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UNIFORMLY CONVERGENT ADAPTIVE METHODS FOR A CLASS
OF PARAMETRIC OPERATOR EQUATIONS ∗

Claude Jeffrey Gittelson1,2

Abstract. We derive and analyze adaptive solvers for boundary value problems in which the differen-
tial operator depends affinely on a sequence of parameters. These methods converge uniformly in the
parameters and provide an upper bound for the maximal error. Numerical computations indicate that
they are more efficient than similar methods that control the error in a mean square sense.
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1. Introduction

Boundary value problems with unknown coefficients can be interpreted as parametric equations, in which
the unknown coefficients are permitted to depend on a sequence of scalar parameters. It may be possible to
interpret these parameters as random variables, in which case the solution to the boundary value problem
is a random field. In this probabilistic setting, Galerkin methods have been developed for approximating this
random field in a parametric form, see [2,5,6,15,18,27,36–38,43]. Other approaches include collocation methods,
see [3, 30, 39, 40, 42] and sampling methods such as quasi-Monte Carlo, see [25]. We refer to [21, 32, 41] for
overviews.

These methods generally require strong assumptions on the probability distribution of the random coefficients.
In particular, it is often assumed that the scalar parameters, e.g. coming from a series expansion of the unknown
coefficients, are independent. This assumption is fundamental to the construction of polynomial chaos bases. To
cover the more realistic setting of non-independent parameters, an auxiliary measure is introduced e.g. in [3,30],
but this still requires quite elusive assumptions on the probability distribution.

Our goal is to compute a parametric representation of the solution that is reliable to a given accuracy on the
entire parameter domain. This is particularly useful if insufficient statistical data is available to model unknown
coefficients as random variables.

Keywords and phrases. Parametric partial differential equations, partial differential equations with random coefficients, uniform
convergence, adaptive methods, operator equations.
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Also, uniform convergence precludes any elusive assumptions on a probability distribution since it implies
mean square convergence with respect to any probability measure on the parameter domain, in particular with
respect to whatever distribution is deemed physical. A reliable parametric representation could be combined
with Monte Carlo sampling in order to compute probabilistic quantities. Instead of solving the boundary value
problem independently at every sample point, one can evaluate the parametric representation of the solution,
which is generally much faster, see e.g. [39].

We consider equations with linear operators that depend in an affine manner on a sequence of scalar parame-
ters. Such parametric operators arise if one or multiple coefficients in a boundary value problem are expanded in
a series. We assume that each scalar parameter lies in a bounded interval. For unbounded parameter domains,
uniform convergence of polynomial approximations can generally not be expected.

The main difficulty in applying stochastic Galerkin and other spectral methods is the construction of suitable
spaces in which to compute approximate solutions. In [23,24], we suggest adaptive methods based on techniques
from the adaptive wavelet algorithms [9, 10, 16, 19]. We use an orthonormal polynomial basis on the parameter
domain in place of wavelets. An arbitrary discretization of the physical domain can be used to approximate the
coefficients of the random solution with respect to this basis.

In order to ensure uniform convergence in the parameter, we deviate a bit further from adaptive wavelet
methods, which are formulated in a Hilbert space setting. We follow the approach in [10,24], which is based on
applying an iterative method directly to the full parametric boundary value problem. Individual substeps of this
iteration, such as application of the parametric operator, are replaced by approximate counterparts, realized by
suitable adaptive algorithms. These keep track of errors entering the computation, ensuring convergence of the
algorithm, and providing an upper bound on the error of the approximate solution.

In Section 2, we study parametric operator equations in an abstract setting. We show that the parametric
solution depends continuously on the parameter for arbitrary parameter domains under mild continuity assump-
tions on the operator and right hand side. Consequently, the solution is uniformly bounded if the parameter
domain is compact.

In the setting that the operator has a dominant nonparametric component, we derive a perturbed stationary
linear iteration, which forms the basis for our adaptive method. A similar iteration is proposed in [1,21]. We also
present an illustrative example for a parametric boundary value problem which motivates the affine dependence
on a sequence of parameters that we later assume.

Our method is formulated on the level of coefficients with respect to a polynomial basis. In Section 3, we
apply the Stone–Weierstrass theorem to show that continuous functions can be approximated uniformly by
polynomials in an infinite dimensional setting. We construct suitable polynomial bases, and represent a class of
parametric operators in these bases.

We present our adaptive method in Section 4. A vital component is an adaptive routine for applying the
parametric operator, which is discussed in Section 4.1. In Section 5, we present a variant of our adaptive solver
which has the potential to reduce the computational cost while maintaining the same accuracy.

In Section 6, we apply these adaptive solvers to a simple model problem. Numerical computations demonstrate
the convergence of the algorithms and compare them to the adaptive methods from [23,24]. We compare observed
convergence rates to a revised form of the approximation results [11, 12].

2. Parametric operator equations

2.1. Continuous parameter dependence

Let V and W be Banach spaces over K ∈ {R,C}. We denote by W ∗ the space of bounded antilinear maps
from W to K, which are just the linear maps if K = R, and by L(V,W ∗) the Banach space of bounded linear
maps from V to W ∗ with the operator norm ‖·‖V →W∗ . Similarly, L(V ) denotes the space of bounded linear
maps from V to itself, which constitutes a Banach algebra whose multiplicative group consists of all invertible
bounded linear maps on V .
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Let Γ be a nonempty topological space, such as any nonempty subset of Rn, or, as we shall later assume, the
infinite-dimensional cube [−1, 1]∞. A parametric linear operator from V to W ∗ with parameter domain Γ is a
continuous map

A : Γ → L(V,W ∗), y �→ A(y). (2.1)

For a given f : Γ →W ∗, we are interested in determining u : Γ → V such that

A(y)u(y) = f(y) ∀y ∈ Γ. (2.2)

Assumption 2.A. A(y) is bijective for all y ∈ Γ .

By the open mapping theorem, bijective continuous linear operators have continuous inverses, and thus As-
sumption 2.A implies that A(y) is boundedly invertible for all y ∈ Γ . The map y �→ A(y) is continuous by
definition, but no continuity assumptions are made on y �→ A−1(y). The following theorem hinges on the fact
that continuity of y �→ A−1(y) follows from continuity of y �→ A(y) with no further assumptions.

Theorem 2.1. Equation (2.2) has a unique solution u : Γ → V . It is continuous if and only if f : Γ → W ∗ is
continuous.

Proof. By Assumption 2.A, (2.2) has the unique solution u(y) = A(y)−1f(y). If y �→ u(y) is continuous, then
since y �→ A(y) is continuous by definition, it follows that y �→ f(y) is continuous because

mult : L(V,W ∗) × V →W ∗, mult(T, z) := Tz,

is continuous, and f(y) = mult(A(y), u(y)) is a composition of continuous maps.
If y �→ f(y) is continuous, then the same argument shows that y �→ u(y) = mult(A(y)−1, f(y)) is continuous,

provided that y �→ A−1(y) is continuous. To show this, we select a boundedly invertible D ∈ L(V,W ∗); for
example, D could be equal to A(y) for some y ∈ Γ . Then y �→ D−1A(y) is a continuous map from Γ into L(V ).
By the abstract property [26], Proposition 3.1.6, of Banach algebras, the map T �→ inv(T ) := T−1 defined on the
multiplicative group of L(V ) is continuous in the topology of L(V ). Therefore, y �→ inv(D−1A(y)) = A(y)−1D
is continuous, and multiplying from the right by the constant D−1, it follows that y �→ A(y)−1 is a continuous
map from Γ to L(W ∗, V ). �

Example 2.2. Assumption 2.A is assured to hold if A(y) is a perturbation of a boundedly invertible D ∈
L(V,W ∗), i.e.

A(y) = D +R(y), y ∈ Γ, (2.3)

with a continuous y �→ R(y) ∈ L(V,W ∗) satisfying∥∥D−1R(y)
∥∥

V →V
≤ γ < 1 ∀y ∈ Γ. (2.4)

Then A(y) can be decomposed as

A(y) = D(idV +D−1R(y)), y ∈ Γ, (2.5)

and consequently, using a Neumann series in L(V ) to invert the second factor,

A(y)−1 =

( ∞∑
n=0

(−D−1R(y)
)n)

D−1, y ∈ Γ. (2.6)

In this setting, due to (2.4)–(2.6), the parametric operators A(y) and A(y)−1 are uniformly bounded,

‖A(y)‖V →W∗ ≤ ‖D‖V →W∗ (1 + γ) ∀y ∈ Γ , (2.7)

∥∥A(y)−1
∥∥

W∗→V
≤
∥∥D−1

∥∥
W∗→V

1 − γ
∀y ∈ Γ. (2.8)
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A sufficient condition for (2.4) is

‖R(y)‖V →W∗ ≤ γ

‖D−1‖W∗→V

∀y ∈ Γ (2.9)

with γ < 1. Equation (2.9) does not depend on the precise structure of the operators D−1R(y). Therefore,
Assumption 2.A is always satisfied if the parametric component R(y) of A(y) is sufficiently small.

Assumption 2.B. Γ is a compact Hausdorff space.

For example, Γ may be any compact metric space, any closed bounded subset of Rn, or any cartesian product
of such sets.

Lemma 2.3. There exist constants ĉ, č ∈ R such that

‖A(y)‖V →W∗ ≤ ĉ and
∥∥A(y)−1

∥∥
W∗→V

≤ č ∀y ∈ Γ. (2.10)

Proof. By assumption, the map y �→ A(y) is continuous. As shown in the proof of Theorem 2.1, y �→ A(y)−1 is
also continuous. Consequently, the maps y �→ ‖A(y)‖V →W∗ and y �→ ∥∥A(y)−1

∥∥
W∗→V

are continuous maps from
Γ into R. Since Γ is compact by Assumption 2.B, the ranges of these maps are compact in R, and therefore
bounded. �

For any Banach space X , let C(Γ ;X) denote the Banach space of continuous maps from Γ to X with norm

‖v‖C (Γ ;X) := max
y∈Γ

‖v(y)‖X , v ∈ C(Γ ;X) . (2.11)

For any Borel probability measure π on Γ , p ≥ 1, and any v ∈ C(Γ ;X),

‖v‖Lp
π(Γ ;X) ≤ ‖v‖C (Γ ;X) (2.12)

and equality holds in (2.12) e.g. if π is a Dirac measure at a maximum of ‖v‖X . Consequently, estimates in
C(Γ ;X) carry over to Lp

π(Γ ;X) for all π, although they may be too conservative for any particular π. In what
follows, we abbreviate C(Γ ) := C(Γ ; K).

Corollary 2.4. The operators

A : C(Γ ;V ) → C(Γ ;W ∗) , v �→ [y �→ A(y)v(y)] and (2.13)
A−1 : C(Γ ;W ∗) → C(Γ ;V ) , g �→ [

y �→ A(y)−1g(y)
]

(2.14)

are well-defined, inverse to each other, and bounded with norms ‖A‖ ≤ ĉ and
∥∥A−1

∥∥ ≤ č.

Proof. The assertion is a direct consequence of Theorem 2.1 and Lemma 2.3. �

2.2. A perturbed linear iteration

We consider the setting of Example 2.2, i.e. A is a sum

A = D + R (2.15)

with D : C(Γ ;V ) → C(Γ ;W ∗) of the form (Dv)(y) = Dv(y) for a boundedly invertible D ∈ L(V,W ∗), and
R : C(Γ ;V ) → C(Γ ;W ∗) satisfies ∥∥D−1R∥∥

C (Γ ;V )→C (Γ ;V )
≤ γ < 1. (2.16)
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Condition (2.16) implies that D−1A can be inverted by a Neumann series in C(Γ ;V ), and

∥∥(D−1A)−1
∥∥

C (Γ ;V )→C (Γ ;V )
≤ 1

1 − γ
· (2.17)

Therefore, for any f ∈ C(Γ ;W ∗), the solution u of the operator equation

Au = f (2.18)

is the limit of the sequence (uk)∞k=0 with arbitrary u0 ∈ C(Γ ;V ) and

uk := D−1(f −Ruk−1), k ∈ N. (2.19)

This iteration effectively computes truncated Neumann expansions of D−1A applied to D−1f . We general-
ize (2.19) by allowing errors in the computation of f , the evaluation of R, and the inversion of D.

Let ũ0 ∈ C(Γ ;V ) be an arbitrary approximation of u with a known upper bound δ0 for the error
‖u− ũ0‖C (Γ ;V ). For example, if ũ0 = 0, we may set

δ0 :=

∥∥D−1
∥∥

W∗→V

1 − γ
‖f‖C (Γ ;W∗) . (2.20)

We define the approximations ũk together with error bounds δk recursively through

δk := (α+ β + γ)δk−1 (2.21)

with parameters α, β ≥ 0, and ũk may be any element of C(Γ ;V ) with∥∥ũk −D−1gk

∥∥
C (Γ ;V )

≤ αδk−1 (2.22)

for some gk ∈ C(Γ ;W ∗) satisfying

‖gk − (f −Rũk−1)‖C (Γ ;W∗) ≤ βδk−1

∥∥D−1
∥∥−1

W∗→V
. (2.23)

Theorem 2.5. If α+ β < 1 − γ, then ũk → u in C(Γ ;V ), and

‖u− ũk‖C (Γ ;V ) ≤ δk = (α+ β + γ)kδ0 ∀k ∈ N0. (2.24)

Proof. Since Du = f −Ru,

u− ũk = D−1(f −Ru) −D−1(f −Rũk−1) + D−1(f −Rũk−1 − gk) + D−1gk − ũk.

By triangle inequality,

‖u− ũk‖C (Γ ;V ) ≤
∥∥D−1R(u− ũk−1)

∥∥
C (Γ ;V )

+
∥∥D−1

∥∥
W∗→V

‖gk − (f −Rũk−1)‖C (Γ ;W∗)

+
∥∥ũk −D−1gk

∥∥
C (Γ ;V )

≤ γ ‖u− ũk−1‖C (Γ ;V ) + βδk−1 + αδk−1,

and the claim follows by induction using α+ β + γ < 1. �

Remark 2.6. Theorem 2.5 uses a priori known quantities δk = (α+β+γ)kδ0 as upper bounds for the error at
iteration k ∈ N0. However, better estimates may be available or computable during an iteration. The residual
at iteration k ∈ N0 is given by

rk := f −Aũk = A(u− ũk) ∈ C(Γ ;W ∗) . (2.25)
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Since A is invertible by a Neumann series,

‖u− ũk‖C (Γ ;V ) ≤
∥∥A−1

∥∥
C (Γ ;W∗)→C (Γ ;V )

‖rk‖C (Γ ;W∗) ≤
1

1 − γ

∥∥D−1
∥∥

W∗→V
‖rk‖C (Γ ;W∗) . (2.26)

Therefore, if it is known that ‖rk‖C (Γ ;W∗) ≤ ρk, we also have the upper bound

δ̄k :=
1

1 − γ

∥∥D−1
∥∥

W∗→V
ρk (2.27)

of ‖u− ũk‖C (Γ ;V ) for all k ∈ N.

2.3. The parametric diffusion equation

As an illustrative example, we consider the isotropic diffusion equation on a bounded Lipschitz domainG ⊂ Rd

with homogeneous Dirichlet boundary conditions. For any uniformly positive a ∈ L∞(G) and any f ∈ L2(G),
we have

−∇ · (a(x)∇u(x)) = f(x), x ∈ G, u(x) = 0, x ∈ ∂G. (2.28)

We model a as a parametric coefficient, depending affinely on a sequence of scalar parameters in [−1, 1]. For
the compact parameter domain Γ := [−1, 1]∞, we have

a(y, x) := ā(x) +
∞∑

m=1

ymam(x), y = (ym)∞m=1 ∈ Γ. (2.29)

Thus the parameters ym are coefficients in a series expansion of a(y, x) − ā(x). We note that the essential
assumption on the parameters ym is that they are bounded; any bounded parameters can be shifted and scaled
to be in [−1, 1], preserving the structure of (2.29).

We define the parametric operator

A(y) : H1
0 (G) → H−1(G) , v �→ −∇ · (a(y)∇v) , y ∈ Γ. (2.30)

By linearity, we can expand A(y) as

A(y) = D +R(y), R(y) :=
∞∑

m=1

ymRm ∀y ∈ Γ, (2.31)

for

D : H1
0 (G) → H−1(G) , v �→ −∇ · (ā∇v) ,

Rm : H1
0 (G) → H−1(G) , v �→ −∇ · (am∇v) , m ∈ N.

Note that ‖Rm‖H1
0 (G)→H−1(G) ≤ ‖am‖L∞(G), and thus convergence in (2.31) and (2.29) is assured if the sequence

(‖am‖L∞(G))
∞
m=1 is summable.

Assuming that ā is bounded and uniformly positive, the operator D is invertible with

∥∥D−1
∥∥

H−1(G)→H1
0 (G)

≤
(

ess inf
x∈G

ā(x)
)−1

. (2.32)
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3. Polynomial expansion

3.1. Uniform approximation by polynomials in infinite dimensions

We consider polynomials on the compact domain Γ := [−1, 1]∞. We denote a generic element of Γ by
y = (ym)∞m=1.

For any finite set F ⊂ N, let PF (Γ ) denote the vector space of polynomials in the variables (ym)m∈F . Then

P(Γ ) :=
⋃

F⊂N

#F<∞

PF (Γ ) (3.1)

is the vector space of polynomials on the infinite dimensional domain Γ . The following statement is a direct
consequence of the Stone–Weierstrass theorem, see e.g. [31, 34].

Theorem 3.1. The space P(Γ ) is dense in C(Γ ).

A Banach space X is said to have the approximation property if, for every compact set K ⊂ X and every
ε > 0, there is a finite rank operator T ∈ L(X) such that

‖x− Tx‖X ≤ ε ∀x ∈ K. (3.2)

We recall that every space with a Schauder basis has the approximation property since T can be chosen as

Tx =
N∑

n=1

xnen for x =
∞∑

n=1

xnen, (3.3)

for a sufficiently large N depending on K, where (en)∞n=1 denotes the Schauder basis of X , i.e. every x ∈ X
has a unique expansion of the form (3.3). In particular, every separable Hilbert space has the approximation
property since orthonormal bases are Schauder bases.

Theorem 3.1 extends to functions with values in X under the assumption that X has the approximation
property. For any finite set F ⊂ N, let PF (Γ ;X) denote the vector space of polynomials in the variables
(ym)m∈F with coefficients in X . As in (3.1), we define

P(Γ ;X) :=
⋃

F⊂N

#F<∞

PF (Γ ;X) . (3.4)

Theorem 3.2. If X has the approximation property, then P(Γ ;X) is dense in C(Γ ;X).

Proof. Let f ∈ C(Γ ;X) and ε > 0. Since Γ is compact, K := f(Γ ) ⊂ X is compact, and thus there is a finite
rank operator T ∈ L(X) such that (3.2) holds. We write T as

Tx =
n∑

i=1

ψi(x)xi

with ψi ∈ X∗ and xi ∈ X , scaled such that ‖xi‖X = 1. Since each of the maps ψi ◦ f is in C(Γ ), Theorem 3.1
implies that there is a polynomial pi ∈ P(Γ ) with |pi(y) − ψ(f(y))| ≤ ε/n for all y ∈ Γ . Consequently, for all
y ∈ Γ , ∥∥∥∥∥f(y) −

n∑
i=1

pi(y)xi

∥∥∥∥∥
X

≤ ‖f(y) − Tf(y)‖X +
n∑

i=1

|ψi(f(y)) − pi(y)| ‖xi‖X ≤ 2ε. �
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3.2. Polynomial systems in infinite dimensions

Let (Pn)∞n=0 be a sequence of polynomials on [−1, 1] satisfying P0(ξ) = 1, P1(ξ) = ξ and

ξPn(ξ) = π+
n Pn+1(ξ) + π−

n Pn−1(ξ) ∀n ∈ N (3.5)

for all ξ ∈ [−1, 1]. In particular, it follows by induction that Pn is a polynomial of degree n. We define π+
0 := 1

in order to achieve ξP0(ξ) = π+
0 P1(ξ).

For example, Pn(ξ) = ξn if π+
n = 1 and π−

n = 0 for all n ∈ N. If π+
n and π−

n are given by

π+
n :=

1
2

and π−
n :=

1
2
, (3.6)

then (Pn)∞n=0 are Chebyshev polynomials of the first kind. Alternatively, the values

π+
n :=

n+ 1
2n+ 1

and π−
n :=

n

2n+ 1
(3.7)

lead to Legendre polynomials. More generally, identities of the type (3.5) follow from recursion formulas for
families of orthonormal polynomials with respect to symmetric measures on [−1, 1], see e.g. [20, 35].

In all of the above examples,
|Pn(ξ)| ≤ 1 ∀ξ ∈ [−1, 1], ∀n ∈ N0. (3.8)

We assume that the polynomials (Pn)∞n=0 are scaled in such a way that (3.8) holds.
We define the set of finitely supported sequences in N0 as

Λ :=
{
μ ∈ N

N

0 ; # suppμ <∞} , (3.9)

where the support is defined by

suppμ := {m ∈ N ; μm = 0} , μ ∈ N
N

0 . (3.10)

Then countably infinite tensor product polynomials are given by

(Pμ)μ∈Λ, Pμ :=
∞⊗

m=1

Pμm , μ ∈ Λ. (3.11)

Note that each of these functions depends on only finitely many dimensions,

Pμ(y) =
∞∏

m=1

Pμm(ym) =
∏

m∈suppμ

Pμm(ym), μ ∈ Λ, (3.12)

since P0 = 1.

Proposition 3.3. If X is a Banach space with the approximation property, then for any f ∈ C(Γ ;X) and any
ε > 0, there is a finite set Ξ ⊂ Λ and xμ ∈ X, μ ∈ Ξ, such that

max
y∈Γ

∥∥∥∥∥∥f(y) −
∑
μ∈Ξ

xμPμ(y)

∥∥∥∥∥∥
X

≤ ε. (3.13)

Proof. The assertion follows from Theorem 3.2 since (Pμ)μ∈Λ is an algebraic basis of the vector space
P(Γ ;X). �
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3.3. Representation of a class of parametric operators

Let V and W be Banach spaces. Motivated by Example 2.2 and (2.31), we consider Γ = [−1, 1]∞ and
operators A : C(Γ ;V ) → C(Γ ;W ∗) of the form A = D + R with (Dv)(y) = Dv(y) for a boundedly invertible
D ∈ L(V,W ∗) and

(Rv)(y) :=
∞∑

m=1

ymRmv(y), y ∈ Γ, v ∈ C(Γ ;V ) , (3.14)

for Rm ∈ L(V,W ∗) satisfying
∞∑

m=1

∥∥D−1Rm

∥∥
V →V

≤ γ < 1. (3.15)

We note that these assumptions imply (2.16). Truncating the series in (3.14), we approximate R by

(R[M ]v)(y) :=
M∑

m=1

ymRmv(y), y ∈ Γ, v ∈ C(Γ ;V ) , (3.16)

for M ∈ N, and R[0] := 0.

Lemma 3.4. For all M ∈ N0,∥∥R−R[M ]

∥∥
C (Γ ;V )→C (Γ ;W∗)

≤
∞∑

m=M+1

‖Rm‖V →W∗ . (3.17)

In particular, R[M ] → R in L(C(Γ ;V ), C(Γ ;W ∗)).

Proof. For any M ∈ N0, v ∈ C(Γ ;V ) and y ∈ Γ , since |ym| ≤ 1,

∥∥(Rv)(y) − (R[M ]v)(y)
∥∥

W∗ ≤
∞∑

m=M+1

|ym| ‖Rmv(y)‖W∗ ≤
∞∑

m=M+1

‖Rm‖V →W∗ ‖v‖C (Γ ;V ) .

Furthermore, (3.15) implies that (Rm)m∈N ∈ �1(N;L(V,W ∗)). �

According to the following statement, R[M ] maps P(Γ ;V ) into P(Γ ;W ∗). We determine the coefficients of
R[M ]v in terms of those of v ∈ P(Γ ;V ) with respect to a polynomial basis (Pμ)μ∈Λ from Section 3.2.

Lemma 3.5. For any M ∈ N and any v ∈ P(Γ ;V ), represented as

v(y) =
∑
μ∈Ξ

vμPμ(y), y ∈ Γ, (3.18)

for a finite set Ξ ⊂ Λ, R[M ]v ∈ P(Γ ;W ∗) has the form

(R[M ]v)(y) =
∑
μ∈Ξ

M∑
m=1

Rmvμ

(
π+

μm
Pμ+εm(y) + π−

μm
Pμ−εm(y)

)
, y ∈ Γ, (3.19)

where εm ∈ Λ is the Kronecker sequence (εm)n := δmn, and we set Pμ := 0 if any μm < 0.

Proof. By the definitions (3.16) and (3.18),

(R[M ]v)(y) =
∑
μ∈Ξ

M∑
m=1

RmvμymPμ(y).

Equation (3.5) implies
ymPμ(y) = π+

μm
Pμ+εm(y) + π−

μm
Pμ−εm(y). �

Combining Proposition 3.3, Lemmas 3.4 and 3.5, one can represent Rv as a limit of terms of the form (3.19)
for any v ∈ C(Γ ;V ), provided that V has the approximation property.
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4. A uniformly convergent adaptive solver

4.1. Adaptive application of parametric operators

We consider operators R of the form (3.14). For all M ∈ N, let ēR,M be given such that∥∥R−R[M ]

∥∥
C (Γ ;V )→C (Γ ;W∗)

≤ ēR,M . (4.1)

For example, by Lemma 3.4, these bounds can be chosen as

ēR,M :=
∞∑

m=M+1

‖Rm‖V →W∗ , (4.2)

or as estimates for these sums. We assume that (ēR,M )∞M=0 is nonincreasing and converges to 0, and also that
the sequence of differences (ēR,M − ēR,M+1)∞M=0 is nonincreasing. For (4.2), the latter property holds if Rm are
arranged in decreasing order of ‖Rm‖V →W∗ .

Alternative values for ēR,M are provided by the following elementary estimate, which is a direct consequence
of Lemma 3.4, see [23], Proposition 4.4.

Proposition 4.1. Let s > 0. If either

‖Rm‖V →W∗ ≤ sδR,s(m+ 1)−s−1 ∀m ∈ N (4.3)

or the sequence (‖Rm‖V →W∗)∞m=1 is nonincreasing and

( ∞∑
m=1

‖Rm‖
1

s+1
V →W∗

)s+1

≤ δR,s, (4.4)

then ∥∥R−R[M ]

∥∥
C (Γ ;V )→C (Γ ;W∗)

≤ δR,s(M + 1)−s ∀M ∈ N0. (4.5)

A fundamental concept in the construction of the present adaptive application routine is that, given a vector,
more effort should be invested into coefficients of large magnitude than into coefficients with small magnitude.
This suggests sorting the coefficients as a first step, but exact sorting is an unnecessary luxury. We allow for an
approximate sorting routine.

Given a vector w = (wμ)μ∈Λ ∈ �1(Λ), let

Λp :=
{
μ ∈ Λ ; |wμ| ∈ (2−p ‖w‖�∞ , 2−(p−1) ‖w‖�∞ ]

}
(4.6)

for all p ∈ N, and let w{p} := (wμ)μ∈Λp denote the restriction of w to Λp. The original vector w can be
reconstructed as the sum of all w{p}, where each w{p} is extended to Λ by zero on Λ \Λp. The first few of these
sets are constructed by the routine

BucketSort[w, ε] �→ (Λp)P
p=1, (4.7)

which ensures a tolerance of ε in �1(Λ) for the approximation w ≈ w{1} + · · · + w{P} by choosing P as the
smallest integer with

2−P ‖w‖�∞(Λ) # supp w ≤ ε, (4.8)

see [4, 16, 19, 28]. By [19], Remark 2.3 or [16], Proposition 4.4, the number of operations and storage locations
required by a call of BucketSort[w, ε] is bounded by a multiple of

# supp w + max(1, �log(‖w‖�∞(Λ) (# supp w)/ε)�), (4.9)
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which is less than the computational cost of exact comparison-based sorting algorithms.
Let v = (vμ)μ∈Λ be a finitely supported sequence in V , indexed by Λ. Such a vector represents a polynomial

v ∈ P(Γ ;V ) by
v(y) =

∑
μ∈suppvvv

vμPμ(y), y ∈ Γ, (4.10)

where suppv = {μ ∈ Λ ; vμ = 0} is a finite subset of Λ by assumption. Due to the normalization (3.8),

‖v‖C (Γ ;V ) = max
y∈Γ

‖v(y)‖V ≤
∑
μ∈Λ

‖vμ‖V = ‖v‖�1(Λ;V ) . (4.11)

The routine ApplyR[v, ε] adaptively approximates Rv for v ∈ P(Γ ;V ) in three distinct steps. First, the
elements of the coefficient vector v of v are grouped according to their norm using BucketSort. This already
discards indices μ ∈ Λp for p > P with P as above. As this truncation may be too conservative, further sets Λp

are discarded, and the final partitioning of v has a truncation error of at most δ ≤ ε/2.
Next, an approximation R[Mp] of R is assigned to each segment v{p} = (vμ)μ∈Λp of v. The construction

of the parameters (Mp)�
p=1 is iterative and employs a greedy strategy to minimize the cost while ensuring an

accuracy of ε− δ. Until an estimate of the error reaches this tolerance, the algorithm repeatedly selects an Mp

with a maximal ratio between the reduction in the error bound caused by incrementing Mp, and the additional
cost of this refinement, and increments this Mp by one.

Finally, the operations selected in the previous two steps are performed, i.e. for each p, R[Mp] is applied to
v{p}. Each multiplication Rmvμ is performed just once, and copied to the appropriate entries of z. Then the
polynomial

z(y) :=
∑

μ∈suppzzz

zμPμ(y), y ∈ Γ, (4.12)

is an approximation of Rv with error at most ε.

Algorithm 1. ApplyR[v, ε] �→ z

(Λp)
P
p=1 ←− BucketSort

[
(‖vμ‖V )μ∈Λ,

ε

2ēR,0

]
for p = 1, . . . , P do v{p} ←− (vμ)μ∈Λp

Compute the minimal � ∈ {0, 1, . . . , P} s.t. δ := ēR,0

∥∥∥∥∥v −
�∑

p=1

v{p}

∥∥∥∥∥
�1(Λ;V )

≤ ε

2

for p = 1, . . . , � do Mp ←− 0

while
∑�

p=1 ēR,Mp

∥∥v{p}
∥∥

�1(Λ;V )
> ε− δ do

q ←− argmaxp=1,...,�(ēR,Mp − ēR,Mp+1)
∥∥v{p}

∥∥
�1(Λ;V )

/#Λp

Mq ←−Mq + 1

z = (zν)ν∈Λ ←− 0

for p = 1, . . . , � do
forall μ ∈ Λp do

for m = 1, . . . , Mp do
w ←− Rmvμ

zμ+εm ←− zμ+εm + π+
μm

w

if μm ≥ 1 then zμ−εm ←− zμ−εm + π−
μm

w
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Proposition 4.2. For any ε > 0 and any v ∈ P(Γ ;V ) with coefficient vector v as in (4.10), ApplyR[v, ε]
produces a finitely supported z ∈ �1(Λ;W ∗) such that

# supp z ≤ 2
�∑

p=1

Mp#Λp (4.13)

and the polynomial z ∈ P(Γ ;W ∗) from (4.12) satisfies

‖Rv − z‖C (Γ ;W∗) ≤ δ +
�∑

p=1

ēR,Mp

∥∥v{p}
∥∥

�1(Λ;V )
≤ ε, (4.14)

where δ ≤ ε/2 and Mp refers to the final value of this variable in the call of ApplyR. The total number of
products Rmvμ computed in ApplyR[v, ε] is

∑�
p=1Mp#Λp.

Proof. For each μ ∈ Λp, Rmvμ is computed for m = 1, . . . ,Mp, and passed on to at most two coefficients
of z. This shows (4.13) and the bound on the number of multiplications. Since ‖R‖C (Γ ;V )→C (Γ ;W∗) ≤ ēR,0,
using (4.11),

‖Rv −Rw‖C (Γ ;W∗) ≤ ēR,0 ‖v − w‖C (Γ ;W ) ≤ ēR,0 ‖v − w‖�1(Λ;V ) = δ ≤ ε

2
,

where w :=
∑�

p=1 v{p} and w is the polynomial (4.10) with coefficients w. For all p = 1, . . . , �, let v{p} ∈ P(Γ ;V )
denote the polynomial with coefficients v{p}. Due to (4.1) and the termination criterion of the greedy subroutine
in ApplyR,

�∑
p=1

∥∥Rv{p} −R[Mp]v{p}
∥∥

C (Γ ;W∗)
≤

�∑
p=1

ēR,Mp

∥∥v{p}
∥∥

C (Γ ;V )
≤

�∑
p=1

ēR,Mp

∥∥v{p}
∥∥

�1(Λ;V )
≤ ε− δ.

The assertion follows since z =
∑�

p=1 R[Mp]v{p}. �

Remark 4.3. By Proposition 4.2, the cost of ApplyR is described by
∑�

p=1Mp#Λp, and up to the term δ from
the truncation of v, the error is bounded by

�∑
p=1

ēR,Mp

∥∥v{p}
∥∥

�1(Λ;V )
. (4.15)

Due to the assumption that (ēR,M − ēR,M+1)∞M=0 is nonincreasing, the greedy algorithm used in ApplyR to
determine Mp is guaranteed to minimize

∑�
p=1Mp#Λp under the constraint that (4.15) is at most ε− δ.

4.2. Formulation of the method

The adaptive application routine from Section 4.1 efficiently realizes the approximate application routine of
the operator R, which is a crucial component of the perturbed linear iteration from Section 2.2. We assume
that polynomial approximations of the right hand side f ∈ C(Γ ;W ∗) in (2.18) are available with arbitrary
precision. By Theorem 3.2, such approximations are guaranteed to exist if W ∗ has the approximation property.
We assume that a routine

RHSf [ε] �→ f̃ (4.16)

is available which, for any ε > 0, returns a finitely supported f̃ = (f̃ν)ν∈Λ ∈ �1(Λ;W ∗) with∥∥∥f − f̃
∥∥∥

C (Γ ;W∗)
≤ ε for f̃(y) :=

∑
ν∈Λ

f̃νPν(y), y ∈ Γ. (4.17)

Of course, RHSf is trivial if f does not depend on y ∈ Γ .
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Furthermore, let SolveD be a solver for D such that for any g ∈W ∗ and any ε > 0,

SolveD[g, ε] �→ v,
∥∥v −D−1g

∥∥
V
≤ ε. (4.18)

For example, SolveD could be an adaptive wavelet method, see e.g. [9, 10, 19], an adaptive frame method, see
e.g. [13, 14, 33], or a finite element method with a posteriori error estimation, see e.g. [7, 17, 29].

A realization of the iteration from Section 2.2 using the above approximations is given in SolveDirectA,f .
We write ũk, uε and gk for the polynomials with coefficients ũk, uε and gk, respectively. The initial values can
be set to

ũ0 := 0 and δ0 := (1 − γ)−1
∥∥D−1

∥∥
W∗→V

‖f‖C (Γ ;W∗) . (4.19)

Note that δ0 is an upper bound for the initial error ‖u− ũ0‖C (Γ ;V ). The argument ε is the target accuracy of the
algorithm, and γ is the upper bound on R from (3.15). The parameters β0, β1 and α distribute the admissible
error per iteration among the various approximations within the algorithm, such as the application of R and
the inversion of D. Ranges for these parameters are given in Theorem 4.4.

Theorem 4.4. For any ε > 0 and any ũ0 ∈ P(Γ ;V ), if ‖u− ũ0‖C (Γ ;V ) ≤ δ0, α > 0, β0, β1 > 0 and α+ β0 +
β1 + γ < 1, then SolveDirectA,f [ũ0, δ0, ε, α, β0, β1, γ] terminates with uε such that

‖u− uε‖C (Γ ;V ) ≤ ε̄ ≤ ε. (4.20)

Furthermore, for all k ∈ N reached in the iteration,

‖u− ũk‖C (Γ ;V ) ≤ min(δk, δ̄k) ≤ (α + β0 + β1 + γ)kδ0. (4.21)

Algorithm 2. SolveDirectA,f [ũ0, δ0, ε, α, β0, β1, γ] �→ [uε, ε̄]
for k = 1, 2, . . . do

ηk ←− δk−1

∥∥D−1
∥∥−1

W∗→V
gk = (gk,μ)μ∈Λ ←− RHSf [β0ηk]− ApplyR[ũk−1, β1ηk]
ζk ←− αδk−1(# supp gk)−1

forall μ ∈ supp gk do ũk,μ ←− SolveD[gk,μ, ζk]
ũk ←− (ũk,μ)μ∈Λ

δ̄k−1 ←− (1− γ)−1
(
‖ũk − ũk−1‖�1(Λ;V ) + (α + β0 + β1)δk−1

)
δk ←− (α + β0 + β1)δk−1 + γ min(δk−1, δ̄k−1)
if δk ≤ ε then break

uε ←− ũk

ε̄←− δk

Proof. We show that for all k ∈ N,
‖u− ũk‖C (Γ ;V ) ≤ min(δk, δ̄k).

Let ‖u− ũk−1‖C (Γ ;V ) ≤ min(δk−1, δ̄k−1). Then as in the proof of Theorem 2.5, since Du = f −Ru,

u− ũk = D−1(f −Ru) −D−1(f −Rũk−1) + D−1(f −Rũk−1 − gk) + D−1gk − ũk.

Due to (2.16),∥∥D−1(f −Ru) −D−1(f −Rũk−1)
∥∥

C (Γ ;V )
=
∥∥D−1R(u − ũk−1)

∥∥
C (Γ ;V )

≤ γmin(δk−1, δ̄k−1).
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Furthermore, using
∥∥D−1

∥∥
C (Γ ;W∗)→C (Γ ;V )

=
∥∥D−1

∥∥
W∗→V

, Proposition 4.2 and (4.17),

∥∥D−1(f −Rũk−1 − gk)
∥∥

C (Γ ;V )
≤ ∥∥D−1

∥∥
W∗→V

(β0ηk + β1ηk) = (β0 + β1)δk−1.

Finally, due to (4.11), (4.18) and ζk = αδk−1(# supp gk)−1,

∥∥D−1gk − ũk

∥∥
C (Γ ;V )

≤
∑

μ∈suppgggk

αδk−1(# supp gk)−1 = αδk−1.

By triangle inequality, these estimates imply

‖u− ũk‖C (Γ ;V ) ≤ γmin(δk−1, δ̄k−1) + (β0 + β1)δk−1 + αδk−1 = δk.

The residual at iteration k is rk := f −Aũk = A(u− ũk). We observe that by (2.17),

‖u− ũk‖C (Γ ;V ) ≤
∥∥(D−1A)−1

∥∥ ∥∥D−1rk
∥∥

C (Γ ;V )
≤ 1

1 − γ

∥∥D−1rk
∥∥

C (Γ ;V )
.

Furthermore, D−1rk can be approximated by known quantities since, similarly to above,∥∥ũk+1 − ũk −D−1rk
∥∥

C (Γ ;V )
=
∥∥ũk+1 −D−1(f −Rũk)

∥∥
C (Γ ;V )

≤ (α+ β0 + β1)δk.

Consequently, using (4.11),

‖u− ũk‖C (Γ ;V ) ≤
1

1 − γ

(
‖ũk+1 − ũk‖C (Γ ;V ) + (α+ β0 + β1)δk

)
≤ δ̄k.

Equation (4.21) follows since δk ≤ (α+ β0 + β1 + γ)δk−1. �

Remark 4.5. The error bounds in SolveDirectA,f can be improved if each of the subroutines RHSf , ApplyR
and SolveD returns an estimate of the error it attains. These values can replace αδk−1, β0δk−1 and β1δk−1 in
the definitions of δ̄k−1 and δk. For better legibility, we refrain from making this explicit.

4.3. Comparison to existing methods

Other methods based on the iteration from Section 2.2 have been suggested. The approach is mentioned
in [21] and was analyzed in [1] for the parametric diffusion equation from Section 2.3. In [1], the series (2.29)
is truncated to K terms, and subsequently M steps of the iteration (2.19) are performed. The errors due
to these two approximations are analyzed individually, neglecting spatial approximation errors. Because its
computational cost scales as KM , this method is only feasible for very small M if K is moderately large.
In order to accelerate convergence, the authors suggest to decompose the parameter domain Γ into multiple
regions, and to apply (2.19) separately in each.

The method SolveDirectA,f follows a different strategy. The perturbation in Section 2.2 of the itera-
tion (2.19) allows for the very flexible truncation strategy of (2.29) in ApplyR. Compared to a static truncation
at K terms, this avoids unimportant components Rm of R early in the iteration, but activates them as they
become relevant. This leads to a much sparser representation of u, and also prevents superfluous iterations from
being performed after the iteration has converged beyond the truncation error.

In conjunction with its adaptive structure, SolveDirectA,f provides an upper bound for the error in C(Γ ;V ).
A similar method with control of the error in L2

π(Γ ;V ) for a suitable probability measure π on Γ is analyzed
in [24], and other adaptive strategies are presented in [8, 23]. Another adaptive method is presented in the
following section.
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5. Alternating subspace correction

5.1. Motivation

By (3.14) and (3.16), if v ∈ C(Γ ;V ) is an even function, i.e. v(−y) = v(y), then Rv and R[M ]v are odd
functions, i.e. v(−y) = −v(y). Similarly, if v is odd, then Rv and R[M ]v are even. Since D does not depend on
y, Dv is even if v is even, and odd if v is odd.

Let [n] := n+ 2Z denote the equivalence class modulo two of n ∈ Z, i.e. [n] = [m] if n−m is even.
The right hand side f ∈ C(Γ ;W ∗) of (2.18) can be divided into even and odd parts as f = f [0] + f [1] for

f [0](y) :=
1
2
(
f(y) + f(−y)) and f [1](y) :=

1
2
(
f(y) − f(−y)). (5.1)

Then the iteration (2.19) is equivalent to uk = u
[k]
k + u

[k−1]
k for

u
[k]
k := D−1

(
f [k] −Ru[k−1]

k−1

)
and u

[k−1]
k := D−1

(
f [k−1] −Ru[k]

k−1

)
. (5.2)

We note that u[k]
k only depends on u[k−1]

k−1 and u[k−1]
k only depends on u[k]

k−1. We can therefore perform just one
of these iterations, say

u
[k]
k := D−1

(
f [k] −Ru[k−1]

k−1

)
, (5.3)

and approximate u by u[k]
k + u

[k−1]
k−1 instead of uk.

For polynomials v ∈ P(Γ ;V ), the separation into even and odd parts carries over to the coefficients of v in
V . We define the index sets

Λ[n] := {μ ∈ Λ ; [|μ|] = [n]} , n ∈ Z, (5.4)

where |μ| = ‖μ‖�1(N). Then

Λ = Λ[0] � Λ[1]. (5.5)

We call μ ∈ Λ even if μ ∈ Λ[0] and odd if μ ∈ Λ[1].

Remark 5.1. A finitely supported sequence (vμ)μ∈Λ defines a polynomial function

v(y) =
∑
μ∈Λ

vμPμ(y), y ∈ Γ. (5.6)

The function v is even if and only if vμ = 0 for all μ ∈ Λ[1] and odd if and only if vμ = 0 for all μ ∈ Λ[0] since
Pμ is even for μ ∈ Λ[0] and odd for μ ∈ Λ[1], and the representation (5.6) is unique.

5.2. Formulation of the method

We assume that routines RHS[0]
f and RHS

[1]
f are available similar to RHSf from (4.16) to construct approxima-

tions of f [0] and f [1] from (5.1), such that the approximations of f [0] are even and those of f [1] are odd.
The method ApplyRRR from Section 4.1 already respects even and odd functions in the sense that if v in

z := ApplyR[v, ε] is supported in Λ[n], then z is supported in Λ[n+1].
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Algorithm 3. SolveAlternateA,f [ũ[−1]
−1 , δ−1, ε, α, β0, β1, γ] �→ [uε, ε̄]

for k = 0, 1, 2, . . . do

ηk ←− δk−1

∥∥D−1
∥∥−1

W∗→V

g
[k]
k = (gk,μ)μ∈Λ[k] ←− RHS

[k]
f [β0ηk]− ApplyR[ũ

[k−1]
k−1 , β1ηk]

ζk ←− αδk−1(# supp g
[k]
k )−1

forall μ ∈ supp g
[k]
k do ũk,μ ←− SolveD[gk,μ, ζk]

ũ
[k]
k ←− (ũk,μ)μ∈Λ[k]

δk ←− (α + β0 + β1 + γ)δk−1

if δk−1 + δk ≤ ε then break

uε ←− ũ
[k−1]
k−1 + ũ

[k]
k

ε̄←− δk−1 + δk

As in (5.1), let

u[k](y) :=
1
2
(
u(y) + (−1)ku(−y)), (5.7)

such that u = u[k−1] + u[k] for any k ∈ Z.

Theorem 5.2. For any ε > 0 and any finitely supported ũ
[−1]
−1 ∈ �1(Λ[−1];V ), if α + β0 + β1 + γ < 1 and∥∥∥u[−1] − ũ

[−1]
−1

∥∥∥
C (Γ ;V )

≤ δ−1, then SolveAlternateA,f [ũ[−1]
−1 , δ−1, ε, α, β0, β1, γ] terminates with uε such that

‖u− uε‖C (Γ ;V ) ≤ ε̄ ≤ ε. (5.8)

Furthermore, for all k ∈ N reached in the iteration,∥∥∥u[k] − ũ
[k]
k

∥∥∥
C (Γ ;V )

≤ δk ≤ (α+ β0 + β1 + γ)k+1δ−1. (5.9)

Proof. Since Du[k] = f [k] −Ru[k−1],

u[k] − ũ
[k]
k = D−1(f [k] −Ru[k−1]) −D−1(f [k] −Rũ[k−1]

k−1 ) + D−1(f [k] −Rũ[k−1]
k−1 − g

[k]
k ) + D−1g

[k]
k − ũ

[k]
k .

Due to (2.16), ∥∥∥D−1(f [k] −Ru[k−1]) −D−1(f [k] −Rũ[k−1]
k−1 )

∥∥∥
C (Γ ;V )

≤ γ
∥∥∥u[k−1] − ũ

[k−1]
k−1

∥∥∥
C (Γ ;V )

.

By definition of g
[k]
k , using

∥∥D−1
∥∥

C (Γ ;W∗)→C (Γ ;V )
=
∥∥D−1

∥∥
W∗→V

,∥∥∥D−1(f [k] −Rũ[k−1]
k−1 − g

[k]
k )
∥∥∥

C (Γ ;V )
≤ ∥∥D−1

∥∥
W∗→V

(β0ηk + β1ηk) = (β0 + β1)δk−1.

Also, by (4.18),∥∥∥D−1g
[k]
k − ũ

[k]
k

∥∥∥
C (Γ ;V )

≤
∥∥∥(D−1gk,μ)μ − ũ

[k]
k

∥∥∥
�1(Λ;V )

≤
∑

μ∈suppggg
[k]
k

αδk−1(# supp g
[k]
k )−1 = αδk−1.

Combining these estimates leads to∥∥∥u[k] − ũ
[k]
k

∥∥∥
C (Γ ;V )

≤ (α+ β0 + β1)δk−1 + γ
∥∥∥u[k−1] − ũ

[k−1]
k−1

∥∥∥
C (Γ ;V )

.

Consequently, if
∥∥∥u[k−1] − ũ

[k−1]
k−1

∥∥∥
C (Γ ;V )

≤ δk−1, then
∥∥∥u[k] − ũ

[k]
k

∥∥∥
C (Γ ;V )

≤ δk, and (5.9) follows by induction.
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By triangle inequality, since uε = ũ
[k−1]
k−1 + ũ

[k]
k for the final value of k in SolveAlternateA,f , uε satisfies

‖u− uε‖C (Γ ;V ) ≤
∥∥∥u[k−1] − ũ

[k−1]
k−1

∥∥∥
C (Γ ;V )

+
∥∥∥u[k] − ũ

[k]
k

∥∥∥
C (Γ ;V )

≤ δk−1 + δk = ε̄ ≤ ε. �

Remark 5.3. As in Remark 2.6 the error bounds δk can be refined using an approximation of the residual
analogously to SolveDirectA,f . As in the proof of Theorem 4.4, it follows that

∥∥∥u− (ũ[k−1]
k−1 + ũ

[k]
k )
∥∥∥

C (Γ ;V )
≤ 1

1 − γ

( ∥∥∥ũ[k+1]
k+1 − ũ

[k−1]
k−1

∥∥∥
�1(Λ;V )

+ (α+ β0 + β1)(δk−1 + δk)
)
. (5.10)

This term can be used as an alternative upper bound for each of the error components
∥∥∥u[k] − ũ

[k]
k

∥∥∥
C (Γ ;V )

and∥∥∥u[k−1] − ũ
[k−1]
k−1

∥∥∥
C (Γ ;V )

. However, since it applies to the total error instead of directly to the even or odd part,

we expect it to be less useful than the bound δ̄k in SolveDirectA,f .

Remark 5.4. Comparing the convergence estimates (4.21) and (5.9), it appears that the two numerical solvers
SolveDirectA,f and SolveAlternateA,f converge at the same rate. Therefore, since the latter method updates
only half of the solution vector in each iteration, it should be roughly twice as efficient. However, Remark 5.3
suggests that SolveDirectA,f may provide a sharper bound for the error. It is not clear a priori which of these
effects is more significant; numerical computations presented in Section 6.3 indicate that the two solvers are
equally efficient.

6. Numerical computations

6.1. A model problem

We consider as a model problem the diffusion equation (2.28) on the one dimensional domain G = (0, 1). For
two parameters k and γ, the diffusion coefficient has the form

a(y, x) = 1 +
1
c

∞∑
m=1

ym
1
mk

sin(mπx), x ∈ (0, 1), y ∈ Γ = [−1, 1]∞, (6.1)

where c is chosen as

c = γ

∞∑
m=1

1
mk

, (6.2)

such that |a(y, x) − 1| is always less than γ. We set the parameters to k = 2 and γ = 1/2. A few realizations of
a(y) and the resulting solutions u(y) of (2.28) are plotted in Figure 1.

On the parameter domain, we consider Chebyshev polynomials of the first kind and Legendre polynomials.
We use a multilevel finite element discretization with piecewise linear basis functions on uniform meshes. The
residual-based a posteriori error estimator from [23] is used to estimate the error in SolveD. In order to isolate
the discretization of the parameter domain, we also consider a fixed spatial discretization, using linear finite
elements on a uniform mesh of (0, 1) with 1024 elements to approximate all coefficients. We refer to these simpler
versions of the numerical methods as single level discretizations. All computations were performed in Matlab
on a workstation with an AMD AthlonTM 64 X2 5200+ processor and 4GB of memory.

6.2. Approximation rates

Approximation rates of u by polynomials on Γ are proven in [11, 12] for the parametric diffusion equa-
tion (2.28). These results are formulated for monomials and for Legendre polynomial bases, but extend to other
choices such as Chebyshev polynomials. The uniform ellipticity assumptions in [12] follow from (3.15).
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Figure 1. Realizations of a(y, x) (left) and u(y, x) (right).

The main result of [11, 12] is that if (am)∞m=1 ∈ �p(N;L∞(G)) with 0 < p < 1, then u ∈ �p(Λ;V ) for the
same p. This implies

‖u− uN‖C (Γ ;V ) ≤ CN−s , s =
1
p
− 1 , (6.3)

where uN is a best approximation of u in the span of just N basis functions Pμ with coefficients in V and
C = ‖u‖�p(Λ;V ), see [12], Theorem 4.1. The proof is not constructive, however, so (6.3) provides a benchmark
for the convergence of numerical algorithms, but does not suggest a method.

For the model problem from Section 6.1, ‖am‖L∞(G) = c−1m−k, and thus p > k−1 in (6.3). This implies an
approximation rate of s < k− 1 = 1 for k = 2 with respect to the number of active polynomial basis functions.

Spatial regularity must be taken into account in order to show convergence with respect to the total number
of degrees of freedom. By [12], Theorem 5.5, if (am)∞m=1 ∈ �p(N;W 1,∞(G)), then (6.3) holds with N denoting
the total number of degrees of freedom used to represent uN with e.g. piecewise linear finite elements on G. For
our model problem, this imples p > (k−1)−1 and therefore s < k−2 = 0 for k = 2, making the statement void.

Remark 6.1. The argument in [12] can be refined under the combined assumption (am)∞m=1 ∈ �p(N;L∞(G))
and (am)∞m=1 ∈ �q(N;W 1,∞(G)) with q different from p. Following the proof of Theorem 5.5 [12], but using q
only where the additional spatial regularity is required leads to a convergence rate of

s =
1
p − 1

1 + 1
p − 1

q

(6.4)

instead of s = 1
q −1. For our model problem, p > k−1 and q > (k−1)−1, implying s < 1

2 (k−1) = 1/2 for k = 2.
In general, the exponents min(s, t) in [12], Theorem 5.5, can be improved to

min
(

st

t+ 1
p − 1

q

, t

)
(6.5)

with s as in the statement of the theorem, i.e. s = 1
p −1 for uniform convergence and s = 1

p − 1
2 for mean square

convergence, and t denotes the spatial convergence rate, e.g. t = 1 for linear finite elements.

6.3. Convergence of solvers with uniform error control

The convergence of SolveDirectA,f and SolveAlternateA,f is plotted in Figure 2. We use Chebyshev
polynomials on the parameter domain Γ , and the parameters of both methods are set to α = 1/20, β0 = 0 and
β1 = 1/10.
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Figure 2. Convergence of SolveDirectA,f and SolveAlternateA,f . Solid lines refer to the
error estimate δk, dashed lines are maximal errors on ΓS .

The solid lines in Figure 2 refer to the error estimate δk, which is an upper bound for the error in C(Γ ;V ).
We use Remark 5.3 to take advantage of information on the residual when determining this upper bound for
SolveAlternateA,f . The original formulation of SolveDirectA,f already makes use of this. Markers indicate
the positions along the convergence curves at which approximations are computed.

The dashed lines represent the maximal error on a sample set ΓS of 64 points y in Γ , which is a lower bound
for the actual error. The sample set ΓS is chosen as a subset of the boundary of Γ . Each y ∈ ΓS consists of
randomly chosen ym ∈ {−1, 0, 1} for m ≤ 250 and ym = 0 for m > 250. Realizations of a(y) and u(y) for the first
eight points y ∈ ΓS are given in Figure 1. We suppose that the maximal error on ΓS is a good approximation
of the maximal error on all of Γ .

On the left, the errors are plotted against the total number of basis functions used in the discretization. On
the right, we plot the errors against an estimate of the computational cost given by

7
∑

j

(2j − 1)Sj + 3
∑

j

(2j − 1)Mj +
∑

j

(2j − 1)Pj , (6.6)

where Sj , Mj and Pj denote the total number of linear solves, matrix-vector multiplications and scalar products,
respectively, computed on discretrization level j. The factor 2j − 1 is the dimension of the finite element space
on level j. The weights 7, 3 and 1 in (6.6) were determined empirically by timing the operations for tridiagonal
sparse matrices in Matlab.

We can see in Figure 2 that δk is a coarse upper bound for the actual error. Furthermore, the convergence
rate of δk in this example is only 1/3, compared to a rate of 1/2 for the estimate of the error. This leads to an
over-estimation of the error by almost two orders of magnitude towards the end of the computation. This effect
is not visible in [22], where a larger k is used in the model problem, i.e. the series in (6.1) converges faster.

As anticipated, the error bound for SolveAlternateA,f is slightly coarser than that of SolveDirectA,f .
However, the convergence of the two methods is very similar.

Figure 3 compares the Chebyshev basis used in Figure 2 to the Legendre basis. There does not seem to be
much of a difference between these two choices.

Figure 4 shows the convergence of the single level variants of SolveDirectA,f and SolveAlternateA,f that
use a fixed finite element discretization. The spatial discretization error of approximately 2×10−4 is suppressed
in the convergence plot. The dashed lines refer to the maximal difference between the adaptively computed
parametric solutions on the sample set, and the Galerkin projections computed individually for each point
y ∈ ΓS in this set. The solid lines represent the error bounds δk, which are only an upper bound for the
parametric error for single level methods, and do not capture the spatial discretization error.
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Figure 3. Convergence of SolveDirectA,f (left) and SolveAlternateA,f (right) with Cheby-
shev and Legendre polynomial bases. Solid lines refer to the error estimate δk, dashed lines are
maximal errors on ΓS .

 

 1

103 104 105 106 107

10−1

10−2

10−3

10−4

10−5

SolveDirect

SolveAlternate

degrees of freedom

er
ro

r
in

C
(Γ

;V
N

)

 

 1

104 105 106 107 108 109

10−1

10−2

10−3

10−4

10−5

SolveDirect

SolveAlternate

estimated computational cost

er
ro

r
in

C
(Γ

;V
N

)

Figure 4. Convergence of SolveDirectA,f and SolveAlternateA,f with a fixed finite element
discretization. Solid lines refer to the error estimate δk, dashed lines are maximal errors on ΓS ,
compared with a finite element solution on the same level.

The single level solvers in Figure 4 simulate SolveDirectA,f and SolveAlternateA,f with no spatial dis-
cretization. In this setting, a theoretical asymptotic approximation rate of 1 is shown in [11,12]. We observe a rate
of approximately 1/2 for our adaptive solvers, although the convergence rate of the error of SolveAlternateA,f

on the sample set approaches one.
For the fully discrete system, i.e. Figures 2 and 3, the assumptions of the approximation results in [11, 12]

are not satisfied, and thus no convergence is shown there. However, by Remark 6.1, [12], Theorem 5.5, can be
strengthened to show an approximation rate of 1/2. This agrees with the observed rate for the actual errors
attained by the numerical algorithms, but the computable error bounds δk converge only with rate 1/3.

6.4. Comparison to other adaptive methods

We compare the convergence of SolveDirectA,f to that of similar methods from [23,24], which control the
error in L2

π(Γ ;V ) for a probability measure π on the parameter domain Γ . In the following, this probability
measure is always chosen in such a way that the polynomial basis (Pμ)μ∈Λ is orthogonal. For example, for
Legendre polynomials, π is a countable product of uniform distributions on [−1, 1].



UNIFORMLY CONVERGENT ADAPTIVE METHODS FOR A CLASS OF PARAMETRIC OPERATOR EQUATIONS 1505

 

 

1 10 102 103 104 105 106 107

10−1

10−2

10−3

10−4

10−5

C (Γ ; V )
L2

π(Γ ; V )

degrees of freedom

er
ro

r
in

C
(Γ

;V
)

 

 

1 10 102 103 104 105 106 107

10−1

10−2

10−3

10−4

10−5

C (Γ ; V )
L2

π(Γ ; V )

degrees of freedom

er
ro

r
in

C
(Γ

;V
)

Figure 5. Convergence in C(Γ ;V ) of SolveDirectA,f with Chebyshev polynomials (left) and
Legendre polynomials (right). The two versions of SolveDirectA,f control the error in C(Γ ;V )
and L2

π(Γ ;V ), respectively.
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Figure 6. Convergence in L2
π(Γ ;V ) of SolveDirectA,f with Legendre polynomials. The two

versions of SolveDirectA,f control the error in C(Γ ;V ) and L2
π(Γ ;V ), respectively.

Since the solvers from [23,24] do not provide bounds for the error in C(Γ ;V ), we do not consider computa-
tionally accessible error estimates such as δk. We approximate the error in C(Γ ;V ) by the maximal error on
the finite sample set ΓS , as in Section 6.3, and errors in L2

π(Γ ;V ) refer to the difference to a reference solution,
evaluated using Parseval’s identity.

In Figure 5, the convergence of SolveDirectA,f in C(Γ ;V ) is compared to an analogous method from [24],
which is set in L2

π(Γ ;V ) instead of C(Γ ;V ). We observe that the method which controls the error in C(Γ ;V )
converges slightly faster, although the other method also appears to converge uniformly in the parameter y ∈ Γ .

Surprisingly, SolveDirectA,f with error control in C(Γ ;V ) also converges faster in L2
π(Γ ;V ), as shown in

Figure 6. Here, the reference solution has an error of approximately 5 × 10−5, which may explain the slight
flattening of the convergence curves.

In Figure 7 the convergence in C(Γ ;V ) of SolveDirectA,f with error control in C(Γ ;V ) is compared to that
of the adaptive method SolveGalerkinA,f from [23], which controls the error in the energy norm on L2

π(Γ ;V ).
The parameters of SolveGalerkinA,f are chosen as in [23]. The latter method includes a coarsening step, which
ensures that the approximate solutions are sparse, i.e. for a given error tolerance in L2

π(Γ ;V ), the approximate
solution constructed by SolveGalerkinA,f should contain a minimal number of degrees of freedom, up to a
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Figure 7. Convergence in C(Γ ;V ) of SolveDirectA,f with Chebyshev polynomials and error
control in C(Γ ;V ) compared to that of SolveGalerkinA,f with Chebyshev polynomials (solid)
and Legendre polynomials (dashed).
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Figure 8. Convergence in L2
π(Γ ;V ) of SolveDirectA,f with error control in C(Γ ;V ) compared

to that of SolveGalerkinA,f with Legendre polynomials for the uniform distribution π on Γ .

constant factor. Without such a coarsening procedure, SolveDirectA,f produces approximate solutions with
almost identical sparsity for a given error. However, the computational cost of SolveDirectA,f is two orders
of magnitude lower than that of SolveGalerkinA,f . The situation is similar if the error is measured in mean
square instead of uniformly in the parameter, as shown in Figure 8.

7. Conclusion and outlook

Our adaptive methods are proven to converge uniformly in the parameter, which is assumed to be in an
infinite dimensional cube. The convergence rates we observe in numerical computations presented in Section 6.3
agree with an extension of the approximation results in [11,12] for the fully discrete algorithms. In a semidiscrete
setting, the observed convergence rates are slightly lower than the approximation rates.

The comparisons in Section 6.4 indicate that, for constructing a reliable parametric representation of the
solution to a parametric boundary value problem, the adaptive methods presented here are more efficient than
similar methods that control the error in L2

π(Γ ;V ) rather than C(Γ ;V ).
Our methods provide a reliable upper bound for the error in C(Γ ;V ). We observed that this bound may

overestimate the actual error and may even converge with a lower rate. It would be desirable to have a less
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conservative upper bound. Also, the addition of a coarsening step may improve the efficiency of the algorithm.
These points are the subject of ongoing research.
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