
Γ

μh ψ dΓ =
∫

Γ

μh πhψ dΓ.

For any ψh ∈ Wh, define Rh(ψh) ∈ Vh as the discrete velocity solution of the following problem (the discrete
Stokes extension): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a(Rh(ψh),vh) + (ph, divvh) = 0 ∀vh ∈ Vh, such that vht = 0 on Γ,

(qh, divRh(ψh)) = 0 ∀qh ∈ Lh,

(Rh(ψh)).t = ψh on Γ.

(A.1)

Therefore using [28], we have
||Rh(ψh)||1 ≤ C1||ψh|| 1

2 ,Γ .

Take μh ∈ Wh and let wh = Rh(πhψ) ∈ Vh be the velocity solution of (A.1). Then wh ∈ Zh and

||wh||1 ≤ C1||πhψ|| 1
2 ,Γ ≤ C2||ψ|| 1

2 ,Γ .

Taking into account that ||ψ|| 1
2 ,Γ = 1, we finally come to the conclusion that there is a positive constant C2

independent of h (and of μh) such that

1
C2

||μh||− 1
2 ,Γ ≤

||μh||− 1
2 ,Γ

||wh||1
=

∫
Γ

μh wht dΓ

||wh||1

=
〈μh, wht〉
||wh||1

≤ sup
vh∈Zh

〈μh, vht〉
||vh||1

·

Then the inf-sup condition (5.11) is proved to be true. �
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