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1. Introduction

For numerical solution of partial differential equations, polyhedral meshes can provide several advantages.
For instance, a polyhedral mesh has fewer mesh faces than a tetrahedral one with the same mesh resolution,
which increases performance of linear solvers. Moreover in computational fluid dynamics it is often desirable to
have element faces perpendicular to the flow. A polyhedral element with many faces increases the probability
of having such faces. As mentioned in [11], this results in a smaller numerical diffusion and a more accurate
solution.

More generally, polyhedral meshes have enormous flexibility in representing complex geometries. The adap-
tive mesh refinement technique, which is used to optimize available computational resources and is an essential
part of modern multi-physics codes, results in polyhedral meshes with degenerate elements. Non-matching
meshes can also be seen as polyhedral meshes with degenerate elements. Another technique for modeling com-
plex porous media structures, such as pinch-outs and faults, is to collapse edges of a hexahedral element to
points which results in polyhedral elements with strongly curved faces [12].

In this article, we use the mimetic finite difference (MFD) discretization technique which has been designed to
work on general polyhedral meshes without any special treatment of degenerate elements. From each polyhedron,
the MFD method requires only boundary data such as areas, barycenters and normals to faces, which simplifies
its usage for elements with irregular shapes.

The MFD method produces a compatible discretization where discrete analogs of differential operators retain
their important properties, so that conservation laws, solution symmetries, and the fundamental identities of
vector and tensor calculus do hold for discrete systems. For example, the discrete divergence and gradient
operators are negatively adjoint with respect to inner products in discrete spaces. This property has a number
of useful consequences. For diffusion problems, it results in symmetric discretizations and simplifies their
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convergence analysis [4]. For compressible flow simulations, it helps to build discretizations that preserve total
momentum and energy, see e.g. [13].

In articles [4–7], we developed new analysis of mimetic discretization methods for solving elliptic equations
on polyhedral meshes. In the case of polyhedral meshes, these discretizations use one flux unknown per mesh
face and one scalar unknown (pressure, temperature, etc.) per mesh element. In the case of generalized
polyhedral meshes, three flux unknowns per curved faces are required to build a mimetic method [6,7]. For
simplicial meshes, the family of MFD methods contains the mixed finite element method with the lower-order
Raviart-Thomas elements [14]. In this article, we develop and analyze new nodal mimetic methods.

As in [5,7], here we build again a family of discretization methods which is reduced to the standard P1 finite
element method [9] in the case of simplicial meshes. Under weak assumptions on the mesh regularity, each
method in the family provides the first-order convergence rate in the mesh dependent energy norm.

There are a few advantages of using of a polyhedral mesh rather than an equivalent tetrahedral mesh with
the same nodes. First, building of a conformal tetrahedral partition requires analysis of geometry which comes
with additional computational overhead, especially for moving mesh methods. Indeed, for a given partition
of polyhedron’s faces into triangles, a tetrahedral partition using only the polyhedron vertices may not exist!
Second, there are two ways to break a quadrilateral element into two triangles. The question of choosing the
better partition is transformed to finding a proper member in a family of MFD methods, which provides a new
numerical and analytical tool for future research. Third, a symmetric breaking may be required for special
problems and it can be hardly done without using additional points. In shock calculations, where the nodal
discretization of an elliptic equation is used to add a numerical viscosity to the system [8], a non-symmetric
breaking may quickly destroy solution symmetry.

Recently, more general frameworks for mimetic discretizations have been developed using algebraic topology
and cochain approximations of differential forms [1,3]. The key concept of [1] is a natural inner product
on cochains which induces a combinatorial Hodge theory on the cochain complex. This article provides the
constructive method for building one of the inner products.

The article outline is as follows. In Section 2, we define the elliptic problem. In Section 3, a class of admissible
polyhedral meshes is described. In Section 4, the discrete operators are introduced. In Section 5, the discrete
MFD method is formulated. In Section 6, first-order error estimates in energy norm are proved. The theoretical
results are verified with numerical experiments in Section 7.

2. The continuous problem

Let Ω ⊂ R3 be a bounded Lipschitz polyhedron, g ∈ L2(Ω) and K be a regular symmetric positive definite
tensor K ∈ (W 1,∞(Ω)

)3×3. We look for the solution u ∈ H1
0 (Ω) of the boundary value problem

− div K gradu = g in Ω. (2.1)

Extension to other boundary conditions is straightforward. This problem admits the variational formulation:
Find u ∈ H1

0 (Ω) such that ∫
Ω

K gradu · grad v dx =
∫

Ω

g v dx ∀ v ∈ H1
0 (Ω), (2.2)

and we will discretize the problem in this form. For further use, we set:

((
u, v
))

:=
∫

Ω

K gradu · grad v dx. (2.3)
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In what follows, we assume that there exist two constants κ� and κ� such that:

κ�vT v ≤ vT
K(x)v ≤ κ�vT v ∀v ∈ R

3, x ∈ Ω. (2.4)

All constants in the estimates proposed in this paper will depend upon κ� and κ�.
Throughout this paper, we shall use ‖ · ‖n, D and | · |n,D to denote the norm and semi-norm, respectively, on

the Hilbert space Hn(D), where D ⊂ Ω. If D = Ω, subscript D may be omitted. Finally, for further use, we
set H1(Ω) = H1

0 (Ω) ∩C0(Ω).

3. The decomposition

3.1. Notation

We assume that on Ω we are given a sequence {Th}h of regular polyhedral meshes Th in a sense of assumption
(HG). This means that for each Th the domain Ω is split into nP polyhedra P 1, ..., PnP , with nV vertices
V1, V2, ..., VnV .

For every geometric object Q (edge, face, polyhedron, etc.), we will denote its diameter by hQ. Moreover,
for every decomposition Th we set

|h|Th
:= max

P∈Th

hP . (3.1)

Most of the times, the subscript will be omitted, and we shall simply write it as |h|. We denote by V(Th), L(Th)
and F(Th) the set of vertices, edges and faces of the decomposition Th. The corresponding sets of internal
vertices, edges and faces are denoted by V0(Th), L0(Th) and F0(Th), respectively.

3.2. Assumptions on the decompositions

As we shall see, the properties of the decompositions that are needed in our approach are very weak, meaning
that we are allowed a great freedom in the choice of the shape of the polyhedral elements.

However, to make the description simpler, we will make some assumptions that are stronger than necessary.
It will nevertheless be clear in the following discussion that more general situations can be tackled.

We assume that there exist two positive real numbers Ns and ρs (the same for all the sequence) such that
for every decomposition Th in the sequence we have:

(HG) (Regular polyhedral decomposition Th): There exists a compatible sub-decomposition Sh into shape-
regular tetrahedra, such that

• Every polyhedron P ∈ Th admits a decomposition Sh|P made of less than Ns tetrahedra;
• The shape-regularity of the tetrahedra K ∈ Sh is defined as follows [9]: the ratio between the

radius rK of the inscribed sphere and the diameter hK is bounded from below by constant ρs:

rK
hK

≥ ρs > 0. (3.2)

It is important to point out, from the very beginning, that there is no need, in practice, to build the
decomposition Sh. We are only assuming that it does exist (or, better, that it could be built). In practice, we are
essentially avoiding sequences of decompositions in which there are polyhedra that are, asymptotically, more
and more hourglass-shaped or having thinner and thinner tails (see Fig. 1): a choice which is hardly conceivable
by any user of our numerical method.

3.3. Consequences of the assumption (HG)

The above requirements have several consequences, that can be easily verified. Among them we underline
the following ones which will be used later.

(C1): There exist integer numbers Nf , Ne and Nv (depending only on Ns) such that every polyhedron
in every decomposition has less than Nf faces, less than Ne edges, and less than Nv vertices.
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Figure 1. Hourglass (left) and thin-tailed (right) polyhedra.

(C2): There exists a positive number σs (depending only on Ns and ρs) such that

he ≥ σshf ≥ σ2
shP , (3.3)

whenever e is an edge of f and f is a face of P .
(C3): For every face f , there exists a decomposition of f in a finite number (≤ Ns) of regular shaped

triangles, meaning that there exists a positive constant σφ depending only on ρs such that for every
triangle T we have

rT ≥ σφhT , (3.4)
where rT is the radius of the inscribed circle and hT is the diameter of T .

(C4): There exists a constant γa, depending only on Ns and ρs such that for every polyhedron P and for
every face f of P we have the Agmon inequality∫

f

ϕ2 dS ≤ γa

(
h−1

P ||ϕ||2L2(P ) + hP ||gradϕ||2L2(P )

)
. (3.5)

4. The discrete operators

4.1. The discrete unknowns

We consider now the set V(Th) of vertices in Th and the set N of nodal values on V(Th), that is the mappings
from V(Th) into R. We will also consider the subset N0 of the nodal unknowns that vanish at the vertices
V ∈ ∂Ω, that is

N0 := {u ∈ N such that u(V ) = 0 ∀V ∈ V(Th), V ∈ ∂Ω}· (4.1)
In a similar way we can consider the set E of edge unknowns as the mappings from the set of all oriented edges
of Th to R.

4.2. Restrictions of unknowns

When considering the restrictions of unknowns (or, more generally, mappings) to a given geometrical object Q
we would generally use the subscript |Q or simply Q. For instance, both N|Q and NQ will denote the restriction
of N to the nodes belonging to Q.

4.3. The GRAD operator

It will often be convenient to consider the GRAD operator, defined from the set of nodal unknowns N to the
set of edge unknowns E as follows: for each element u ∈ N and for each edge e with vertices (V1, V2), oriented
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from V1 to V2, (
GRADu

)
|e = u(V2) − u(V1). (4.2)

Sometimes, it will be convenient to consider the application of the GRAD operator to a subset of N. Given
a polyhedron P ∈ Th, the operator GRADP (defined exactly as in (4.2)) maps NP into EP . It is obvious that
GRADP is a restriction of GRAD , and it will also be denoted by GRAD when no confusion can occur. Finally
we set

E0 = {τ ∈ E : τ (e) = 0 ∀ e ∈ L(Th), e ∈ ∂Ω}·
It is easy to see that GRAD maps also N0 → E0.

If uh ∈ N0 is taken as an approximation of the scalar function u that solves (2.2), then GRADuh is an
element of E0 and the operator GRAD is related to the operator grad.

4.4. The norm in N0

In the space of our unknowns N0, we can now introduce the following norm:

|||vh|||2 :=
∑

P∈Th

|||vh|||2P :=
∑

P∈Th

hP

∑
e∈∂P

∣∣∣(GRADP vh

)
|e

∣∣∣2. (4.3)

Note that, essentially from (3.3), the norm in the above (4.3) is equivalent to

|||vh|||2 

∑

P∈Th

h3
P

∑
e∈∂P

∣∣∣∣∣∣∣
(
GRADP vh

)
|e

|he|

∣∣∣∣∣∣∣
2

, (4.4)

mimicking the H1
0 (Ω)-norm.

4.5. The interpolation and reconstruction operators

We shall now define the natural interpolation operators ΠN from H1(Ω) to the discrete space N. For each u
in H1(Ω) we define ΠNu ∈ N by

(ΠNu)|V = u(V ) ∀V ∈ V(Th). (4.5)

Let us consider the problem of finding continuous right inverses of the interpolation operator ΠN. We shall
see in Appendix A that, under assumption (HG) on the decomposition Th, there exists a constant γ depending
solely on Ns and ρs, and a linear operator vh → RNvh from N into H1(Ω) with the following properties:

• For every vh ∈ N,
ΠNRNvh = vh. (4.6)

• For every vh ∈ N0 and for every polyhedron P ∈ Th,

|RNvh|21,P ≤ γ |||vh|||2P . (4.7)

• For every vh ∈ N0, for every polyhedron P ∈ Th and for every vertex V ∈ P ,

||RNvh − vh(V )||20,P ≤ γ h2
P |||vh|||2P . (4.8)

The existence of such a reconstruction is the only reason why we ask for the assumption (HG) to hold. It is
clear then that the assumption (HG) is abundant. We have chosen it only to allow a simple construction (see
App. A), and in particular one that does not require too much functional analysis.

For further use, we note that from (4.7), (4.8) and (3.5), we immediately have the following result:
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• For every vh ∈ N0, for every polyhedron P ∈ Th, for every face f ∈ ∂P , and for every vertex V ∈ f

||RNvh − vh(V )||20,f ≤ γ hP |||vh|||2P (4.9)

where γ is a constant independent of vh, P and Th and depending only on Ns, ρs.

Remark 4.1. Actually, the properties of the decomposition that we really need are (C1)–(C4) and (4.6)–(4.8),
and we could take them as our assumptions on the decomposition. Readers with a sufficiently solid background
in Partial Differential Equations and Functional Analysis will soon recognize that these assumptions require
very little regularity properties for the polyhedra in Th. However, in practice, all this generality is not needed,
since the decomposition Th is essentially at the choice of the user.

5. The discrete problem

As it is reasonable to expect, the discrete version of the problem (2.2) will have the following structure{
Find uh ∈ N0 such that[
GRADuh,GRAD vh

]
E

=
(
g, vh

)
N

∀ vh ∈ N0,
(5.1)

where [·, ·]E is a suitable scalar product in E0 and
(
g, ·)

N
a suitable linear functional on N0, that need to be

properly defined.
We shall use the H1

0 -type inner product
[[
uh, vh

]]
in N0 defined by analogy with (2.3),[[

uh, vh

]]
:=
[
GRADuh,GRAD vh

]
E
, (5.2)

and write the discrete problem as follows:{
Find uh ∈ N0 such that[[
uh, vh

]]
=
(
g, vh

)
N

∀ vh ∈ N0.
(5.3)

5.1. Numerical integration formulae

In order to define the terms appearing in the previous subsection we need to introduce suitable numerical
integration formulae. Towards this aim, we choose a numerical integration formula for each element P and for
each face f . More precisely, for each polyhedron P with VP nodes, we assume that we are given VP non-negative
weights

ω1
P , ..., ω

VP

P (5.4)
such that the corresponding numerical integration formula over P ,∫

P

χ dP 

VP∑
i=1

χ(V i
P )ωi

P , (5.5)

is exact whenever χ is a constant. Similarly, for every face f with Vf nodes, we assume that we are given Vf

non-negative weights
ω1

f , ..., ω
Vf

f (5.6)
such that the corresponding numerical integration formula over f ,∫

f

χ dS 

Vf∑
i=1

χ(V i
f )ωi

f , (5.7)

is exact whenever χ is a polynomial of degree ≤ 1.
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Remark 5.1. To derive an integration formula for a face f which is exact for linear functions, we could use a
linear relation expressing the center of mass of f in terms of its vertices. Since the integral of a linear function
equals to the function value at the center of mass times |f |, the coefficients in the linear expression scaled by |f |
define the weights ωi

f . A similar argument would work for a polyhedron (although it will not be needed here).

5.2. Scalar products

Once we choose our two numerical integration formulae, we can choose the linear functional

(
g, vh

)
N

:=
∑
P

ḡ|P
VP∑
i=1

vh(V i
P )ωi

P , (5.8)

where, in each element P , we take ḡ|P as the average of g over P , that is

ḡ|P :=
1
|P |
∫

P

g dP. (5.9)

In the definition of the scalar product [·, ·]E, the tensor K enters into play and we need to construct a suitable
approximation of it. We denote by K̃ the piecewise constant tensor on Th obtained by averaging each component
of K over each element P in Th. Thus, K̃ the L2-projection of K onto the space of piecewise constant tensors.
It is easy to see that

||K − K̃||∞,P ≤ γhP , (5.10)
where (as we shall assume from now on) γ is a generic constant depending only on K, on Ns and on ρs. For
each face f of P , we define the outward unit normal vector nP

f and the co-normal vectors

νP
f := K|P nP

f and ν̃P
f := K̃|P nP

f . (5.11)

When no confusion will occur, we will simply use νf and ν̃f instead of νP
f and ν̃P

f , respectively. Using (5.10)
it is immediate to see that on each face f

||νP
f − ν̃P

f ||∞,f ≤ γhP . (5.12)

Now, for every polyhedron P , for every function χ ∈ H1(P ), and for every polynomial p of degree ≤ 1, the
Gauss-Green formula is ∫

P

K̃∇χ · ∇p dP =
∫

∂P

χ K̃∇p · n dS =
∑

f∈∂P

∫
f

χ
∂p

∂ν̃f
dS. (5.13)

Inspired by (5.13) we make our final choice. For every polyhedron P we choose a symmetric bilinear form[[
u, v
]]

P
on NP × NP verifying the following properties:

• For every polynomial p of degree ≤ 1, setting pI := ΠNp (as defined in (4.5)), we have

[[
v, pI

]]
P
≡
∑

f∈∂P

Vf∑
i=1

v(V i
f )

∂p

∂ν̃f
ωi

f ∀ v ∈ NP . (5.14)

• There exist two constants c and C independent of P and of h such that

c |||v|||2P ≤ [[v, v]]
P
≤ C |||v|||2P ∀ v ∈ NP . (5.15)
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Then we set, in a natural way, [
GRADu,GRAD v

]
E
≡ [[u, v]] :=

∑
P

[[
u, v
]]

P
. (5.16)

In Section 7, we show that there exist a family of bilinear forms with the above properties. For the moment,
only (5.15) and (5.16) are needed for the convergence analysis.

Remark 5.2. Let p and q be polynomials of order ≤ 1. Taking into account (5.13) and the fact that the
integration formula (5.7) is exact for polynomials of degree ≤ 1, we have immediately that (5.14) implies

[[
ΠNp,ΠNq

]]
P

=
∫

P

K̃∇p · ∇q dP ≡
∫

P

K∇p · ∇q dP, (5.17)

so that the assumption of symmetry and (5.14) are compatible.

5.3. Mimetic finite differences

It is easy to put all this in the framework of Mimetic Finite Differences. The gradient operator GRAD

is the primary operator, and the divergence operator DIVK is the derived operator. Operators GRAD and
DIVK approximate operators grad· and div(K·), respectively. Let [·, ·]N be a suitable scalar product in N. The
divergence operator is formally defined through the discrete Green formula:[

DIVKGh, vh

]
N

= −[Gh,GRAD vh

]
E

∀Gh ∈ E0, vh ∈ N0. (5.18)

Then, the MFD method is ⎧⎪⎨⎪⎩
Find uh ∈ N0 and Gh ∈ E0 such that

Gh = GRADuh,

DIVKGh = −ΠN0(g).

(5.19)

For a more general framework on Cochain approximations of Differential Forms (that however does not include
the present discussion), see [3].

6. Error estimates

We point out that our choices of the scalar product
[[ ·, ·]] and of the linear functional

(
g, ·)

N
depend on three

choices:
• the integration formula (5.5) in each polyhedron P ;
• the integration formula (5.7) on each face f ;
• the bilinear forms

[[
u, v
]]

P
for each P .

All the properties of the numerical scheme, including a priori error estimates, will be derived by the properties
of the integration formulae and of the bilinear forms defining the scalar product.

Let uh be the solution of the discrete problem (5.3) and u be the solution of the continuous problem (2.2).
We assume that u ∈ H1(Ω) and set uI = ΠNu. We shall also consider the discontinuous function w which is
linear in each polyhedron P of Th. The restriction of w to P , denoted by wP , is defined as the L2(P )-projection
of u onto the space of polynomials of degree ≤ 1. We shall also denote by wI

P the element of NP that assumes
the values of wP at the nodes of P .

Finally, we set
δ := uh − uI (6.1)

and estimate δ in the norm ||| · |||.
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6.1. Six easy pieces

We have
c |||δ|||2 = c

∑
P |||δ|||2P (use (5.15) and (5.16))

≤ [[
δ, δ
]]

(use (6.1))

=
[[
uh, δ

]]− [[uI , δ
]]

(use (5.3))

=
(
g, δ
)
N
− [[uI , δ

]] ≡ I − [[uI , δ
]]
.

(6.2)

On the other hand, starting with (5.16), we get

[[
uI , δ

]]
=

∑
P

[[
uI , δ

]]
P

(add and subtract wI
P )

=
∑
P

[[
uI − wI

P , δ
]]

P
+
∑
P

[[
wI

P , δ
]]

P

≡ II +
∑
P

[[
wI

P , δ
]]

P
(use (5.14))

= II +
∑
P

∑
f∈∂P

Vf∑
i=1

δ(V i
f )
∂wP

∂ν̃f
ωf

i .

(6.3)

Moreover, for every P ∈ Th and for every face f ∈ ∂P , using that (5.7) is exact on constants, we have

Vf∑
i=1

δ(V i
f )
∂wP

∂ν̃f
ωf

i =
Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i +
Vf∑
i=1

δ(V 1
f )
∂wP

∂ν̃f
ωf

i

=
Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i +
∫

f

δ(V 1
f )
∂wP

∂ν̃f
dS.

Thus,

∑
P

∑
f∈∂P

Vf∑
i=1

δ(V i
f )
∂wP

∂ν̃f
ωf

i =
∑
P

∑
f∈∂P

Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i +
∑
P

∑
f∈∂P

∫
f

δ(V 1
f )
∂wP

∂ν̃f
dS

≡ III +
∑
P

∑
f∈∂P

∫
f

δ(V 1
f )
∂wP

∂ν̃f
dS.

We can now add and subtract a function RN(δ) ∈ H1(Ω) that, for the moment, is just any function in H1(Ω)
having the same value as δ at the nodes. Later, we shall require that it satisfies (4.6)–(4.8). We obtain

∑
P

∑
f∈∂P

∫
f

δ(V 1
f )
∂wP

∂ν̃f
dS (add and subtract RN(δ))

=
∑
P

∑
f∈∂P

∫
f

[δ(V 1
f ) −RN(δ)]

∂wP

∂ν̃f
dS +

∑
P

∑
f∈∂P

∫
f

RN(δ)
∂wP

∂ν̃f
dS

≡ IV +
∑
P

∑
f∈∂P

∫
f

RN(δ)
∂wP

∂ν̃f
dS (use (5.13))

= IV +
∑

P

∫
P

K̃∇RN(δ) · ∇wP dP.

(6.4)
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Finally, ∑
P

∫
P

K̃∇RN(δ) · ∇wP dP (add and subtract ∇u)

=
∑
P

∫
P

K̃∇RN(δ) · ∇(wP − u) dP +
∫

Ω

K̃∇RN(δ) · ∇u dP

≡ V +
∫

Ω

K̃∇RN(δ) · ∇u dP (add and subtract K)

= V +
∫

Ω

(K̃ − K)∇RN(δ) · ∇u dP +
∫

Ω

K∇RN(δ) · ∇u dP (use (2.2))

≡ V + V I +
∫

Ω

gRN(δ) dP.

(6.5)

Collecting the above equations, we have

c |||δ|||2 ≤
{(
g, δ
)

N
−
∫

Ω

gRN(δ) dP
}
−
∑
P

[[
uI − wI

P , δ
]]

P

−
∑
P

∑
f∈∂P

Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i −
∑
P

∑
f∈∂P

∫
f

[δ(V 1
f ) −RN(δ)]

∂wP

∂ν̃f
dS

−
∑
P

∫
P

K̃∇RN(δ) · ∇(wP − u) dP −
∫

Ω

(K̃ − K)∇RN(δ) · ∇u dP. (6.6)

In the next section, we shall estimate separately each of the Six Easy Pieces in the above equation.

6.2. Four useful lemmata

We shall need four simple lemmata. Let ωi
P and ωi

f be such that (5.5) and (5.7) are exact for constant and
linear functions, respectively.

Lemma 6.1. There exist a constant γ1, depending only on Ns and ρs, such that, for every polyhedron P , for
every vertex V 1

P of P , and for every χ in NP :∑
V i

P ∈P

[χ(V 1
P ) − χ(V i

P )]2ωi
P ≤ γ1 h

2
P |||χ|||2P . (6.7)

Proof. Since all the ωi
P are non-negative and their sum is |P |, then every ωi

P is bounded by h3
P . Then the

triangle inequality, and the fact that in every P we have less that Nv vertices (from (C1)), easily imply the
result. �

Lemma 6.2. There exists a constant γ2, depending only on Ns and ρs, such that for every polyhedron P , for
every face f of P , for every vertex V 1

f of f , and for every χ in NP :∑
V i

f ∈f

[χ(V 1
f ) − χ(V i

f )]2ωi
f ≤ γ2 hP |||χ|||2P . (6.8)

Proof. The proof is the same as before; but this time every ωi
f is bounded by h2

P . �
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Lemma 6.3. Let ϕ ∈ H2(Ω) ∩ H1
0 (Ω), and let ϕI be the continuous piecewise linear interpolant of ϕ on the

grid Sh. Let ψ, piecewise linear (and discontinuous) on the partition Th, be defined as follows: for every P ∈ Th,
ψP is the L2(P )-projection of ϕ over the polynomials of degree ≤ 1. For every P ∈ Th we denote as well (with
an abuse of notation) by ϕI and ψP the elements in NP that assume the same values of ϕ and ψP (respectively)
at the vertices of P . Then

|||ϕI − ψP |||2P ≤ γ3 h
2
P |ϕ|22, P (6.9)

where γ3 depends only on Ns and ρs.

Proof. As both ϕI and ψP are piecewise linear on the regular grid Sh|P , we can use all the classical finite element
tools (including inverse inequalities). In particular,[[

ϕI − ψP , ϕ
I − ψP

]]1/2

P
= |||ϕI − ψP |||P ≤ γ |ϕI − ψP |1, P . (6.10)

Moreover,

|ϕI − ψP |1, P ≤ γh−1
P ||ϕI − ψP || 0, P ≤ γh−1

P

(||ϕI − ϕ|| 0, P + ||ϕ− ψP || 0, P

) ≤ γhP |ϕ| 2, P .

The last step above requires additional comments. At a first sight, the estimate of the term ||ϕ−ψP || 0, P may
depend upon the shape of P which is a generic polyhedron. However one can argue as follows. Polyhedron P
is the star-shaped domain with respect to a ball of radius ρ∗shP where the constant ρ∗s depends on various
constants appeared in (C1)–(C3). Is also satisfies the strong cone condition. Then the result follows from the
revised Bramble-Hilbert lemma for star-shaped domains [2]. �

Lemma 6.4. In the same assumptions of the previous lemma, for each internal face f (common to the two
polyhedra P 1 and P 2), we define

jf (ψ) := |∇ψP 1 · ν̃P 1
f + ∇ψP 2 · ν̃P 2

f |. (6.11)

Then, ∑
f∈F0(Th)

||jf (ψ)||20, f ≤ γ4

∑
P∈Th

hP |ϕ|22, P , (6.12)

where γ4 depends only on Ns, ρs, and K.

Proof. By our assumptions, K∇ϕ is continuous, so that, recalling the definition (5.11), on each internal face it
holds:

∇ϕ · νP 1
f + ∇ϕ · νP 2

f = 0. (6.13)
Using (5.12) and the Agmon inequality (3.5), we have

||∇ϕ · ν̃P 1
f + ∇ϕ · ν̃P 2

f ||20, f ≤ γ
(
hP 1 ||ϕ||22, P 1

+ hP 2 ||ϕ||22, P 2

)
. (6.14)

We have, with obvious notation

jf (ψ) ≤ |∇(ψP 1 − ϕ) · ν̃P 1
f | + |∇(ψP 2 − ϕ) · ν̃P 2

f | + |∇ϕ · ν̃P 1
f + ∇ϕ · ν̃P 2

f |. (6.15)

Using again the Agmon inequality (3.5) we have (for i = 1, 2):

||∇(ψP i − ϕ) · ν̃f ||20, f ≤ γ‖ν̃f‖2
(
h−1

P i
|ψP i − ϕ|21, P i

+ hP i |ϕ|22, P i

)
≤ γhP i |ϕ|22, P i

, (6.16)

and (6.12) follows. �
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6.3. Estimate of each piece

We begin by observing that for each P and for each vertex WP of P , we easily have

ḡP

∑
i

ωi
P δ(WP ) = ḡP

∫
P

δ(WP )dP =
∫

P

gδ(WP )dP. (6.17)

Hence, the First Piece is bounded by∣∣(g, δ)N − ∫Ω gRN(δ)dP
∣∣ (use (5.8))

=
∑
P

ḡP

∑
i

ωi
P δ(V

i
P ) −

∫
Ω

gRN(δ)dP (add and subtract
∫

P

gδ(V 1
P )dP )

=
∑
P

ḡP

∑
i

ωi
P (δ(V i

P ) − δ(V 1
P )) −

∑
P

∫
P

g(RN(δ) − δ(V 1
P ))dP (use (6.7))

≤ γ||g||0,Ω

∑
P

(
h2

P |||δ|||2P
)1/2

−
∑
P

∫
P

g(RN(δ) − δ(V 1
P ))dP (use (4.8))

≤ γ||g||0,Ω

∑
P

(
h2

P |||δ|||2P
)1/2

≤ γ||g||0,Ω |h| |||δ|||.

Using (6.9), we see that the Second Piece is bounded by

∣∣∣∣∣∑
P

[[
uI − wI

P , δ
]]

P

∣∣∣∣∣ ≤∑
P

|||uI − wI
P |||P |||δ|||P ≤ γ

(∑
P

h2
P |u|22, P

)1/2

|||δ||| ≤ γ |h| |u| 2,Ω|||δ|||.

In order to estimate the third piece, we remark first that δ is equal to zero on each vertex belonging to ∂Ω.
Hence, we can consider only the internal faces. Taking also into account that δ is single valued, we first rearrange
terms to get ∣∣∣∣∣∣

∑
P

∑
f∈∂P

Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i

∣∣∣∣∣∣ ≤
∑

f∈F0(Th)

Vf∑
i=2

∣∣δ(V i
f ) − δ(V 1

f )
∣∣ jf (w)ωf

i . (6.18)

Then, we use Cauchy-Schwartz, estimate (6.8), the fact that the integration formula is exact on constants, and
finally (6.12) to get

∑
f∈F0(Th)

Vf∑
i=2

|δ(V i
f ) − δ(V 1

f )| jf (w)ωf
i

≤
⎛⎝∑

P

∑
f∈∂P

Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]2ωi
f

⎞⎠1/2⎛⎝ ∑
f∈F0(Th)

Vf∑
i=1

|jf (w)|2ωf
i

⎞⎠1/2

≤ γ

(∑
P

hP |||δ|||2P
)1/2

⎛⎝ ∑
f∈F0(Th)

||jf (w)||20,f

⎞⎠1/2

≤ γ

(∑
P

hP |||δ|||2P
)1/2 (∑

P

hP |u|22,P

)1/2

≤ γ |h| |||δ||| |u| 2,Ω
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that joined with (6.18) gives the estimate of the Third Piece:∣∣∣∣∣∣
∑
P

∑
f∈∂P

Vf∑
i=2

[δ(V i
f ) − δ(V 1

f )]
∂wP

∂ν̃f
ωf

i

∣∣∣∣∣∣ ≤ γ |h| |||δ||| |u| 2,Ω. (6.19)

Following essentially the estimate of the third piece and just using (4.9) instead of (6.8), we can estimate the
Fourth Piece: ∑

P

∑
f∈∂P

∫
f

[δ(V 1
f ) −RN(δ)]

∂wP

∂ν̃f
dP ≤

∑
f∈F0(Th)

∫
f

|δ(V 1
f ) −RN(δ)| |jf (w)| dP

≤ γ
(∑

P

hP |||δ|||2P
)1/2(∑

P

hP |u|22,P

)1/2

≤ γ |h||||δ||| |u| 2,Ω.

(6.20)

We can estimate the Fifth Piece using (4.7) and the usual approximation results:∣∣∣∣∣∑
P

∫
P

K̃∇RN(δ) · ∇(wP − u) dP

∣∣∣∣∣ ≤ γ|RN(δ)| 1,Ω

(∑
P

h2
P |u|22,P

)1/2

≤ γ |h| |||δ||| |u| 2,Ω.

Finally, for the Sixth Piece, we use (5.10) and (4.7) to obtain:∫
Ω

(K̃ − K)∇RN(δ) · ∇u dP ≤ γ |h| |||δ||| |u| 1,Ω.

Thus, we proved the following theorem.

Theorem 6.5. Let Ω be a bounded Lipschitz polyhedron and K be a W 1,∞(Ω) symmetric tensor. Furthermore,
let the sequence of decompositions Th satisfy assumption (HG), and the discrete inner product (5.16) satisfy
(5.14) and (5.15). Finally, let u and uh be solutions of (2.2) and (5.3), respectively, and uI = ΠNu. Then,

|||uI − uh||| ≤ γ |h| (||g||0,Ω + |u| 1,Ω + |u| 2,Ω) ,

where γ depends only on Ns, ρs and K.

7. Numerical results

7.1. Algebraic issues

In this section, we construct explicitly the bilinear form
[[
v, u
]]

P
on NP × NP verifying (5.14) and (5.15).

Let the polyhedron P have nv vertices. Our definition of the bilinear form implies that we have to construct
a symmetric positive definite nv × nv matrix MP such that[[

v, u
]]

P
= vT

MP u,

where v and u are vectors in nv with entries u(V ) and v(V ), respectively, V ∈ P . In each NP we construct
a new basis as follows. The first four elements of the new basis will be the nodal values of the polynomials of
degree ≤ 1:

B1 = ΠN1, Bi+1 = ΠN(xi − xP
i ) i = 1, 2, 3, (7.1)
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where xP is the barycenter of P . Using (5.17), we have immediately[[
B1, v

]]
P

= 0 ∀ v ∈ NP (7.2)

and [[
Bi+1, Bj+1

]]
P

= K̃i,j |P | i, j = 1, 2, 3. (7.3)

Moreover, using (5.14), we have that the scalar product
[[
v, Bi

]]
P

can be computed in a unique way, for every
v ∈ NP and i = 1, ..., 4. Hence, the problem of finding linearly independent Bk, k = 5, ..., nv, such that[[

Bi, Bk

]]
P

= 0 (7.4)

for i = 1, ..., 4 and k = 5, ..., nv makes perfect sense. To simplify the following discussion, we can also assume
that the Bk are normalized by

|||Bk|||2P = |P | k = 5, ..., nv.

Let Bi, i = 1, . . . , nv, be vectors in nv with entries Bk(V ), for any vertex V of P . If M̃P is the matrix that
represents our scalar product in the new basis B1, . . . ,Bnv , from (5.17) and (7.4) we already know explicitly
the first four lines and the first four columns of M̃P . Hence, we only have to decide the (nv − 4) × (nv − 4)
block at the bottom-right. It is easy to see that every symmetric and positive definite matrix U that satisfies
(5.15) will do. For instance we can take

U = trace(K̃) |P | Inv−4

where Inv−4 is the identity matrix in nv − 4 dimensions. Hence, M̃P will be given by

M̃P =

⎡⎣ 0 0 0
0 K̃|P | 0
0 0 U

⎤⎦ . (7.5)

Returning to the original basis, we get

MP = B
−T

M̃P B
−1, B = [B1, . . . , Bnv ]. (7.6)

Remark 7.1. In the case of tetrahedral meshes, the matrix MP coincides with the stiffness matrix in the
standard P1 finite element method.

In practice, we avoid inversion of matrix B using different representation of a family of admissible matrices MP .
Following essentially [5], we define vectors Ai, i = 2, 3, 4, as follows:

Ai = MP Bi.

The vectors Ai can be calculated directly from the right-hand side of (5.14). Formula (7.3) implies that

AT
i+1Bj+1 = K̃i,j|P |, i, j = 1, 2, 3.

Let A1 be a nv ×3 matrix with columns Ai, i = 2, 3, 4, and B1 be a nv ×4 matrix with columns Bi, i = 1, . . . , 4.
Furthermore, let D1 be a nv × (nv − 4) matrix with columns that span the null space of BT

1 , i.e. BT
1 D1 = 0.

Then, the general form of the matrix MP is (see [5] for more details)

MP =
1
|P | A1 K̃

−1
A

T
1 + D1Ũ D

T
1 , (7.7)

where Ũ is an arbitrary (nv − 4) × (nv − 4) symmetric positive definite matrix.
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Table 1. Convergence rates on hexahedral meshes.

FEM method MFD method
nP ε(uI , uh) nP ε(uI , uh)
1536 1.98 e–1 1536 3.49 e–1

12 288 1.23 e–1 12 288 1.99 e–1
98 304 6.99 e–2 98 304 1.01 e–1

786 432 3.58 e–2 786 432 5.11 e–2
rate: 0.83 rate: 0.98

In numerical experiments, we use a scalar matrix Ũ and replace matrix D1 with the orthogonal projector
onto the null space of BT

1 :

MP =
1
|P | A1 K̃

−1
A

T
1 + trace(K̃) |P | (Inv − B1(BT

1 B1)−1
B

T
1

)
. (7.8)

Since vector B1 is orthogonal to vectors Bi, i = 2, 3, 4, the matrix BT
1 B1 is block diagonal. Thus, (7.6) require

inversion of only a 3 × 3 matrix.

7.2. Model problem with a full tensor

We consider the Dirichlet boundary value problem (2.1) with the exact solution

u(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz)

and the full diffusion tensor

K =

⎛⎜⎝y
2 + z2 + 1 −xy −xz
−xy x2 + z2 + 1 −yz
−xz −yz x2 + y2 + 1

⎞⎟⎠.
We consider two sequences {Th}h of meshes. The first sequence of non-smooth hexahedral meshes is built in a

unit cube using two steps. First, each cell of a cubic mesh is split into six tetrahedra. Second, each tetrahedron
is split into four hexahedra using its vertices, centers of edges and faces, and the center of mass. One of the
meshes in the sequence is shown on the left picture in Figure 2.

The second sequences of polyhedral meshes with slightly curved faces is built in a spherical layer with the
interior radius 1 and the exterior radius 2 (see the right picture in Fig. 2). The mesh consists of prisms with
hexagonal and pentagonal bases. In both sequences, the number of elements in Th is increased roughly 8 times
which corresponds to a two-fold reduction of |h|Th

.
The results of numerical experiments are collected in Tables 1 and 2. The theoretically predicted first-order

convergence rate for |||uI − uh||| is observed in both experiments. The linear regression algorithm has been used
to calculate the convergence rate. The following relative error is calculated in numerical experiments:

ε(uI , uh) =
|||uI − uh|||

|||uI ||| ·

For a hexahedral mesh, we compare our method with the trilinear finite element (FEM) method. To a fairer
comparison, the piecewise constant diffusion tensor K̃ has been used in the finite element code. Fifth degree
Gauss quadrature has been used for calculating finite element elemental stiffness matrices. Table 1 shows that
the MFD method achieves asymptotic convergence faster than the FEM method; however, it produces 1.4 larger
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Table 2. Convergence rates on polyhedral meshes.

MFD method FEM method
nP ε(uI , uh) nP ε(uI , uh)

486 1.66 5724 1.38
3852 1.09 46 008 0.45

30 744 0.48 368 496 0.19
245 808 0.23 2 948 832 0.09

rate: 0.98 rate: 1.30

Figure 2. Unstructured non-smooth hexahedral mesh (left picture) and polyhedral mesh with
slightly curved faces (right picture). Part of the mesh has been removed to show the interior
structure.

error on the finest mesh. Since the numerical integration makes the FEM method more expensive, the total
cost-accuracy depends on efficiency of the employed iterative solver.

For a polyhedral (prismatic) mesh, we compare our method with the FEM method on a tetrahedral mesh
having the same nodes. To build the tetrahedral mesh, we first split each polyhedron into a few triangular prisms
and then split each prism into three tetrahedra. An alternative approach would be to generate the constrained
Delaunay mesh. However, structure of our prismatic mesh (see Fig. 2) is such that the simpler approach also
results in a good quality mesh. Note that the number of elements in a tetrahedral mesh is about 12 times larger
than in the corresponding polyhedral mesh. In the FEM method, the diffusion tensor is approximated by a
piecewise constant tensor on the tetrahedral mesh. This may explain the faster convergence of this method on
coarser meshes. As the result, the linear regression algorithm overestimates the convergence rate (see Tab. 2).

For polyhedral meshes, the arbitrary matrix U in (7.5) or the matrix Ũ in (7.7) may be a full symmetric
matrix with many free parameters (10 for hexahedral meshes). The optimal (in a sense of the method accuracy)
choice of these parameters is still an open question.
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To preserve an underlying cylindrical or spherical symmetry, special meshes respecting this symmetry are
frequently used in simulations. For such meshes, that a special choice of the matrix Ũ in (7.7) may result in a
method which improves (or even preserves) the symmetry. This conjecture will be analyzed in the future.

Appendix A – Construction of the lifting

We consider now the problem of constructing lifting operators vh → RNvh from N into H1(Ω) with the
following properties:

• For every vh ∈ N,
ΠNRNvh = vh. (A.1)

• For every vh ∈ N0 and for every polyhedron P ∈ Th,

|RNvh|1,P ≤ γ hP

∑
e∈∂P

∣∣∣(GRADP vh

)
|e

∣∣∣2 = γ|||vh|||2P (A.2)

where, again, γ denotes a constant that depends solely on Ns and ρs.
• For every vh ∈ N0, for every polyhedron P ∈ Th and for every vertex V ∈ P ,

||RNvh − vh(V )||20,P ≤ γh3
P

∑
e∈∂P

∣∣∣(GRADP vh

)
|e

∣∣∣2 = γ h2
P |||vh|||2P . (A.3)

It will be convenient to introduce some additional notation. If Q is a geometric object, we denoted by
V(Sh, Q) the set of vertices of Sh that belong to Q̄ (the closure of Q), and by V0(Sh, Q) the set of vertices of Sh

that are internal to Q. Moreover, for each vertex V ∈ V0(Sh, Q), we denote by V(Sh,Q)(V ) the set of vertices in
V(Sh, Q) sharing an edge with V and being different from V .

We begin our construction by defining first RNvh on each edge of Th. For each edge e, we consider its
quasi-uniform decomposition Sh|e into sub-intervals of comparable length (due to assumption (HG)). The two
endpoints V 1

e and V 2
e of e are always vertices of the (coarser) decomposition Th. We assign the values at these

endpoints of e:
RNvh(V i

e ) = vh(V i
e ), i = 1, 2. (A.4)

Then, we consider the system∑
W∈V(Sh,e)(V )

[
RNvh(V ) −RNvh(W )

]
= 0 ∀V ∈ V0(Sh, e), (A.5)

where the unknowns are clearly the values of RNvh in V0(Sh, e), while the values at the endpoints are given by
(A.4). Note that if W1 and W2 are the two elements of V(Sh,e)(V ), then

RNvh(V ) =
1
2
(RNvh(W1) +RNvh(W2)). (A.6)

This immediately implies that the maximum and the minimum values of RNvh(V ) in V(Sh, e) are attained at
the endpoints V 1

e and V 2
e , and that for any V and W in V(Sh, e) we have∣∣RNvh(V ) −RNvh(W )

∣∣ ≤ ∣∣RNvh(V 1
e ) −RNvh(V 2

e )
∣∣. (A.7)

Then, for each face f , we consider its decomposition Sh|f into regular-shaped triangles (again, due to our
assumption (HG)). Let us consider the system∑

W∈V(Sh,f)(V )

[
RNvh(V ) −RNvh(W )

]
= 0 ∀V ∈ V0(Sh, f), (A.8)
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where the unknowns are clearly the values of RNvh in V0(Sh, f), while the values at vertices on ∂f have been
assigned already in (A.4) and (A.5). It is immediate to check that the matrix associated to the system (A.8)
is an M-matrix. In particular, the system has a unique solution, and we have again the discrete maximum
principle. The maximum and minimum values of RNvh are attained at the vertices of V(Sh, ∂f). In particular,
for all vertices V and W in V(Sh, f), we have∣∣RNvh(V ) −RNvh(W )

∣∣∣ ≤ max
V ∈V(Sh,∂f)

RNvh(V ) − min
V ∈V(Sh,∂f)

RNvh(V ). (A.9)

Thanks to our assumptions on the geometry (consequence (C1)), this implies that∣∣RNvh(V ) −RNvh(W )
∣∣ ≤ γ

∑
e∈∂f

∣∣∣(GRAD vh

)
|e

∣∣∣ ∀V, W ∈ V(Sh, ∂f). (A.10)

Using the triangle inequality and once more the assumption (HG) (in particular, the fact that we have less
than Nf faces in ∂P ), we easily have∣∣∣RNvh(V ) −RNvh(W )

∣∣∣ ≤ γ
∑

e∈∂P

∣∣∣(GRAD vh

)
|e

∣∣∣ ∀V, W ∈ V(Sh, ∂P ). (A.11)

Finally, in each polyhedron we consider the decomposition Sh|P , and the system∑
W∈V(Sh,P )(V )

[
RNvh(V ) −RNvh(W )

]
= 0 ∀V ∈ V0(Sh, P ), (A.12)

where the unknowns are the values of RNvh in V0(Sh, P ) and the values at vertices of V(Sh, ∂P ) were assigned
in the previous construction. Again the system has a unique solution, and we have the discrete maximum
principle as in (A.7) and (A.9): for every V and W in V(Sh, P )∣∣RNvh(V ) −RNvh(W )

∣∣∣ ≤ max
V ∈V(Sh,∂P )

RNvh(V ) − min
V ∈V(Sh,∂P )

RNvh(V ). (A.13)

Therefore, using (A.11), we get∣∣∣RNvh(V ) −RNvh(W )
∣∣∣ ≤ γ

∑
e∈∂P

∣∣∣(GRAD vh

)
|e

∣∣∣ ∀V, W ∈ V(Sh, P ). (A.14)

At this point we defined the values of RNvh at all vertices of Sh. We note that (A.1) is satisfied (we actually
started from it). We can now extend linearly RNvh in the interior of the tetrahedra of Sh, using its values at
the four vertices. From (A.14) we have two easy consequences. First,

||gradRNvh||20, P ≤ hPγ
∑

e∈∂P

∣∣∣(GRAD vh

)
|e

∣∣∣2, (A.15)

which is (A.2). Second, for every vertex V in P ,

||RNvh − vh(V )||20, P ≤ h3
Pγ
∑

e∈∂P

∣∣∣(GRAD vh

)
|e

∣∣∣2, (A.16)

which is (A.3).
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Remark 7.2. As we already pointed out, it is not difficult to design assumptions other than (HG) that
will still ensure (A.1)–(A.3). In particular, the present construction mimics a conceptually simpler one: first
define RNvh on the edges of Th by linear extension from the values at their endpoints, then take the (two
dimensional) harmonic extension to each face (using the values at the edges as boundary conditions), and
finally take the (three dimensional) harmonic extension to each polyhedron (using the values at the faces as
boundary conditions). It is not difficult to see that, under minor regularity requirements on the geometry of
each P , such a construction will produce a function in H1(Ω) satisfying (A.1)–(A.3). For instance we could
require (and this, already, would be much more than enough) that there exist two constants Ns and ρs such
that: (a) each P has less than Ns faces; (b) each face f has less than Ns edges; (c) each f is star-shaped with
respect to all points of a disk of radius ρshP ; and (d) each P is star-shaped with respect to all points of a sphere
of radius ρshP . The present setting, however, has the merit of requiring no background on the regularity of
harmonic functions in corner domains [10].
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