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CONVERGENCE OF SOME ADAPTIVE FEM-BEM COUPLING FOR ELLIPTIC
BUT POSSIBLY NONLINEAR INTERFACE PROBLEMS

Markus Aurada1, Michael Feischl1 and Dirk Praetorius1

Abstract. We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear)
interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on
the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the
boundary data, which allows to work with discrete boundary integral operators only. Using the concept
of estimator reduction, we prove that the proposed adaptive algorithm is convergent in the sense that
it drives the underlying error estimator to zero. Numerical experiments underline the reliability and
efficiency of the considered adaptive mesh-refinement.
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1. Introduction and overview

The (h− h/2)-error estimation strategy is a well-known technique for the a posteriori estimation of the error
in the energy norm |||u− u�|||; see [23] in the context of ordinary differential equations, and the overview article
of Bank [6] or the monograph [1], Chapter 5, in the context of the finite element method: let X� be a discrete
subspace of the energy space H and let X̂� be its uniform refinement. With the corresponding Galerkin solutions
U� and Û�, the (h− h/2)-error estimator

η� := |||Û� − U�||| (1.1)

is a computable quantity [15] which can be used to estimate the error |||u−U�|||, where u ∈ H denotes the exact
solution and where ||| · ||| denotes the energy norm on H.

For finite element methods (FEM), the energy norm, e.g., ||| · ||| = ‖∇(·)‖L2(Ω) provides local information,
which elements of the underlying mesh should be refined to decrease the error effectively. For boundary element
methods (BEM), the energy norm ||| · ||| is (equivalent to) a fractional order Sobolev norm and typically does not
provide a direct information, where the underlying mesh should be refined. In [20], localized variants of η� were
introduced. In [18,19] the equivalence of η� to hierarchical two-level error estimators from [24,28] and averaging
error estimators from [9–11] has been analyzed.
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Recently [21], convergence of some (h − h/2)-steered adaptive mesh-refinement has been proven for linear
model problems in the context of FEM and BEM. In [2, 4], this result has been generalized to averaging type
error estimators and perturbed Galerkin schemes. The latter is important in the context of BEM, since the
involved integral operators can, in general, only be evaluated for discrete functions.

In this work, we introduce some (h − h/2)-type error estimators for the coupling of FEM and BEM. As
model problem, we consider an interface problem in two dimensions with a nonlinear inhomogeneous partial
differential equation (PDE) in the interior domain and a linear homogeneous PDE in the exterior domain.
We apply a symmetric coupling method [13, 14] and the lowest-order Galerkin scheme to obtain a (nonlinear)
system of coupled FEM-BEM equations. For linear problems, the ideas from [18,19] can be used to prove that
the introduced error estimators are equivalent to the two-level error estimator from [27].

Using ideas from [2] and in addition to the seminal work [27], we include the approximation of the data to
deal with discrete integral operators only. Moreover, [27] proves that a saturation condition

|||u − U�+1||| ≤ q |||u − U�||| (1.2)

for a sequence U� of discrete FEM-BEM solutions and with some uniform constant 0 < q < 1, implies the
reliability of the two-level error estimator. On the other hand, this saturation condition already assumes linear
convergence of the discrete solutions obtained from an adaptive mesh-refining algorithm. In our work, we assume
that uniform refinement, i.e. the use of Û� instead of U�+1 in (1.2), guarantees a saturation condition. Under
this – compared to [27] – much weaker assumption, we prove that the introduced (h − h/2)-error estimator is
reliable and efficient up to data approximation terms, which are also controlled a posteriori. Finally, we prove
that the usual adaptive algorithm drives the error estimator (and hence the error) to zero. We stress that this
is the first convergence result available for adaptive schemes in the context of the FEM-BEM coupling.

The outline of the paper is as follows: in Section 2.1, we formulate our model problem, and the Galerkin
formulation is given in Section 2.2–2.3. Section 3.1 collects the properties of the local mesh-refinement used for
the numerical analysis. In Section 3.2, we introduce a computable data oscillation term osc�. We prove that osc�

provides the means to control the error introduced by the data approximation (Prop. 3.1). In Section 3.3, we
state and discuss the saturation assumption (3.13) and prove that the (h − h/2)-error estimator η� from (1.1)
provides, up to osc�, a lower and upper bound for the error |||u − U�||| (Prop.3.7). As mentioned before, the
boundary contribution to the energy norm |||·||| cannot be used to steer an adaptive mesh-refinement. In the spirit
of [20], we introduce further estimators μ� and μ̃� in Section 3.4, which are equivalent to η� (Lem. 3.8) and which
can be used to steer an adaptive algorithm. Consequently (Thm. 3.9), these estimators provide, up to osc�, lower
and upper bounds for the error. Section 4 provides our version of the adaptive algorithm (Algorithm 4.4) and
proves convergence (Thm. 4.5). The first ingredient of our convergence proof is the observation that adaptive
mesh-refinement always leads to a convergent sequence of discrete solutions U�, where the limit

u∞ := lim
�→∞

U�, (1.3)

however, does not necessarily coincide with the continuous solution u (Prop. 4.2). Second, we show that a
generalized variant (4.4)–(4.5) of the Dörfler marking [16] implies an estimator reduction estimate of the type

�̃ 2
�+1 ≤ κ�̃ 2

� + C |||Û�+1 − Û�|||2 (1.4)

with �̃ 2
� := μ̃ 2

� + osc2
� and with certain �-independent constants 0 < κ < 1 and C > 0 (Lem. 4.3). From the

a priori convergence (1.3) of Û� to some limit û∞, one may thus conclude convergence �̃� → 0 as � → ∞,
cf. [4]. Section 5 gives empirical evidence that the proposed adaptive algorithm is much superior to uniform
mesh-refinement with respect to both, experimental convergence rate and computational time. Finally, a short
appendix generalizes a result of [13] and proves that, without any further assumptions on the mesh-sizes, each
discrete space X� admits a unique Galerkin solution U�.
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2. Continuous problem and Galerkin formulation

2.1. Model problem

We consider the nonlinear interface problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(A∇uint) = f in Ωint := Ω,

−Δuext = 0 in Ωext := R
2\Ω,

uint − uext = u0 on Γ,

(A∇uint −∇uext) · n = φ0 on Γ,

uext(x) = O(log |x|) as |x| → ∞.

(2.1)

Here, Ω is a bounded Lipschitz domain in R
2 with polygonal boundary Γ := ∂Ω and outer unit normal vector

n. The given data satisfy f ∈ L2(Ω), u0 ∈ H1/2(Γ ), and φ0 ∈ H−1/2(Γ ). We recall that H̃−1(Ω) is the dual
space of H1(Ω) with respect to the L2(Ω)-scalar product. The space H1/2(Γ ) is precisely the space of all traces
of functions from H1(Ω), and H−1/2(Γ ) is the dual of H1/2(Γ ) with respect to the L2(Γ )-scalar product.

As usual, (2.1) is understood in the weak sense, and the sought solutions satisfy uint ∈ H1(Ω) and uext ∈
H1

�oc(Ω
ext) =

{
v : Ωext → R : ∀K ⊂ Ωext compact v ∈ H1(K)

}
with ∇uext ∈ L2(Ωext). The (possibly

nonlinear) operator A : L2(Ω)2 → L2(Ω)2 is strongly monotone and Lipschitz continuous, i.e. there holds{
Cmon ‖∇v −∇w‖2

L2(Ω) ≤ 〈A∇v −A∇w , ∇v −∇w〉Ω ,

‖A∇v −A∇w‖L2(Ω) ≤ Clip ‖∇v −∇w‖L2(Ω),
(2.2)

for all v, w ∈ H1(Ω).
Problem (2.1) is equivalently stated via the symmetric FEM-BEM coupling, cf. e.g. [13], Theorem 1: find

(u, φ) ∈ H := H1(Ω) ×H−1/2(Γ ) such that{ 〈A∇u , ∇v〉Ω +
〈
Wu+

(
K′ − 1

2

)
φ , v

〉
Γ

= 〈f , v〉Ω + 〈φ0 + Wu0 , v〉Γ ,〈
ψ , Vφ−

(
K − 1

2

)
u
〉

Γ
= −

〈
ψ ,
(
K − 1

2

)
u0

〉
Γ
,

(2.3)

for all (v, ψ) ∈ H. Here, V denotes the simple-layer potential, K denotes the double-layer potential with adjoint
K′, and W denotes the hypersingular integral operator. With

G(z) := − 1
2π

log |z| for z ∈ R
2\{0} (2.4)

the fundamental solution of the 2D Laplacian, these integral operators formally read for x ∈ Γ as follows,

(Vψ)(x) =
∫

Γ

G(x− y)ψ(y) dΓ (y), (2.5)

(Kv)(x) =
∫

Γ

∂n(y)G(x− y) v(y) dΓ (y), (2.6)

(Wv)(x) = −∂n(x)

∫
Γ

∂n(y)G(x− y) v(y) dΓ (y). (2.7)

By continuous extension, these definitions provide linear boundary integral operators V ∈
L(H−1/2(Γ );H1/2(Γ )), K ∈ L(H1/2(Γ );H1/2(Γ )), and W ∈ L(H1/2(Γ );H−1/2(Γ )) as well as
K′ ∈ L(H−1/2(Γ );H−1/2(Γ )). The reader is also referred to the monographs [25, 30, 31] for more details
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on these integral operators. By scaling of Ω, we may assume that diam(Ω) < 1 to ensure the uniform ellipticity
of V, i.e.

‖ψ‖2
H−1/2(Γ ) � 〈ψ , Vψ〉Γ for all ψ ∈ H−1/2(Γ ).

The link between (2.1) and (2.3) is provided by u = uint and φ = ∇uext · n, and uext is then given by the third
Green’s formula

uext(x) = K̃(u− u0)(x) − Ṽφ(x) for x ∈ Ωext, (2.8)

where the potentials Ṽ and K̃ formally denote the operators V and K, but are now evaluated in Ωext instead of Γ .
Note carefully that we do not use a notational difference for the function u ∈ H1(Ω) and its trace u ∈ H1/2(Γ ),
for which we compute the boundary integrals Wu and (K − 1

2 )u in (2.3).
It is well-known that (2.3) is well-posed in the sense that it allows for a unique solution (u, φ) ∈ H. Since we

need some arguments from [13] below, we briefly recall the corresponding proof of [13], Corollary 2: first, the
second equation of (2.3) is equivalently written as

φ = V−1

(
K − 1

2

)
(u− u0).

This identity may be used to eliminate φ in the first equation of (2.3). This gives rise to the exterior Dirichlet-
to-Neumann map (or: exterior Steklov-Poincaré operator)

S := W +
(

K′ − 1
2

)
V−1

(
K − 1

2

)
∈ L(H1/2(Γ );H−1/2(Γ )) (2.9)

which is elliptic, i.e, 〈Sv , v〉 � ‖v‖2
H1/2(Γ )

for all v ∈ H1/2(Γ ), see [13], Lemma 3.4, and Appendix A below.

Recall that H̃−1(Ω) is the dual space of H1(Ω) with respect to the L2(Ω)-scalar product. We define the (in
general nonlinear) operator

A : H1(Ω) → H̃−1(Ω) by A(u)[v] := 〈A∇u , ∇v〉Ω + 〈Su , v〉Γ (2.10)

and the right-hand side

L ∈ H̃−1(Ω) by Lv := 〈f , v〉Ω + 〈φ0 + Wu0 , v〉Γ . (2.11)

Then, (2.3) is equivalently recast into the operator equation

A(u) = L in H̃−1(Ω). (2.12)

The operator A is Lipschitz continuous and strongly monotone, i.e.

‖Au− Av‖H̃−1(Ω) � ‖u− v‖H1(Ω) as well as ‖u− v‖2
H1(Ω) � 〈Au− Av , u− v〉Ω.

Consequently, the main theorem on strongly monotone operators [33], Section 25.4, proves that (2.12) and
thus (2.3) have a unique solution.

2.2. Galerkin discretization

Let T� be a regular triangulation of Ω into compact triangles Tj ∈ T� and E� be a partition of the coupling
boundary Γ into compact and piecewise affine line segments Ej ∈ E�. Since Ω is polygonal, we assume that Ω
as well as Γ are exactly resolved by T� and E�. Let diam(ω) denote the Euclidean diameter of a set ω ⊂ R

2. For
x ∈ τ ∈ T� ∪ E�, we define the local mesh-width function by h�(x) := diam(τ).
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For the discretization, we use a conforming discretization with continuous and T�-piecewise affine finite
elements in Ω and E�-piecewise constants on Γ , i.e. the discrete spaces read

X� := S1(T�) × P0(E�) ⊆ H1(Ω) ×H−1/2(Γ ) = H. (2.13)

We stress that the analysis does not enforce any coupling of E� and T�. In particular, we do not need to assume
that the boundary mesh E� coincides with the restriction T�|Γ . However, for the ease of implementation, we will
consider E� = T�|Γ in the numerical experiments of Section 5.

The Galerkin formulation of (2.3) then reads as follows: find U�
� = (U�

� , Φ
�
� ) ∈ X� such that{ 〈A∇U�

� , ∇V�〉Ω +
〈
WU�

� +
(
K′ − 1

2

)
Φ�

� , V�

〉
Γ

= 〈f , V�〉Ω + 〈φ0 + Wu0 , V�〉Γ ,〈
Ψ� , VΦ�

� −
(
K − 1

2

)
U�

�

〉
Γ

= −
〈
Ψ� ,

(
K − 1

2

)
u0

〉
Γ
,

(2.14)

for all V� = (V�, Ψ�) ∈ X�.
To proof the unique solvability of (2.14), the analysis of [13], Section 3, mimics the proof of the continuous

case. Namely, (2.14) is equivalently rewritten in terms of a (in general nonlinear) operator equation

A�(U�) = L� in S1(T�)∗, (2.15)

where the nonlinear operator A� reads

A� : S1(T�) → S1(T�)∗, A�(U�)[V�] := 〈A∇U� , ∇V�〉Ω + 〈S�U� , V�〉Γ , (2.16)

cf. [13], Corollary 3. Here, S� denotes a discrete Dirichlet-to-Neumann map, which arises from the elimination
of Φ�

� in the first equation of (2.14). It can be shown that S� is uniformly elliptic, where the constant depends
only on Ω but not on X�, see Appendix A. As in the continuous case, this implies that the Lipschitz continuous
operator A� is strongly monotone. Again, the main theorem on strongly monotone operators [33], Section 25.4,
proves the unique solvability of (2.15) and thus of (2.14).

Moreover, uniform ellipticity of S� implies that the unique discrete solution U�
� ∈ X� is quasi optimal in the

sense of the Céa lemma
|||u − U�

� ||| ≤ C1 min
V�∈X�

|||u − V�|||, (2.17)

where the constant C1 > 0 depends only on Ω, see [13], Corollary 3, resp. [33], Corollary 25.7. Here, the natural
energy norm on the energy space H is given by

|||v||| =
(
‖v‖2

H1(Ω) + 〈ψ , Vψ〉Γ
)1/2

for v := (v, ψ) ∈ H. (2.18)

We stress that H associated with ||| · ||| is a Hilbert space, since ‖ψ‖V := 〈ψ , Vψ〉1/2
Γ defines an equivalent norm

on H−1/2(Γ ).

2.3. Perturbed Galerkin discretization

The right-hand side of the discrete formulation (2.14) involves the evaluation of Wu0 and Ku0, which can
hardly be performed analytically. Moreover, so-called fast methods for boundary integral operators usually deal
with discrete functions, cf. [29]. Therefore, we propose to approximate at least the given boundary data u0 ∈
H1/2(Γ ) by appropriate discrete functions and proceed analogously to [2]: to that end and to provide below
a local measure for the approximation error, we assume additional regularity u0 ∈ H1(Γ ). According to the
Sobolev inequality in 1D, u0 is continuous. Therefore, we may consider the nodal interpolant

U0,� := IΓ
� u0 =

n∑
j=1

u0(zj)ζj ∈ S1(E�), (2.19)
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where zj ∈ Γ denotes a node of E� and where ζj is the associated E�-piecewise linear and continuous hat function,
i.e., ζj(zk) = δjk. Now, the perturbed Galerkin formulation reads as follows: Find U� = (U�, Φ�) ∈ X� such that{ 〈A∇U� , ∇V�〉Ω +

〈
WU� +

(
K′ − 1

2

)
Φ� , V�

〉
Γ

= 〈f , V�〉Ω + 〈φ0 + WU0,� , V�〉Γ ,〈
Ψ� , VΦ� −

(
K − 1

2

)
U�

〉
Γ

= −
〈
Ψ� ,

(
K − 1

2

)
U0,�

〉
Γ
,

(2.20)

for all V� = (V�, Ψ�) ∈ X�. Compared to (2.14), the only difference is that (2.20) involves the approximate data
U0,� instead of u0 on the right-hand side. Consequently, the same arguments as before prove that (2.20) has a
unique solution.

3. A POSTERIORI error estimation

3.1. Local mesh-refinement

For the local refinement of the volume mesh T�, we use newest vertex bisection, where marked triangles
T ∈ T� are refined by bisec3(T ). We refer to [32], Chapter 5, for details on newest vertex bisection. The mesh
T̂� is obtained from uniform bisec3-refinement of T�. This ensures uniform shape regularity of the triangulations
T� and T̂�. More precisely, the shape regularity constant

σ(T�) := max
{
diam(T )2/|T | : T ∈ T�

}
(3.1)

depends only on the initial mesh T0, i.e.

max{sup
�∈N

σ(T�), sup
�∈N

σ(T̂�)} ≤ C σ(T0), (3.2)

where C > depends only on the labelling of the reference edges in T0. Furthermore, there holds nestedness of
the associated spaces

S1(T�) ⊆ S1(T�+1) ⊆ S1(T̂�) ⊆ S1(T̂�+1).

For the local refinement of the boundary mesh E�, we use bisection of the marked elements, i.e. marked elements
E ∈ E� are refined into two son elements with halved diameter. Since the error estimates below depend on the
local mesh-ratio (also called K-mesh constant)

κ(E�) := max
{
diam(E)/diam(E′) : E,E′ ∈ E� with E ∩ E′ �= ∅

}
, (3.3)

one has to do some additional marking to ensure

sup
T∈T�

κ(E�) ≤ 2 κ(E0), (3.4)

cf. [2], Section 2.2, for details. The mesh Ê� is obtained from uniform refinement of E�, whence κ(E�) = κ(Ê�).
Alternatively, one may consider the boundary partition E� := T�|Γ induced by the triangulation T� of Ω.

Then, marking of an element E ∈ E� means marking of certain edges of some triangles T ∈ T� for newest vertex
bisection. We stress that this also guarantees that marked elements E are split into two son elements of half
length. Moreover, due to uniform shape regularity (3.2) of T�, there automatically holds

sup
T∈T�

κ(E�) ≤ C κ(E0), (3.5)

with some constant C > 0 which depends only on T0.
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In any case, there again holds nestedness

P0(T�) ⊆ P0(T�+1) ⊆ P0(T̂�) ⊆ P0(T̂�+1).

Finally, we consider the discrete spaces X� := S1(T�) × P0(E�) as well as X̂� := S1(T̂�) × P0(Ê�). We note that

X� ⊆ X�+1 ⊆ X̂� ⊆ X̂�+1 ⊂ H,

where only the inclusions X� ⊆ X�+1, X� ⊆ X̂�, and X̂� ⊆ X̂�+1 are mandatory for the analysis below.

3.2. A posteriori error control for data approximation

Instead of solving the non-perturbed Galerkin formulation (2.14) of the weak formulation (2.3), we solve
the perturbed Galerkin formulation (2.20) in practice. Put differently, U� = (U�, Φ�) ∈ X� is the Galerkin
approximation of the unique solution u� = (u�, φ�) ∈ H of the perturbed formulation{ 〈A∇u� , ∇v〉Ω +

〈
Wu� +

(
K′ − 1

2

)
φ� , v

〉
Γ

= 〈f , v〉Ω + 〈φ0 + WU0,� , v〉Γ ,〈
ψ , Vφ� −

(
K − 1

2

)
u�

〉
Γ

= −
〈
ψ ,
(
K − 1

2

)
U0,�

〉
Γ
,

(3.6)

for all v = (v, ψ) ∈ H. In this section, we aim to verify a computable upper bound to control the approximation
errors |||u − u�||| and |||U�

� − U�|||, stated in the following proposition.

Proposition 3.1. There holds the approximation error estimate

C−1
2 |||U�

� − U�||| ≤ |||u − u�||| ≤ C3 osc�, (3.7)

where

osc� := ‖h1/2
� (u0 − U0,�)′‖L2(Γ ). (3.8)

Here, (·)′ denotes the arclength derivative along Γ . The constant C2 > 0 depends only on Ω, whereas C3 > 0
additionally depends on the K-mesh constant κ(E0).

The proof of (3.7) is essentially based on the following stability result.

Lemma 3.2. Let u = (u, φ) ∈ H be the exact solution of (2.3) for given data (f, u0, φ0) ∈ D := H̃−1(Ω) ×
H1/2(Γ ) × H−1/2(Γ ). Let ũ = (ũ, φ̃) ∈ H be the exact solution of (2.3) for given data (f̃ , ũ0, φ̃0) ∈ D. Let
U�

� , Ũ
�
� ∈ X� be the respective Galerkin solutions of (2.14). Then,

C−1
2 |||U�

� − Ũ�
� ||| ≤ |||u − ũ||| ≤ C4

(
‖f − f̃‖H̃−1(Ω)+‖u0 − ũ0‖H1/2(Γ )+‖φ0 − φ̃0‖H−1/2(Γ )

)
, (3.9)

where the constants C2, C4 > 0 depend only on Ω.

Proof. We proceed as above in Section 2.1 to rewrite the weak formulations (2.3) for u and ũ. Note that the
second equations of both formulations are equivalently written as

φ = V−1

(
K − 1

2

)
(u− u0) as well as φ̃ = V−1

(
K − 1

2

)
(ũ− ũ0) .

With the operator A from (2.10) and the right-hand sides L(·) ∈ H̃−1(Ω) defined by

L(f, u0, φ0)[v] := 〈f , v〉Ω + 〈φ0 + Wu0 , v〉Γ ,
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the variational formulations (2.3) are equivalently recast into the operator equations

A(u) = L(f, u0, φ0) resp. A(ũ) = L(f̃ , ũ0, φ̃0).

As mentioned above, A is Lipschitz continuous and strongly monotone, whence bijective. Moreover, the inverse
of a strongly monotone operator is Lipschitz continuous since ‖u− v‖H1(Ω) � ‖Au− Av‖H̃−1(Ω). This and the
continuity of S imply

‖u− ũ‖H1(Ω) � ‖L(f, u0, φ0) − L(f̃ , ũ0, φ̃0)‖H̃−1(Ω)

≤ ‖f − f̃‖H̃−1(Ω) + ‖φ0 − φ̃0‖H−1/2(Γ ) + ‖S(u0 − ũ0)‖H−1/2(Γ )

� ‖f − f̃‖H̃−1(Ω) + ‖φ0 − φ̃0‖H−1/2(Γ ) + ‖u0 − ũ0‖H1/2(Γ ).

Next, the mapping properties of the integral operators V and K yield

‖φ− φ̃‖H−1/2(Γ ) =
∥∥∥∥V−1

(
K − 1

2

)
((u− ũ) − (u0 − ũ0))

∥∥∥∥
H−1/2(Γ )

� ‖u− ũ‖H1/2(Γ ) + ‖u0 − ũ0‖H1/2(Γ ).

Combining the latter two estimates and ‖u− ũ‖H1/2(Γ ) � ‖u− ũ‖H1(Ω), we obtain

|||u − ũ||| � ‖f − f̃‖H̃−1(Ω) + ‖φ0 − φ̃0‖H−1/2(Γ ) + ‖u0 − ũ0‖H1/2(Γ ).

This proves the upper estimate in (3.9).
To estimate |||U�

� − Ũ�
� |||, we use the same type of arguments with the discrete operator A�. For instance, we

rewrite (2.14) as{ 〈A∇U�
� , ∇V�〉Ω +

〈
WU�

� +
(
K′ − 1

2

)
Φ�

� , V�

〉
Γ

= 〈A∇u , ∇V�〉Ω +
〈
Wu+

(
K′ − 1

2

)
φ , V�

〉
Γ
,〈

Ψ� , VΦ�
� −

(
K − 1

2

)
U�

�

〉
Γ

=
〈
Ψ� , Vφ−

(
K − 1

2

)
u
〉
Γ
,

for all V� = (V�, Φ�) ∈ X�. With the discrete Steklov-Poincaré operator S� and the operator A�, this becomes

A�U
�
� = L�(u, φ),

with a certain right-hand side L�(u, φ) ∈ S1(T�)∗. Replacing u = (u, φ) by ũ = (ũ, φ̃), we obtain the discrete
operator formulation for Ũ�

� . It is easily seen that Lipschitz continuity of the inverse of A� thus yields

‖U�
� − Ũ�

� ‖H1(Ω) � ‖L�(u, φ) − L�(ũ, φ̃)‖S1(T�)∗ � |||u − ũ|||.

Using the discrete simple-layer potential, one additionally obtains

‖Φ�
� − Φ̃�

�‖H−1/2(Γ ) � ‖U�
� − Ũ�

� ‖H1(Ω) + |||u − ũ||| � |||u − ũ|||.

Altogether, we thus see |||U�
� − Ũ�

� ||| � |||u − ũ||| and conclude the proof. �

The a posteriori error control of the approximation of u0 by U0,� is now done via an approximation result
from [8], Theorem 1. Our formulation in equation (3.10), taken from [19], Lemma 2.2, is a consequence of the
latter.
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Lemma 3.3. With IΓ
� : H1(Γ ) → S1(E�) the nodal interpolation operator and ΠΓ

� : L2(Γ ) → P0(E�) the L2-
orthogonal projection, there holds ΠΓ

� (v′) = (IΓ
� v)

′, where (·)′ denotes the arclength derivative. Moreover, there
holds the approximation result

C−1
5 ‖v − IΓ

� v‖H1/2(Γ ) ≤ ‖h1/2
� (v − IΓ

� v)
′‖L2(Γ ) ≤ ‖h1/2

� v′‖L2(Γ ) for all v ∈ H1(Γ ), (3.10)

and the constant C5 > 0 depends only on Γ and κ(E0).

Proof of Proposition 3.1. According to Lemma 3.2, there holds

|||U�
� − U�||| � |||u − u�||| � ‖u0 − U0,�‖H1/2(Γ ).

By choice of the discrete approximation U0,� = IΓ
� u0, the approximation estimate (3.10) yields

‖u0 − U0,�‖H1/2(Γ ) � ‖h1/2
� (u0 − U0,�)′‖L2(Γ ).

This concludes the proof. �

3.3. Saturation assumption and (h − h/2)-error estimator

Let T̂� and Ê� be the uniform refinements of T� and E�, respectively, and define

X̂� = S1(T̂�) × P0(Ê�).

In this section, we consider the canonical (h− h/2)-error estimators

η�
� := |||Û�

� − U�
� ||| and η� := |||Û� − U�|||. (3.11)

Here, Û�
� , Û� ∈ X̂� are the Galerkin solutions of (2.14) and (2.20) with respect to the uniformly refined meshes.

We remark that due to the non-locality of ‖ · ‖V, the error estimator η� does not provide any information where
to refine the boundary partition E�. This will be different for the error estimators considered in the subsequent
section.

Lemma 3.4. There is a constant C6 > 0 which depends only on Ω such that

η�
� ≤ C6 |||u − U�

� |||. (3.12)

Under the so-called saturation assumption

|||u − Û�
� ||| ≤ Csat |||u − U�

� ||| (3.13)

with some �-independent constant 0 < Csat < 1, there holds

|||u − U�
� ||| ≤

1
1 − Csat

η�
� . (3.14)

Proof. To prove (3.12), we use U�
� ∈ X� ⊆ X̂� and the quasi-optimality (2.17) applied for Û�

� ∈ X̂�. This and
the triangle inequality yield

η�
� ≤ |||u − Û�

� ||| + |||u − U�
� ||| � |||u − U�

� |||.

For the converse inequality, the triangle inequality and the saturation assumption (3.13) provide

|||u − U�
� ||| ≤ |||u − Û�

� ||| + η�
� ≤ Csat |||u − U�

� ||| + η�
� .

Rearranging the terms, we conclude (3.14). �
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Remark 3.5.

(a) We remark that the saturation assumption (3.13) dates back to the early work [6], but may fail to hold in
general [7,17]. However, it essentially states that the numerical scheme has reached an asymptotic phase [20],
Section 5.2;

(b) for model problems and lowest-order FEM, the saturation assumption (3.13) can be proven, if the given
data are sufficiently resolved. More precisely, [17] then states

|||u − Û�
� ||| ≤ Csat |||u − U�

� ||| + osc�,

so that small data oscillation implies the saturation assumption. This led to the incorporation of the data
resolution into the convergent (h−h/2)-estimator steered adaptive algorithm of [21], where η� +osc� is used
to drive the adaptive FE algorithm. One may expect that a result similar to that of [17] should also hold
for BEM or the FEM-BEM coupling. However, the non-locality of the involved boundary integral operators
imposes severe difficulties, and we expect that new mathematical techniques have to be developed;

(c) the results of [17, 21] mentioned before in (b) provide an additional reason why one should include the
resolution of the given data into the adaptive scheme and may consider discretized data U0,� of u0. The
inclusion of data approximation terms for the approximation of φ0 and f into our analysis is easily possible,
but neglected for the ease of presentation;

(d) formally, we stress that the saturation assumption (3.13) is not used for any arbitrary mesh T�, but only for
the sequence of meshes which are generated by the adaptive algorithm below, see Section 4.3. This might
be one reason why the saturation assumption (3.13) is usually observed in numerical experiments [20, 21].

Lemma 3.6. There is a constant C7 > 0 which depends only on Ω and κ(E0), such that

η� ≤ η�
� + C7 osc� as well as η�

� ≤ η� + C7 osc�. (3.15)

Proof. The triangle inequality and Proposition 3.1 prove

η� ≤ η�
� + |||Û�

� − Û�||| + |||U�
� − U�||| ≤ η�

� + 2C3 osc�.

The converse inequality follows along the same lines. �

Proposition 3.7. There is a constant C8 > 0 which depends only on Ω and κ(E0) such that

C−1
8 η� ≤ |||u − U�||| + osc�. (3.16)

Under the saturation assumption (3.13), there is a constant C9 > 0 such that

C−1
9 |||u − U�||| ≤ η� + osc�. (3.17)

Besides Ω and κ(E0), the constant C9 > 0 depends only on 0 < Csat < 1.

Proof. The proof is a consequence of Lemmas 3.4 and 3.6. For instance, there holds

η� � η�
� + osc� � |||u − U�

� ||| + osc� � |||u − U�||| + |||U� − U�
� ||| + osc� � |||u − U�||| + osc�.

This proves (3.16), and (3.17) follows along the same lines. �
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3.4. Further (h − h/2)-type error estimators

Let Û� = (Û�, Φ̂�) ∈ X̂� be the Galerkin solution of (2.20) with respect to X̂�. In addition to the error
estimator η� from (3.11), we introduce two further error estimators. First,

μ� :=
(
‖∇(1 − IΩ

� )Û�‖2
L2(Ω) + ‖h1/2

� (1 −ΠΓ
� )Φ̂�‖2

L2(Γ )

)1/2

, (3.18)

where IΩ
� : C(Ω) → S1(T�) denotes the nodal interpolation operator and where ΠΓ

� : L2(Γ ) → P0(E�) denotes
the L2(Γ )-orthogonal projection. Second,

μ̃� :=
(
‖(1 −ΠΩ

� )∇Û�‖2
L2(Ω) + ‖h1/2

� (1 −ΠΓ
� )Φ̂�‖2

L2(Γ )

)1/2

, (3.19)

where ΠΩ
� : L2(Ω) → P0(T�) denotes the L2(Ω)-orthogonal projection.

The local contributions of μ� and μ̃� are denoted by

μ�(T )2 = ‖∇(1 − IΩ
� )Û�‖2

L2(T ) resp. μ̃�(T )2 = ‖(1 −ΠΩ
� )∇Û�‖2

L2(T ) (3.20)

for triangles T ∈ T� and by

μ�(E)2 = μ̃�(E)2 = diam(E)‖(1 −ΠΓ
� )Φ̂�‖2

L2(E) (3.21)

for line segments E ∈ E�. Note that this definition results in

μ2
� =

∑
T∈T�

μ�(T )2 +
∑

E∈E�

μ�(E)2 and μ̃2
� =

∑
T∈T�

μ̃�(T )2 +
∑

E∈E�

μ̃�(E)2. (3.22)

The following lemma provides certain equivalences of the introduced error estimators.

Lemma 3.8. There are constants C10, C11, C12 > 0 such that

C−1
10 μ�(T ) ≤ μ̃�(T ) ≤ μ�(T ) for all T ∈ T� (3.23)

as well as

C−1
12 μ̃� ≤ η� ≤ C11 μ� and μ� ≤ C10 μ̃�. (3.24)

The constant C10 ≥ 1 depends only on the shape regularity constant σ(T0). The constant C11 > 0 depends only
on Ω, whereas C12 > 0 depends only on Ω and on κ(E0).

Proof. Since the orthogonal projection ΠΩ
� is the T�-elementwise best approximation operator, the estimate

μ̃�(T ) ≤ μ�(T ) is obvious. The converse inequality follows from a scaling argument. In particular, there holds
C10 ≥ 1. In view of (3.20)–(3.22), this also implies μ̃� ≤ μ� ≤ C10μ̃�.

Moreover, the local L2-best approximation properties of ΠΩ
� also proves

μ̃�(T )2 ≤ ‖∇(Û� − U�)‖2
L2(T ) ≤ ‖Û� − U�‖2

H1(T ) for all T ∈ T�.

Using the E�-elementwise best approximation property of ΠΓ
� and the local inverse estimate from [22], Theo-

rem 3.6, we obtain

‖h1/2
� (1 −ΠΓ

� )Φ̂�‖L2(Γ ) ≤ ‖h1/2
� (Φ̂� − Φ�)‖L2(Γ ) � ‖Φ̂� − Φ�‖V,
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where the constant depends only on Γ and an upper bound of κ(E�). The combination of the last two inequalities
proves μ̃� � η�.

Finally, we aim at proving η� � μ�. To that end, recall that Û� solves (2.20) with X� replaced by X̂�. This
allows to rewrite (2.20) in the form⎧⎪⎨⎪⎩

〈A∇U� , ∇V�〉Ω +
〈
WU� +

(
K′− 1

2

)
Φ� , V�

〉
Γ

=
〈
A∇Û� , ∇V�

〉
Ω

+
〈
WÛ� +

(
K′− 1

2

)
Φ̂� , V�

〉
Γ
,〈

Ψ� , VΦ� −
(
K− 1

2

)
U�

〉
Γ

=
〈
Ψ� , VΦ̂� −

(
K− 1

2

)
Û�

〉
Γ

for all V� = (V�, Ψ�) ∈ X�. Replacing V� ∈ X� in this formulation by a general test function v ∈ H, we obtain
a new variational formulation. By definition, Û� is the corresponding continuous solution. Put differently, U�

is even a Galerkin approximation of Û�, and the formulation above is the related Galerkin orthogonality.
Consequently, quasi-optimality (2.17) of the Galerkin scheme proves

η2
� = |||Û� − U�|||2 � min

V�∈X�

|||Û� − V�|||2 ≤ ‖(1 − IΩ
� )Û�‖2

H1(Ω) + ‖(1 −ΠΓ
� )Φ̂�‖2

V.

Note that (1 − IΩ
� )c = 0 for each constant function c ∈ R. Therefore, a scaling argument yields

‖(1 − IΩ
� )Û�‖H1(T ) � ‖∇(1 − IΩ

� )Û�‖L2(T ) = μ�(T ).

Finally, it is an approximation result from [9], Theorem 4.1, Lemma 4.3, that

‖(1 −ΠΓ
� )Φ̂�‖V � ‖h1/2

� (1 −ΠΓ
� )Φ̂�‖L2(Γ ),

where the constant depends only on Γ , see also [18], Lemma 2.1. The combination of the last three estimates
thus yields η� � μ� and concludes the proof. �

Theorem 3.9. There is a constant C13 > 0 which depends only on Ω, κ(E0), and σ(T0) such that

C−1
13 μ� ≤ |||u − U�||| + osc�. (3.25)

Under the saturation assumption (3.13), there is a constant C14 > 0 such that

C−1
14 |||u − U�||| ≤ μ� + osc�. (3.26)

Besides Ω and κ(E0), the constant C14 > 0 depends only on 0 < Csat < 1. The same estimates hold for μ̃�

replacing μ�.

Proof. The proof is an obvious consequence of Proposition 3.7 and the equivalence of the introduced error
estimators stated in Lemma 3.8. �

4. Convergent adaptive coupling

4.1. A priori convergence of adaptive algorithms

Before we state the adaptive algorithm and prove convergence of which, we claim the a priori convergence of
adaptive mesh-refining algorithms. By this, we mean that the sequences U�

� and U� of discrete solutions always
tend to certain limits u�

∞ and u∞, independently of how the mesh is actually refined. Note carefully, however,
that we do not claim that u coincides with one of the a priori limits u�

∞ or u∞.
To deal with the data approximation, we need the following convergence result, which will be applied for the

approximate data U ′
0,� = (IΓ

� u0)′ = ΠΓ
� (u′0) ∈ H := L2(Γ ). A proof can be found in [4, 12, 26] or even in the

early work [5], Lemma 6.1.
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Lemma 4.1. Suppose that H is a Hilbert space and (X�)�∈N is a sequence of closed subspaces of H with
X� ⊆ X�+1. Let P� : H → X� denote the orthogonal projection onto X�. Then, for any x ∈ H and x� := P�x,
the limit x∞ := lim

�→∞
x� ∈ H exists.

Proposition 4.2. Let T� and E� be a sequence of meshes with corresponding nested spaces

X� ⊆ X�+1.

Let U�
� ∈ X� and U� ∈ X� be the corresponding Galerkin solutions of (2.14) and (2.20), respectively. Then,

there are limits u�
∞,u∞ ∈ H such that

lim
�→∞

|||u�
∞ − U�

� ||| = 0 = lim
�→∞

|||u∞ − U�|||. (4.1)

Proof of a priori convergence of U�
� . We define the space X∞ as the closure of

⋃∞
�=0 X�. Then, X∞ is a closed

subspace of H which thus admits a unique Galerkin solution u�
∞ ∈ X∞ of (2.14), see Appendix A. Arguing as

in the proof of Lemma 3.8, we see that U�
� ∈ X� is also a Galerkin approximation of u�

∞ and that there holds
the Céa lemma

|||u�
∞ − U�

� ||| � min
V�∈X�

|||u�
∞ − V�|||.

Let ε > 0. By definition of X∞, we find some index �0 ∈ N and some function V�0 ∈ X�0 such that |||u�
∞ −

V�0 ||| ≤ ε. From nestedness of X�, we infer

|||u�
∞ − U�

� ||| � |||u�
∞ − V�0 ||| ≤ ε

for all � ≥ �0. This proves convergence lim
�→∞

U�
� = u�

∞. �

Proof of a priori convergence of U�. In 1D, the nodal interpolation operator IΓ
� : H1(Γ ) → S1(E�) and the L2-

orthogonal projection ΠΓ
� : L2(Γ ) → P0(E�) are linked through the identity (IΓ

� v)
′ = ΠΓ

� (v′), cf. Lemma 3.3.
From nestedness P0(E�) ⊆ P0(E�+1), one may thus derive that the L2-limit

g = lim
�→∞

U ′
0,� = lim

�→∞
ΠΓ

� (u′0) ∈ L2(Γ )

exists, see Lemma 4.1. In particular, the sequence (U ′
0,�)�∈N of derivatives is a Cauchy sequence in L2(Γ ). Let

� ≥ k. With the help of Lemma 3.3, we see

‖U0,� − U0,k‖H1/2(Γ ) = ‖(1 − IΓ
k )U0,�‖H1/2(Γ ) � ‖h1/2

� [(1 − IΓ
k )U0,�]′‖L2(Γ )

= ‖h1/2
� (U ′

0,� − U ′
0,k)‖L2(Γ )

� ‖U ′
0,� − U ′

0,k‖L2(Γ )
k,�→∞−−−−−→ 0.

Consequently, the sequence (U0,�)�∈N is a Cauchy sequence in H1/2(Γ ) and thus convergent to some H1/2-limit

u0,∞ = lim
�→∞

U0,� ∈ H1/2(Γ ).

We now consider an auxiliary problem, where we only replace u0 in the variational formulation (2.3) and
its Galerkin discretization (2.14) by the obtained limit u0,∞. This provides a sequence U�

∞,� ∈ X� of Galerkin
solutions. The already proven a priori convergence of U�

� applies to this auxiliary problem as well. Consequently,
the H-limit

u∞ = lim
�→∞

U�
∞,� ∈ H
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exists. The triangle inequality proves

|||u∞ − U�||| ≤ |||u∞ − U�
∞,�||| + |||U�

∞,� − U�|||.

The first summand is known to tend to zero by definition of u∞. For the second summand, we apply Lemma 3.2
to see

|||U�
∞,� − U�||| � ‖u0,∞ − U0,�‖H1/2(Γ )

�→∞−−−→ 0

by definition of u0,∞. This concludes the proof. �

4.2. Marking criterion and estimator reduction

The marking is based on the Dörfler marking introduced in [16]. In view of Theorem 3.9, we consider the
following refinement indicator

��(τ)2 :=

{
μ�(T )2 for τ = T ∈ T�,

μ�(E)2 + osc�(E)2 for τ = E ∈ E�,
(4.2)

where the local data oscillations read

osc�(E)2 = diam(E) ‖(u0 − U�,0)′‖2
L2(E) for E ∈ E�. (4.3)

By definition, there holds

�2
� := μ2

� + osc2
� =

∑
τ∈T�∪E�

��(τ)2. (4.4)

For an arbitrary but fixed parameter θ ∈ (0, 1), we then determine a set M� ⊆ T� ∪ E� of marked elements with

θ �2
� ≤

∑
τ∈M�

��(τ)2. (4.5)

Based on the Dörfler marking (4.5) and the mesh-refinement rule, we next prove the crucial estimator reduction
which is, however, not stated for �� but for �̃� = (μ̃2

� + osc2
�)

1/2.

Lemma 4.3. There are constants κ ∈ (0, 1) and C15 > 0 such that

�̃ 2
�+1 ≤ κ �̃ 2

� + C15 |||Û�+1 − Û�|||2, (4.6)

where �̃ 2
� := μ̃ 2

� + osc2
� . The contraction constant κ ∈ (0, 1) depends only on the adaptivity parameter θ ∈ (0, 1),

whereas the constant C15 > 0 additionally depends on Ω and κ(E0).

Proof. Recall the identity U ′
0,� = (IΓ

� u0)′ = ΠΓ
� (u′0). First, for arbitrary δ > 0, the Young inequality proves

�̃ 2
�+1 = ‖(1 −ΠΩ

�+1)∇Û�+1‖2
L2(Ω) + ‖h1/2

�+1(1 −ΠΓ
�+1)Φ̂�+1‖2

L2(Γ )

+ ‖h1/2
�+1(1 −ΠΓ

�+1)u
′
0‖2

L2(Γ )

≤ (1 + δ)
(
‖(1 −ΠΩ

�+1)∇Û�‖2
L2(Ω) + ‖h1/2

�+1(1 −ΠΓ
�+1)Φ̂�‖2

L2(Γ )

)
+ (1 + δ−1)

(
‖∇Û�+1 −∇Û�‖2

L2(Ω) + ‖h1/2
�+1(Φ̂�+1 − Φ̂�)‖2

L2(Γ )

)
+ ‖h1/2

�+1(1 −ΠΓ
�+1)u

′
0‖2

L2(Γ ),
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where we have additionally used that all of the involved L2-orthogonal projections are even elementwise best
approximation operators. Second, for T ∈ T� ∩M� holds

‖(1 −ΠΩ
�+1)∇Û�‖2

L2(T ) = 0,

whereas for T ∈ T�\M� holds

‖(1 −ΠΩ
�+1)∇Û�‖2

L2(T ) ≤ μ̃�(T )2.

Note that ≤ in the last estimate stems from the fact that an element T ∈ T�\M� may be refined to avoid
hanging nodes, cf. Section 3.1. For E ∈ E� ∩M� holds

‖h1/2
�+1(1 −ΠΓ

�+1)Φ̂�‖2
L2(E) + ‖h1/2

�+1(1 −ΠΓ
�+1)u

′
0‖2

L2(E) =
1
2
‖h1/2

� (1 −ΠΓ
�+1)u

′
0‖2

L2(E)

≤ 1
2
(
μ̃�(E)2 + osc�(E)2

)
,

whereas for E ∈ E�\M� holds

‖h1/2
�+1(1 −ΠΓ

�+1)Φ̂�‖2
L2(E) + ‖h1/2

�+1(1 −ΠΓ
�+1)u

′
0‖2

L2(E) ≤ μ̃�(E)2 + osc�(E)2.

Third, the local estimates are used to obtain

‖(1−ΠΩ
�+1)∇Û�‖2

L2(Ω) + ‖h1/2
�+1(1 −ΠΓ

�+1)Φ̂�‖2
L2(Γ ) + ‖h1/2

�+1(1 −ΠΓ
�+1)u

′
0‖2

L2(Γ )

≤
∑

T∈T�\M�

μ̃�(T )2 +
1
2

∑
E∈E�∩M�

(
μ̃�(E)2 + osc�(E)2

)
+

∑
E∈E�\M�

(
μ̃�(E)2 + osc�(E)2

)
≤
∑
T∈T�

μ̃�(T )2 +
∑

E∈E�

(
μ̃�(E)2 + osc�(E)2

)
− 1

2

( ∑
T∈T�∩M�

μ̃�(T )2 +
∑

E∈E�∩M�

(
μ̃�(E)2 + osc�(E)2

))

= �̃ 2
� − 1

2

( ∑
T∈T�∩M�

μ̃�(T )2 +
∑

E∈E�∩M�

(
μ̃�(E)2 + osc�(E)2

))
.

Fourth, we employ the marking strategy (4.5) and the local equivalence (3.23) to see

θ�̃ 2
� ≤ θ�2

� ≤
∑

τ∈M�

��(τ)2 ≤ C10

∑
T∈T�∩M�

μ̃�(T )2 +
∑

E∈E�∩M�

(
μ̃�(E)2 + osc�(E)2

)
.

From C10 ≥ 1, we thus infer

θ̃ �̃ 2
� ≤

∑
T∈T�∩M�

μ̃�(T )2 +
∑

E∈E�∩M�

(
μ̃�(E)2 + osc�(E)2

)
with θ̃ = θ/C10 ∈ (0, 1). We now combine all aforegoing estimates to see

�̃ 2
�+1 ≤ (1 + δ)(1 − θ̃/2) �̃ 2

� + (1 + δ−1)
(
‖Û�+1 − Û�‖2

H1(Ω) + ‖h1/2
�+1(Φ̂�+1 − Φ̂�)‖2

L2(Γ )

)
.

Since (1 − θ̃/2) < 1, we may choose δ > 0 with κ := (1 + δ)(1 − θ̃/2) < 1. Moreover, the local inverse estimate
from [22], Theorem 3.6, proves

‖h1/2
�+1(Φ̂�+1 − Φ̂�)‖L2(Γ ) � ‖Φ̂�+1 − Φ̂�‖V,

where the constant depends only on Γ and an upper bound of κ(E�). Plugging this into the last estimate, we
finally end up with (4.6). �
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4.3. Convergent adaptive algorithm

We now consider the following adaptive algorithm. We stress that an adaptive algorithm does neither know
the a priori limit u∞ = (u∞, φ∞) nor û∞ = (û∞, φ̂∞).

Algorithm 4.4. Input: initial meshes (T0, E0) for � := 0, adaptivity parameter θ ∈ (0, 1).

(i) Generate uniformly refined meshes T̂�, Ê�;
(ii) compute discrete solution Û� ∈ X̂�;
(iii) compute refinement indicators ��(τ) for all τ ∈ T� ∪ E�;
(iv) determine set M� ⊆ T� ∪ E� which satisfies Dörfler marking (4.5);
(v) Mark triangles T ∈ T� ∩M� and boundary elements E ∈ E� ∩M� for refinement.
(vi) generate new meshes (T�+1, E�+1), increase counter � �→ �+ 1, and goto (i).

Output: sequence of error estimators (��)�∈N and discrete solutions (Û�)�∈N.

Theorem 4.5. Algorithm 4.4 enforces

lim
�→∞

�� = 0. (4.7)

Under the saturation assumption (3.13), this implies convergence

lim
�→∞

|||(u, φ) − (Û�, Φ̂�)||| = 0 = lim
�→∞

|||(u, φ) − (U�, Φ�)|||. (4.8)

Proof. The idea of the proof goes back to [4]. We combine the estimator reduction (4.6) with the a priori
convergence (4.1) and the estimator equivalence (3.24): first, we note that Lemma 4.3 provides an estimate of
the type

�̃ 2
�+1 ≤ κ �̃ 2

� + α�

with some constant κ ∈ (0, 1). According to Proposition 4.2 applied for X̂�, the nonnegative sequence α� �
|||Û�+1 − Û�|||2 tends to zero. It is a consequence of elementary calculus that this implies estimator convergence

lim
�→∞

�̃� = 0.

Now, the equivalence of �̃� � �� – as a consequence of Lemma 3.8 – concludes (4.7).
Under the saturation assumption (3.13), Proposition 3.7 states

|||u − U�||| � μ� + osc� � ��
�→∞−−−→ 0

and thus convergence of U� to u. In this case, the quasi-optimality |||u−Û�||| � |||u−U�||| also predicts convergence
of Û�. �

Remark 4.6. It is a consequence of Theorem 4.5 that one obtains additional information on the a priori limits
from the proof of Proposition 4.2. For instance, lim� osc� = 0 predicts u0,∞ = u0, whence u�

∞ = u∞ and
û�
∞ = û∞ if the latter denote the a priori limits of Û�

� and Û�. Moreover, lim� μ� = 0 implies lim� η� = 0 and
thus even u∞ = û∞.
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5. Numerical experiments

In this section, we present three numerical examples from [13] to demonstrate the advantages of the proposed
adaptive FEM-BEM coupling and its superiority over uniform mesh-refinement. In all experiments, we prescribe
the exact solution (uint, uext) of the transmission problem (2.1), and the data (u0, φ0, f) are computed thereof.
To simplify the implementation, we only consider the induced boundary partition E� := T�|Γ .

Note that the contribution ‖φ− Φ�‖V to the error |||u−U�||| can hardly be computed analytically. However,
according to Proposition 3.1 and and the quasi optimality (2.17), there holds

|||u − U�||| � |||u − U�
� ||| + osc� � ‖u− U�‖H1(Ω) + min

Ψ�∈P0(E�)
‖φ− Ψ�‖V + osc�

with u = (u, φ) and U� = (U�, Φ�). In all experiments, the exterior normal derivative has additional regularity
φ ∈ L2(Γ ). We may therefore proceed as in the proof of Lemma 3.8 to obtain

min
Ψ�∈P0(E�)

‖φ− Ψ�‖V ≤ ‖(1 −ΠΓ
� )φ‖V � ‖h1/2

� (1 −ΠΓ
� )φ‖L2(Γ ) ≤ ‖h1/2

� (φ− Φ�)‖L2(Γ )

with ΠΓ
� : L2(Γ ) → P0(E�) being the L2-orthogonal projection. Altogether, we see that

|||u − U�||| � ‖u− U�‖H1(Ω) + ‖h1/2
� (φ− Φ�)‖L2(Γ ) + osc�

=: err�(u) + err�(φ) + osc� (5.1)

provides an upper bound for the energy error. For a known exact solution u = (u, φ), the latter bound is
computable at least by means of numerical quadrature and thus allows to monitor the decay of the error
independently of the saturation assumption. In the same spirit, the error estimator μ� is split into

μ2
� =

∑
T∈T�

μ�(T )2 +
∑

E∈E�

μ�(E)2 =: μ�(u)2 + μ�(φ)2. (5.2)

Recall that Theorem 3.9 predicts

μ�(u) + μ�(φ) + osc� � |||u − U�||| + osc� � μ�(u) + μ�(φ) + osc�,

where the upper bound holds under the saturation assumption (3.13).
In the following, we plot the five quantities err�(u), err�(φ), μ�(u), μ�(φ), and osc� from (5.1)–(5.2) over the

number N = #T� of triangles, where both axes are scaled logarithmically. We consider uniform mesh-refinement
T� = T (unif)

� with T (unif)
� := T̂�−1, cf. Section 3.1, as well as adaptive mesh-refinement, where the sequence of

meshes T� = T (adap)
� is generated by Algorithm 4.4 with θ = 0.25. Note that a decay with slope −α indicates

some dependence O(N−α). For uniform meshes with mesh-size h, this corresponds to O(h2α). We stress that,
by theory, an overall slope of α = 1/2 is thus optimal with P1-finite elements.

For the adaptive mesh-refinement of Algorithm 4.4, recall that all integral operators have to be computed
with respect to the fine mesh T̂�. Therefore, one usually takes the improved approximation Û0,� ∈ S1(T̂�|Γ )
instead of U0,� ∈ S1(T�|Γ ). Consequently, we then consider

ôsc� = ‖h1/2
� (u0 − Û0,�)′‖L2(Γ ) (5.3)

instead of osc�. We stress that all results of this paper hold with osc� replaced by ôsc� as well. Moreover, although
U� is not needed by Algorithm 4.4, we nevertheless plot err� to give a fair comparison of uniform and adaptive
mesh-refinement.

Besides the experimental convergence rates, we plot err�(u), err�(φ), μ�(u), μ�(φ), and osc� (resp. ôsc�) over
the computational time t�.
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Figure 1. L-shaped (left) and Z-shaped domain (right) and initial triangulations T0 for the
numerical experiments.

• For uniform mesh-refinement, t� = t
(unif)
� is the time needed for � uniform refinements of the initial mesh T0

to obtain T�, plus the time for building and solving the Galerkin system with respect to X�.

For adaptive mesh-refinement, the mesh T� depends on the entire history of preceding meshes (and solutions).
Therefore, the computational time has to be defined differently, where t(adap)

−1 := 0.

• For adaptive mesh-refinement, t� = t
(adap)
� is the sum of the time t

(adap)
�−1 elapsed in prior steps of the

adaptive algorithm, plus the time for generating the fine mesh T̂�, building and solving the Galerkin system
with respect to X̂�, computing the local contributions of the data oscillations ôsc� and the error estimator
μ�, element marking, and local refinement of T� to generate T�+1.

Although this definition seems to favour uniform mesh-refinement, we think that it provides a fair comparison
between uniform and adaptive mesh-refinement.

All experiments are conducted by use of Matlab (Release 2009b) running on a common 64 Bit Linux system
with 32 GB of RAM. Throughout, the occuring linear systems are solved by use of the Matlab backslash
operator. For the computation of the boundary integral operators, we use the Matlab BEM library HILBERT,
cf. [3]; see http://www.asc.tuwien.ac.at/abem/hilbert/

5.1. Linear problem on L-shaped domain

We consider the L-shaped domain visualized in Figure 1. With A : L2(Ω)2 → L2(Ω)2 being the identity, we
prescribe the exact solution of (2.1) as

uint(x, y) = r2/3 sin
(

2
3
ϕ

)
in Ωint,

uext(x, y) = log

((
x+

1
8

)2

+
(
y +

1
8

)2
)1/2

in Ωext,

(5.4)

http://www.asc.tuwien.ac.at/ abem/hilbert/
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Figure 2. Estimators err�(u), err�(φ), μ�(u) and μ�(φ) from (5.1)–(5.2) as well as data oscilla-
tions osc� in linear experiment 5.1, plotted over the number N = #T� of triangles for uniform
(left) and adaptive mesh-refinement (right).

where (r, ϕ) are the polar coordinates of (x, y) ∈ R
2 with respect to (0, 0). Clearly, the identity satisfies the

assumptions of our model problem, and the FEM-BEM coupling (2.3) is linear. Recall that (u, φ) denotes the
exact solution of (2.3) and note that u = uint ∈ H1+2/3−ε(Ω) for all ε > 0 has a generic singularity at the
reentrant corner, whereas φ = ∇uext · n is piecewise smooth.

In Figure 2, we plot the convergence of the error quantities from (5.1)–(5.2). Since the interior solution has a
generic singularity at the reentrant corner, uniform mesh-refinement leads to a suboptimal order of convergence
α = 1/3, i.e. we observe O(h2/3). For err�(u) and μ�(u), this asymptotics is observed already on coarse meshes.
For err�(φ) and μ�(φ), a preasymptotic phase occurs. For adaptive mesh-refinement, we observe the optimal
order of convergence α = 1/2 for err�(u) and μ�(u). Moreover, the terms err�(φ) and μ�(φ) even converge with
order α = 3/4 which is optimal for the approximation of a smooth function by piecewise constants with respect
to the H−1/2(Γ )-norm.

Figure 3 provides comparisons between uniform and adaptive mesh-refinement. We plot

err� :=
(
err�(u)2 + err�(φ)2 + osc2

�

)1/2
and �� =

(
μ�(u)2 + μ�(φ)2 + osc2

�

)1/2
(5.5)

over the number N = #T� of elements as well as over the computational time. Both plots underline that the
proposed adaptive algorithm is much superior to uniform mesh-refinement.

5.2. Nonlinear problem on L-shaped domain

We consider the L-shaped domain visualized in Figure 1. We define

ρ(t) = 2 +
1

1 + t
for t > 0 (5.6)

and note that the derivative satisfies −1 ≤ ρ′(t) < 0. The nonlinear operator A is then defined by

A(x) = ρ(|x|)x for x ∈ R
2. (5.7)



1166 M. AURADA ET AL.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−4

10
−3

10
−2

10
−1

10
0

 

 

er
ro

r,
�

�

number N of elements

err�
��

err�, adaptive
��, adaptive

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

 

 

er
ro

r,
�

�

computational time [sec]

err�

��

err�, adaptive
��, adaptive

Figure 3. Comparison of uniform and adaptive mesh-refining in linear experiment 5.1, where
the error bound err� and the estimator �� from (5.5) are plotted over the number N = #T� of
triangles (left) and over the computational time (right).

We stress that A is strongly monotone and Lipschitz continuous on L2(Ω). We prescribe the same solution (5.4)
as for the linear experiment from the previous section. The volume force f then reads

f(x, y) := − 4
27
r−5/3 sin(2

3ϕ)
(1 + 2

3r
−1/3)2

,

where (r, ϕ) are the polar coordinates of (x, y) ∈ R
2 with respect to (0, 0).

The nonlinear system equivalent to (2.20) is solved by an undamped Newton method. In our implementation,
we computationally check that we are in the (quadratically convergent) asymptotic regime and stop the iteration
if the Euclidean norm of the Newton residual increases. – Note that theory predicts the decay of the residual
norms within the asymptotic regime. – For the initial mesh T0, the initial guess for the Newton scheme is
the constant function U(0)

0 ≡ 1. For the generated meshes T�, the initial guess is the preceding Galerkin
approximation, i.e. U(0)

� := U�−1, which is prolongated to the discrete space X�.
Figures 4 and 5 provide the experimental convergence results. The observations are the same as for the

linear experiment in Section 5.1. Figure 6 shows some adaptively generated meshes. We observe a strong mesh-
refinement towards the reentrant corner, where uint is singular.

5.3. Nonlinear problem on Z-shaped domain

In the final example, Ω is the Z-shaped domain, shown in Figure 1. The exact solution reads

uint(x, y) = r4/7 sin
(

4
7
ϕ

)
in Ωint,

uext(x, y) = log

((
x+

1
8

)2

+
(
y +

1
8

)2
)1/2

in Ωext,

(5.8)
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Figure 4. Estimators err�(u), err�(φ), μ�(u) and μ�(φ) from (5.1)–(5.2) as well as data os-
cillations osc� in nonlinear experiment 5.2 on the L-shaped domain, plotted over the number
N = #T� of triangles for uniform (left) and adaptive mesh-refinement (right).
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Figure 5. Comparison of uniform and adaptive mesh-refining in nonlinear experiment 5.2 on
the L-shaped domain, where the error bound err� and the estimator �� from (5.5) are plotted
over the number N = #T� of triangles (left) and over the computational time (right).
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Figure 6. Adaptively generated meshes T� in nonlinear experiment 5.2 on the L-shaped domain.

with (r, ϕ) being the polar coordinates of (x, y) ∈ R
2. Again, uint ∈ H1+4/7−ε(Ω) for all ε > 0 has a generic

singularity at the reentrant corner. With the nonlinear operator A from Section 5.2, the right-hand side f
becomes

−div(ρ(|∇uint|)∇uint) = f,

where

f(r, ϕ) := − 48
343

r−13/7 sin(4
7ϕ)

(1 + 4
7r

−3/7)2
·

Figures 7 and 8 provide the experimental convergence results. As before, the observations are the same as for
the linear experiment in Section 5.1. Figure 9 shows some adaptively generated meshes which show a strong
mesh-refinement towards the reentrant corner.

Appendix A. Uniform ellipticity of discrete Dirichlet-to-Neumann map

In [13], Section 3, it is proven that uniform ellipticity of the discrete Dirichlet-to-Neumann S� implies unique
solvability of the discrete problem (2.14) as well as the quasi-optimality (2.17) of discrete solutions. Moreover, [13]
prove that S� is uniformly elliptic if the mesh-width h0 of the initial meshes T0 and E0 is sufficiently small. In
this appendix, we improve this result and prove that uniform ellipticity of S� holds without further restrictions
on the mesh, i.e. [13], Assumption 1, is not necessary.

To this end, we first recall the necessary definitions: let X� be a closed subspace of H1(Ω) and Y� be a closed
subspace of H−1/2(Γ ). We assume that the constant functions belong to Y�, i.e., 1 ∈ Y�. With the integral
operators V, K, and W, the trace operator γ : H1(Ω) → H1/2(Γ ), and the canonical inclusions

i� : X� ↪→ H1(Ω) and j� : Y� ↪→ H−1/2(Γ ),
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Figure 7. Estimators err�(u), err�(φ), μ�(u) and μ�(φ) from (5.1)–(5.2) as well as data os-
cillations osc� in nonlinear Experiment 5.3 on the Z-shaped domain, plotted over the number
N = #T� of triangles for uniform (left) and adaptive mesh-refinement (right).
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Figure 8. Comparison of uniform and adaptive mesh-refining in nonlinear experiment 5.3 on
the Z-shaped domain, where the error bound err� and the estimator �� from (5.5) are plotted
over the number N = #T� of triangles (left) and over the computational time (right).
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Figure 9. Adaptively generated meshes T� in nonlinear experiment 5.3 on the Z-shaped domain.

we formally define the following discrete boundary integral operators

V� := j∗� Vj� : Y� → Y ∗
� ,

K� := j∗� Kγi� : X� → Y ∗
� ,

W� := i∗�γ
∗Wγi� : X� → X∗

� .

Moreover, we define some discrete identity

I� = j∗� γi� : X� → Y ∗
� .

In analogy to (2.9), the discrete Dirichlet-to-Neumann map now reads

S� := W� +
(

1
2
I∗� − K∗

�

)
V−1

�

(
1
2
I� − K�

)
.

The first elementary lemma states that V� is continuous and elliptic and that neither of these bounds depend
on (X�, Y�). In particular, V� is invertible, and S� is well-defined.

Lemma A.1. Let C16, C17 > 0 denote the ellipticity constant and the operator norm of the simple-layer poten-
tial V. Then, there holds, for all Φ� ∈ Y�,

‖V�Φ�‖Y ∗
�
≤ C17 ‖Φ�‖H−1/2(Γ ) as well as 〈V�Φ� , Φ�〉 ≥ C16 ‖Φ�‖2

H−1/2(Γ ). (A.1)

In particular, the lemma of Lax-Milgram applies and proves that V� is an isomorphism. Moreover, with C18 :=
C16/C

2
17 holds 〈

Z� , V−1
� Z�

〉
≥ C18 ‖Z�‖2

Y ∗
�

for all Z� ∈ Y ∗
� . (A.2)
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Proof. The elementary proof follows from j�Φ� = Φ� and ‖j∗� ‖ = ‖j�‖ = 1 for the operator norms, and (A.2) is
an immediate consequence of (A.1). �

The following proposition is the main result of this appendix and obtained by boot-strapping of [13],
Lemma 3.6.

Proposition A.2. There is a constant C6 > 0 which depends only on Ω such that for all closed subspaces X�

of H1(Ω) and Y� of H−1/2(Γ ) with 1 ∈ Y�, there holds

〈S�U� , U�〉 ≥ C19 ||γU�||2H1/2(Γ ) for all U� ∈ X�. (A.3)

Proof. We aim at proving the following claim:

∃C19 > 0 ∀(X�, Y�)�∈N with 1 ∈ Y� ∀� ∈ N ∀U� ∈ X� 〈S�U� , U�〉 ≥ C19 ||γU�||2H1/2(Γ ). (A.4)

By choosing the constant sequence of spaces (X�, Y�), we see that (A.4) implies (A.3). To prove (A.4), we argue
by contradiction and assume that (A.4) is wrong, i.e.,

∀c > 0 ∃(X�, Y�)�∈N with 1 ∈ Y� ∃� ∈ N ∃U� ∈ X� 〈S�U� , U�〉 < c ||γU�||2H1/2(Γ ).

For � ∈ N and c = 1/�, we may therefore choose some subspaces X� of H1(Ω) and Y� of H−1/2(Γ ) with 1 ∈ Y�

as well as some U� ∈ X� such that

〈S�U� , U�〉 <
1
�
‖γU�‖2

H1/2(Γ ).

In particular, this yields γU� �= 0 and hence

〈S�V� , V�〉 <
1
�

with V� :=
U�

‖γU�‖H1/2(Γ )

∈ X� for all � ∈ N. (A.5)

Since (γV�)n∈N is bounded in H1/2(Γ ), we may assume – without loss of generality – that there holds weak
convergence

γV� ⇀ v ∈ H1/2(Γ ) as �→ ∞. (A.6)

In the following, we will now show that γV� converges to v even strongly in H1/2(Γ ) and that v �= 0 is constant.
First, the definition of S� and the �-independent ellipticity of V−1

� give

〈S�V� , V�〉 = 〈WγV� , γV�〉 +
〈

V−1
�

(
1
2
I� − K�

)
V� ,

(
1
2
I� − K�

)
V�

〉
≥ 〈WγV� , γV�〉 + C18 ‖

(
1
2
I� − K�

)
V�‖2

Y ∗
�
.

Note that the hypersingular integral operator is positive semi-definite. Therefore, the right-hand side is nonneg-
ative, and (A.5) proves that both terms on the right-hand side tend to zero. Note that the functional

H1/2(Γ ) → R, u �→ 〈Wu , u〉

is continuous and convex, whence weakly lower semicontinuous. With (A.6), this implies

〈Wv , v〉 ≤ lim inf
�→∞

〈WγV� , γV�〉 = 0.
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Consequently, the weak limit v ∈ H1/2(Γ ) is constant. This and (A.6) imply

1
|Γ |

∫
Γ

γV� ds �→∞−−−→ 1
|Γ |

∫
Γ

v ds = v.

Note that an equivalent norm on H1/2(Γ ) is given by

‖u‖H1/2(Γ ) � |||u||| :=

(
〈Wu , u〉 +

∣∣∣∣∫
Γ

u ds
∣∣∣∣2
)1/2

for u ∈ H1/2(Γ ).

We now define

w� := γV� −
1
|Γ |

∫
Γ

γV� ds.

By definition, there holds

|||w�|||2 = 〈Ww� , w�〉 = 〈WγV� , γV�〉 �→∞−−−→ 0,

i.e. there holds strong convergence w� → 0 ∈ H1/2(Γ ). Consequently, we now obtain

‖γV� − v‖H1/2(Γ ) ≤ ‖w�‖H1/2(Γ ) +

∣∣∣∣∣ 1
|Γ |

∫
Γ

γV� ds− v

∣∣∣∣∣ |Γ |1/2 �→∞−−−→ 0,

i.e. we have proven that γV� converges strongly to the constant v inH1/2(Γ ). In particular, the norm convergence
yields

‖v‖H1/2(Γ ) = lim
�→∞

‖γV�‖H1/2(Γ ) = 1,

i.e. the limit of γV� is a constant v �= 0.
Since v is constant, there holds Kv = −v/2, whence

0 �= v 〈1 , 1〉 = lim
�→∞

〈
j�1 ,

(
1
2
− K

)
γV�

〉
= lim

�→∞

〈
1 ,
(

1
2
I� − K�

)
V�

〉
,

where we have used that 1 ∈ Y�. However, we have already observed above that∣∣∣∣∣
〈

1 ,
(

1
2
I� − K�

)
V�

〉 ∣∣∣∣∣ ≤ ‖1‖H−1/2(Γ ) ‖
(

1
2
I� − K�

)
V�‖Y ∗

�

�→∞−−−→ 0.

This contradiction concludes the proof. �
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