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FIRST-ORDER SEMIDEFINITE PROGRAMMING FOR THE TWO-ELECTRON
TREATMENT OF MANY-ELECTRON ATOMS AND MOLECULES

David A. Mazziotti1

Abstract. The ground-state energy and properties of any many-electron atom or molecule may be
rigorously computed by variationally computing the two-electron reduced density matrix rather than
the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state
2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron
wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM
possible. The constraints in the variational calculation of the 2-RDM require a special optimization
known as a semidefinite programming. Development of first-order semidefinite programming for the 2-
RDM method has reduced the computational costs of the calculation by orders of magnitude [Mazziotti,
Phys. Rev. Lett. 93 (2004) 213001]. The variational 2-RDM approach is effective at capturing multi-
reference correlation effects that are especially important at non-equilibrium molecular geometries.
Recent work on 2-RDM methods will be reviewed and illustrated with particular emphasis on the
importance of advances in large-scale semidefinite programming.
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1. Introduction

Because electrons are indistinguishable with only pairwise interactions, the energy of any atom or molecule
may be expressed as a linear functional of the two-electron reduced density matrix (2-RDM) [32, 33]. This
functional tantalizingly suggests that a variational calculation of the wavefunction might be replaced with a
variational determination of the 2-RDM. The first attempts to use the 2-RDM fifty years ago, however, yielded
energies that were unphysically low. The literature [13, 57] realized that the 2-RDM must be constrained
to represent an N -electron wavefunction. In 1963 the mathematician John Coleman called these constraints
N -representability conditions [8]. Coleman [7, 8] and mathematicians Claude Garrod and Jerome Percus [19]
derived a set of N -representability conditions that required restricting three two-particle density matrices to be
positive semidefinite. A matrix is positive semidefinite if and only if it has nonnegative eigenvalues. While these
conditions were initially implemented in the mid-1970s for four-electron systems like beryllium and the helium
dimer, uncertainties in the strength of the conditions and the feasibility of the optimization caused interest in
the development of 2-RDM methods to wane.
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The variational calculation of the 2-RDM constrained by necessary N -representability conditions yields a
lower bound on the ground-state energy in a given finite basis set. The strict lower bound occurs because the
2-RDM is optimized over a set that contains all correlated N -electron wavefunctions. Within wave mechanics
the challenge is to introduce sufficient variational flexibility into the wavefunction, but in reduced-density-
matrix mechanics the challenge is to limit the 2-RDM, which has the flexibility to model all correlated wave-
functions, to represent only realistic N -electron wavefunctions. A practical consequence is that the 2-RDM
method has the potential to produce ground-state energies with useful accuracy even if the wavefunction is
challenging to parameterize as in transition-state structures or other stretched geometries of a potential energy
surface [22, 40, 42, 43, 50].

In the mid-1990s the 2-RDM method re-emerged through the non-variational calculation of the 2-RDM
by solving a contracted Schrödinger equation [1, 2, 9–11, 31, 34–39, 51, 52, 60]. This research led to a better
understanding if the conditions of Coleman [8] and Garrod and Percus [19] as well a systematic extension of
these original conditions to form a hierarchy of conditions, which have been called p-positivity conditions [16,47].
These conditions enforce large classes of the generalized uncertainty relations [47]. While research on the 2-
RDM was receiving renewed attention, significant strides were made in developing optimization algorithms for
minimizing a function with matrices of the variables constrained to be positive semidefinite. Research was
particularly driven by applications in control theory, combinatorial optimization, and finance. This family of
optimization problems is called semidefinite programming [58]. Built upon these two advances, the variational
calculation of the ground-state 2-RDM has been achieved for a variety of atoms and molecules without the
many-electron wavefunction [16, 20–28, 30, 40–47, 49, 50, 61]. The author has recently developed a first-order
semidefinite-programming algorithm for the 2-RDM calculation that, by reducing the computational scaling by
orders of magnitude, enables the treatment of larger molecules and basis sets [42, 43]. In this article we will
review and discuss the development of the variational 2-RDM methods with emphasis on the role of semidefinite
programming.

2. Variational principle and N-representability

In quantum mechanics the ground-state energy of any many-electron atom or molecule with Hamiltonian Ĥ
may be calculated in principle from the expectation value of the Hamiltonian with respect to the ground-state
wavefunction Ψ

E = 〈Ψ|Ĥ |Ψ〉. (1)

Because the electrons interact pairwise, the many-electron Hamiltonians for all atoms and molecules may be
written as

Ĥ =
∑

i,j,k,l

2Ki,j
k,l â†

i â†
j âl âk, (2)

where â† and â are the second-quantized creation and annihilation operators, the indices refer to the spin-
orbital basis set, and the symbol 2K denotes the two-electron reduced Hamiltonian matrix, containing the one-
and two-electron integrals as well as the number N of electrons [34]. Substitution of the second-quantized
Hamiltonian into equation (1), which emphasizes the two-particle nature of the electron interaction, generates
an energy expression for many-electron systems

E =
∑

i,j,k,l

2Ki,j
k,l

2Di,j
k,l (3)

in terms of the two-electron reduced density matrix (2-RDM)[32,33] which is defined in second-quantization as

2Di,j
k,l = 〈Ψ|â†

i â†
j âl âk|Ψ〉. (4)

From a knowledge of the 2-RDM we can computed any two-electron properties of an atom or molecule.
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The 2-RDM must be constrained by additional rules (or conditions) to derive from an N -electron wavefunc-
tion. Coleman described these necessary and sufficient rules as N -representability conditions [8]. Unsuccessful
back-of-the-envelope 2-RDM calculations of Coleman [8] and Tredgold [57] employed four basic requirements
for a density matrix of indistinguishable fermions [8]: the matrix should be (i) normalized to conserve particle
number, (ii) Hermitian, (iii) antisymmetric under particle exchange, and (iv) positive semidefinite to keep prob-
abilities nonnegative. Although these conditions are sufficient to guarantee that the 2-RDM is a density matrix,
they are not sufficient for the matrix to be representable by an N -electron density matrix, or N -representable.
What further conditions should be imposed on a 2-RDM to restrict it to be N -representable? Recent progress
has revealed the importance of a class of N -representability conditions, called positivity conditions [16, 47],
which was initially discussed by Coleman [8] and Garrod and Percus [19]. Erdahl and Jin [16] and Mazziotti
and Erdahl [47] generalized these conditions to a hierarchy of N -representability conditions, and demonstrated
that each level of the hierarchy corresponds to enforcing the generalized uncertainty relations for a class of
operators.

Let us define a general set of operators {Ĉi} whose application to the ground-state wavefunction generates
a complete set of N -particle basis functions {|Φi〉}

|Φi〉 = Ĉi|Ψ〉. (5)

The metric (or overlap) matrix M for these basis functions

M i
j = 〈Φi|Φj〉 = 〈Ψ|Ĉ†

i Ĉj |Ψ〉 (6)

must be positive semidefinite, which we denote as M ≥ 0. If the set of operators {Ĉi} is restricted so that the
elements of the metric matrix can be evaluated only with a knowledge of the p-RDM, then the condition M ≥ 0
is a p-positivity condition which restricts the N -representability of the p-RDM [47].

Consider the 1-positivity conditions whose metric matrices may be evaluated from a knowledge of the 1-RDM
only. If for each Ĉj a second-quantized operator âj which kills a particle in the jth orbital is chosen, we obtain
that the 1-particle reduced density matrix (1-RDM), whose elements are

1Di
j = 〈Ψ|â†

i âj |Ψ〉, (7)

must be positive semidefinite. Similarly, if for each Ĉi an operator â†
i is chosen which creates a particle in the

ith orbital, we obtain that the 1-hole reduced density matrix (1-HRDM) whose elements

1Qj
i = 〈Ψ|âj â†

i |Ψ〉, (8)

must be positive semidefinite. Physically, the positivity constraint 1D ≥ 0 ensures that the probability for
finding one electron in any orbital remains nonnegative while the complementary constraint 1Q ≥ 0 ensures
that the probability for not finding one electron (or finding a hole which is the absence of a particle) remains
nonnegative.

The expectation value of the fermionic anticommutation relation

âj â†
i + â†

i âj = δi
j (9)

yields a linear mapping between the matrix elements of 1D and 1Q

1Qj
i + 1Di

j = δi
j . (10)

From this relation we observe that the eigenfunctions (or orbitals) that diagonalize the 1-particle RDM also
diagonalize the 1-hole RDM because the Kronecker delta function is invariant under unitary transformations.
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Therefore, the ith eigenvalue (or occupation number) of the 1-hole RDM is expressible in terms of the ith
occupation number of the 1-particle RDM ni as 1 − ni. The nonnegativity of the occupation numbers, ni ≥ 0
and 1 − ni ≥ 0, from 1-positivity conditions implies the Pauli exclusion principle that the occupation numbers
of the spin orbitals must lie between zero and one, that is 0 ≤ ni ≤ 1. Coleman [8] first proved in 1963 that the
four basic conditions for a fermion density matrix plus the 1-positivity conditions are not only necessary but
also sufficient constraints for the ensemble N -representability of the 1-RDM; in other words, every one-electron
density matrix that obeys the 1-positivity conditions derives from at least one N -electron ensemble density
matrix.

Let us now consider the metric matrices that can be evaluated with the 2-RDM only. If these matrices are
constrained to be positive semidefinite, we obtain the 2-positivity conditions [19, 40, 47]. The basis functions
in equation (5) that produce these 2-RDM metric matrices may be naturally grouped into three orthogonal
vector spaces according to the number of creation operators in Ĉ: (i) Ĉ ∈ {âi âj}, (ii) Ĉ ∈ {â†

i â†
j}, and (iii)

Ĉ ∈ {â†
i âj}. The elements of the three metric matrices M from these groups may be expressed as:

2Dp,q
i,j = 〈Ψ|â†

qâ
†
pâiâj |Ψ〉, (11)

2Qp,q
i,j = 〈Ψ|âqâpâ

†
i â

†
j |Ψ〉, (12)

2Gp,q
i,j = 〈Ψ|â†

qâpâ
†
i âj |Ψ〉. (13)

The condition 2D ≥ 0 prevents the probability distribution for finding two particles in two orbitals from being
anywhere negative while the condition 2Q ≥ 0 enforces this nonnegativity for two holes. Analogously, the
constraint 2G ≥ 0 restricts the probability for finding a particle and a hole in any two spin orbitals from being
negative.

By rearranging the creation and annihilation operators according to the anticommutation relations, we gen-
erate linear relations between pairs of the 2-positive metric matrices, 2D, 2G, and 2Q [40]:

2Qp,q
i,j /2 = (δp

i − 2 1Dp
i ) ∧ δq

j + 2Dp,q
i,j /2 (14)

and
2Gp,q

i,j = δi
p

1Dq
j − 2Di,q

p,j, (15)

where the 1-RDM arises from the integration (or contraction in a matrix representation) of the 2-RDM

1Dp
i =

1
N − 1

∑
j

2Dp,j
i,j (16)

and the symbol ∧ denotes the antisymmetric tensor product known as the Grassmann wedge product [34].
It may be demonstrated by contraction that the 2-positivity conditions contain the 1-positivity conditions.
Unlike the 1-positivity conditions for the 1-RDM, the 2-positivity conditions are necessary but not sufficient for
restricting the 2-RDM to be N -representable. The 2-positivity conditions have proven fairly effective constraints
for ground-state calculations of many-electron atoms and molecules at both equilibrium and non-equilibrium
geometries [22, 40, 42, 43, 50].

What are the N -representability conditions not included by the 2-positivity conditions? Erdahl and Jin [16]
and Mazziotti and Erdahl [47] have shown that the 2-positivity conditions may be generalized to p-positivity
conditions that arise from the metric matrices that can be expressed from only a knowledge of the p-RDM. At
the level of 3-positivity there are four distinct metric matrices for fermions that correspond to restricting the
probability distributions to be nonnegative for three particles 3D ≥ 0, two particles and one hole 3E ≥ 0, one
particle and two holes 3F ≥ 0, and three holes 3Q ≥ 0 [40, 47]. Calculations on spin systems and atoms and
molecules [45] show that the accuracy of the energy and properties converges rapidly with the level of p-positivity
with 3-positivity yielding excellent results at all interaction strengths even where traditional wavefunction
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methods fail [26, 47, 56]. Two different types of particle 3-positivity conditions have been proposed: (i) the
lifting conditions [26, 40], and (ii) the T1 and T2 conditions [14, 44, 61]. The latter conditions correspond to the
following restrictions: T1 = 3D + 3Q ≥ 0 and T2 = 3E + 3F ≥ 0. Originally proposed by Erdahl [14], the T1 and
T2 conditions have been applied by Zhao et al. [61] to computing the ground states of atoms and molecules at
equilibrium geometries with similar or better accuracy than many standard wavefunction methods. The author
has applied a spin- and symmetry-adapted version of the T2 condition to molecules with similar accuracy at
both equilibrium and stretched geometries in non-minimal basis sets [44].

The p-positivity conditions guarantee the nonnegativity of important probability distributions involving
different mixtures of particles and holes. Their strength, however, may be further appreciated from their
enforcement of important classes of the generalized uncertainty relations [47]. Mazziotti and Erdahl have shown
that the 2p-positivity conditions enforce the generalized uncertainty relations for all pairs of Hermitian p-body
operators Ĉ1 and Ĉ2, that is

σ(Ĉ1)σ(Ĉ2) ≥ 1
2
|〈Ψ|[Ĉ1, Ĉ2]|Ψ〉|, (17)

where

σ(Ĉ) = 〈Ψ|(Ĉ − 〈Ψ|Ĉ|Ψ〉)2|Ψ〉1/2 (18)

and the expectation values may be evaluated with the 2p-RDMs. Therefore, the 2-positivity conditions imply
the uncertainty relations for all pairs of one-body operators.

Unlike the optimization of a trial wavefunction that produces an upper bound on the ground-state energy
by the Rayleigh-Ritz variational principle, the variational 2-RDM method with necessary N -representability
constraints like the positivity conditions yields a lower bound on the ground-state energy. For this reason the
variational 2-RDM method has also been called the lower bound method in the literature [16]. The lower bound
on the energy, however, is only a signature for a more fundamental difference between the wavefunction and
2-RDM approaches to many-electron correlation. All wavefunction methods, whether variational or not, depend
upon a parametrization of the N -electron wavefunction. In the variational case this parametrization leads to
the energy upper bound of the Rayleigh-Ritz variational principle while in non-variational methods it generates
accuracy through a certain order of perturbation theory. In the variational 2-RDM method, however, the set of
2-RDMs contains all N -representable 2-RDMs, and hence, all wavefunctions, whether single- or multi-referenced,
are correctly parametrized. In fact, because the set of 2-RDMs defined by necessary positivity conditions is
larger than the set of N -representable 2-RDMs, the 2-RDM is slightly “over-parameterized”, which leads to
the lower bounds to the energies of N -electron atoms and molecules. Nevertheless, because the positivity
conditions do not depend on a specific reference configuration like the Slater determinant for a single-reference
wavefunction technique, the variational 2-RDM method can treat both single- and multi-reference correlation
effects with consistent accuracy. As we will show in the applications, this is especially useful for describing the
shape of potential energy surfaces.

3. Semidefinite programming

Variational calculation of the energy with respect to the 2-RDM constrained by 2-positivity conditions re-
quires minimizing the energy in equation (3) while restricting the 2D, 2Q, and 2G to be not only positive
semidefinite but also interrelated by the linear mappings in equations (14–16). This is a special optimization
problem known as a semidefinite program. The solution of a semidefinite program is known as semidefinite
programming [54, 58, 59].

A semidefinite program may be written in two complementary formulations which are known as the primal
and dual programs. For convenience we define the map M which transforms any vector |x〉 of length n2 into
an n × n matrix M(x) by creating each column of the matrix sequentially with the elements of the vector.
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The primal formulation of the semidefinite program may be expressed in general notation as

minimize 〈c|x〉 (19)
such that A|x〉 = |b〉

M(x) ≥ 0,

where the vector |c〉 defines the system, the vector |x〉 denotes the primal solution, the m×n matrix A and the
m-dimensional vector |b〉 enforce m linear constraints upon the solution |x〉, and the matrix M(x) is restricted
to be positive semi-definite. Similarly, the dual formulation of the semidefinite program may be expressed
generally as

maximize 〈b|y〉 (20)
such that |z〉 = |c〉 − AT |y〉

M(z) ≥ 0,

where the vector |y〉 of length m is the dual solution, AT is the n×m transpose of the matrix A, and the n×n
matrix M(z) is constrained to be positive semidefinite.

In the variational 2-RDM method with 2-positivity the solution |x〉 of the primal program is a vector of the
three metric matrices from the 2-RDM, the 2D, the 2Q, and the 2G matrices

M(x) =

⎛
⎝

2D 0 0
0 2Q 0
0 0 2G

⎞
⎠ , (21)

the vector |c〉 holds specific information about the quantum system in the form of the two-particle reduced
Hamiltonian

M(c) =

⎛
⎝

2K 0 0
0 0 0
0 0 0

⎞
⎠ , (22)

and the matrix A and the vector |b〉 contain the linear mappings among the 2D, 2Q, and 2G matrices in
equations (14) and (15), the contraction (Eq. (16)) and trace conditions (Tr(1D) = N), as well as any spin
constraints. The constraint M(x) ≥ 0 in equation (19) restricts the 2D, 2Q, and 2G matrices to be positive
semidefinite.

Feasible |x〉 and |y〉 give upper and lower bounds on the optimal value of the objective function, which in
the 2-RDM problem is the ground-state energy in a finite basis set. The primal and dual solutions, |x〉 and
|y〉, are feasible if they satisfy the primal and dual constraints in equations (19) and (20) respectively. The
difference between the feasible primal and the dual objective values, called the duality gap µ, which equals the
inner product of the vectors |x〉 and |z〉,

µ = 〈x|z〉 ≥ 0, (23)
vanishes if and only if the solution is a global extremum. This optimization theorem for semidefinite program-
ming was first proved by Erdahl in 1979 in the context of 2-RDM theory [15]. For the variational 2-RDM method
the duality gap furnishes us with a mathematical guarantee that we have determined the optimal energy within
the convex set defined by the positivity conditions. With necessary N -representability conditions the optimal
energy is a lower-bound to the energy from full configuration interaction in the selected basis set.

In the mid-1990s a powerful family of algorithms, known as primal-dual interior-point algorithms, was devel-
oped for solving semidefinite programs [58]. The phrase interior-point means that the method keeps the trial
primal and dual solutions on the interior of the feasible set throughout the solution process. In these algorithms
a good initial guess for the 2-RDM is a scalar multiple of the two-particle identity matrix. Advantages of the
interior-point methods are: (i) rapid quadratic convergence from the identity matrix to the optimal 2-RDM
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for a set of positivity conditions; and (ii) a rigorous criterion in the duality gap for convergence to the global
minimum. These benefits, however, are accompanied by large memory requirements and a significant number
of floating-point operations per iteration, specifically O(nm3 + n2m2) where n is the number of variables and
m is the number of constraints. With m and n proportional to the number of elements in the 2-RDM (≈ r4),
the method scales approximately as r16 where r is the rank of the one-particle basis set [40, 41]. The varia-
tional 2-RDM method has been explored for minimal basis sets with the primal-dual interior-point algorithm,
but the computational scaling significantly limits both the number of active electrons and the size of the basis
set [30, 40, 41, 49, 50, 61].

The author has recently developed a large-scale semidefinite programming algorithm for solving the semidef-
inite program in the variational 2-RDM method [42, 43]. The optimization challenge in the 2-RDM method is
to constrain the metric matrices to be positive semidefinite while the ground-state energy is minimized. The
algorithm constrains the solution matrix M to be positive semidefinite by a matrix factorization

M = RR∗, (24)

where for the 2-positivity conditions M is given in equation (21). Such a matrix factorization was previously
considered in the context of 2-RDM theory by Mihailović and Rosina [48], Harriman [29], and the author [34],
and it was recently employed for solving large-scale semidefinite programs in combinatorial optimization [5].
The applications in Mazziotti [42, 43] and Burer and Choi [4] are the first to apply the matrix factorization to
semidefinite programs with multiple diagonal blocks in the solution matrix M . The linear constraints, including
the trace, the contraction, and the interrelations between the metric matrices, become quadratic in the new
independent variables R. Therefore, the factorization in equation (24) converts the semidefinite program into a
nonlinear program where the energy must be minimized with respect to R while nonlinear constraint equalities
are enforced. Burer and Choi [4] examine semidefinite programs which permit a low-rank factorization of
the solution matrix M . The semidefinite program for electronic structure in references [42, 43] has a solution
matrix M whose rank is approximately half of its dimension. Even without a low rank for M , however, the
matrix factorization in an electronic problem has a much lower cost than the matrix operations in interior-point
methods.

We solve the nonlinear formulation of the semidefinite program by the augmented Lagrange multiplier method
for constrained nonlinear optimization [3, 5, 12, 17, 42, 43, 55]. Consider the augmented Lagrangian function

L(R) = E(R) −
∑

i

λici(R) +
1
µ

∑
i

ci(R)2, (25)

where R is the matrix factor for the solution matrix M , E(R) is the ground-state energy as a function of R,
{ci(R)} is the set of equality constraints, {λi} is the set of Lagrange multipliers, and µ is the penalty parameter.
For an appropriate set of multipliers {λi} the minimum of the Lagrangian function with respect to R corresponds
to the minimum of the energy E(R) subject to the nonlinear constraints ci(R). The positive third term in the
augmented Lagrangian function, known as the quadratic penalty function, tends to zero as the constraints are
satisfied.

The augmented Lagrange multiplier algorithm finds the energy minimum of the constrained problem with
an iterative, three-step procedure:

(1) For a given set of Lagrange multipliers {λ(n)
i } and penalty parameter µ(n), minimize the Lagrangian

function L(R) to obtain an improved estimate Rn+1 of the factorized 2-RDM at the energy minimum.
(2) If the maximum absolute error in the constraints max{ci(Rn+1)} is below a chosen threshold (i.e.

0.25 max{ci(Rn)}), then the Lagrange multipliers are updated by a first-order correction

λ
(n+1)
i = λ

(n)
i − ci(Rn+1)/µ(n),
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while the penalty parameter remains the same

µ(n+1) = µ(n).

(3) If step 2 is not executed, then the penalty parameter is decreased to enforce better the constraints

µ(n+1) = 0.1µ(n),

while the Lagrange multipliers remain the same

λ(n+1) = λ(n).

Steps 1–3 are repeated until the maximum absolute error in the constraints falls below a target threshold. Before
the first iteration the Lagrange multipliers may be initialized to zero, and the penalty parameter set to 0.1. The
constraints are not fully enforced until convergence, and the energy in the primal program approaches the optimal
value from below. Even though the matrix factorization of the primal matrix produces a nonconvex optimization
problem in equation (25), Burer and Monteiro [6] have shown that the Lagrange multiplier algorithm converges
to the optimal (global) solution of the semidefinite program.

The cost of the algorithm is dominated by r6 floating-point operations [42], mainly from the matrix multi-
plication of the block-diagonal R matrix with itself, where r is the rank of the one-particle basis set. Storage of
the factorized 2-RDM, several copies of its gradient, and the Lagrange multipliers scales as r4. In comparison
with the primal-dual interior-point approach, which scales as r16 and r8 in floating-point operations and mem-
ory storage, the first-order nonlinear algorithm for the variational 2-RDM method[42,43] provides a significant
improvement in computational efficiency.

4. Applications of the 2-RDM

The variational 2-RDM method has been applied to a variety of atoms and molecules at both equilibrium
and stretched geometries. We illustrate the method briefly here by reviewing a calculation of the potential
energy curve of the hydrogen fluoride molecule[44]. The 2-RDM method with 2-positivity plus the T2 condition
produces a semidefinite program for hydrogen fluoride (after applying spin and symmetry adaptation [23]) with
336 664 variables, 168 432 constraints, 650 583 non-zero elements in the constraint matrix A, and 38 blocks in
the solution matrix M . Semidefinite programs with several million variables and constraints have been solved
with the method [24, 27, 28, 44, 45]. Comparisons of the first-order algorithm with second-order primal-dual
interior-point algorithms have been reported in the literature [23, 42].

For selected bond distances along the potential energy curve of HF in a valence double-zeta basis set the
ground-state energies from the variational 2-RDM method with 2-positivity conditions (DQG) as well as 2-
positivity and T2 conditions (DQGT2) are compared in Figure 1 with the energies from several wavefunction
methods including Hartree-Fock (HF), second-order many-body perturbation theory (MP2), coupled-cluster
singles-doubles (CCSD), coupled-cluster singles-doubles with a perturbative triples correction (CCSD(T)) and
full configuration interaction (FCI). The core orbital of fluorine is frozen. The 2-RDM curve with DQG condi-
tions reveals the presence of a systematic shift of the curve from the lower-bound nature of the 2-RDM method
which, however, does not affect the shape of the potential energy curve. The shape of the curve is most im-
portant for chemistry because it determines spectroscopic constants and reaction kinetics. In calculations on
nitrogen and carbon dimers as well as bond stretching in organic molecules we have easily adjusted the 2-RDM
curves by shifting them by a constant to agree with CCSD(T) at the equilibrium molecular geometry [21, 22].
Addition of the T2 condition to the calculation improves the absolute errors in the energies. In the region around
its equilibrium geometry the energies from the 2-RDM method with 2-positivity plus T2 (DQGT2) conditions
are as accurate as the energies from coupled cluster with a perturbative triples correction (CCSD(T)). For all
approximate methods considered the absolute magnitude of the error in the energy increases with the bond
distance, but it remains the smallest in the 2-RDM method with the DQGT2 constraints.
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Figure 1. Potential energy curves of HF are generated in a valence double-zeta basis set from
the two variational 2-RDM methods, one with the 2-positivity conditions (DQG) and one with
both the 2-positivity and the T2 conditions (DQGT2). Although the absolute magnitude of
the error in the energy increases with bond distance for all approximate methods considered,
it remains the smallest in the 2-RDM method with DQGT2 constraints.

5. A look ahead

Since early work in the 1950s recognized the promise and challenges of computing the energies and properties
of atoms and molecules without the many-electron wavefunction, quantum chemistry has experienced many
important advances towards the accurate treatment of electron correlation including the development of density
functional theory, coupled cluster theory, Monte Carlo methods, and multi-reference perturbation theory. The
recent progress in the 2-RDM methods contributes both a new perspective and tool for describing energies and
properties of atoms and molecules in which correlation effects are accounted. The variational 2-RDM, which
yields a systematic lower bound on the ground-state energy in a finite basis set, is especially applicable to treat
molecular systems with difficult-to-parameterize wavefunctions that arise in chemistry at transition states and
other nonequilibrium geometries as well as in describing many open-shell molecules. The 2-RDM method also
has applications to the study of correlation phenomena in Bose condensation [20] and solid-state physics.

A critical part of realizing a “quantum chemistry without wavefunctions” through the variational 2-RDM
method is the development of robust algorithms for large-scale semidefinite programming. As discussed in
the article a large-scale algorithm, developed by the author, reduces the computational scaling of the 2-RDM
method by orders of magnitude in both floating-point operations and memory. A key feature of the algo-
rithm is the conversion of the semidefinite program into a nonlinear constrained optimization, which is then
solved by the method of augmented Lagrange multipliers. Zhao et al. [61] has examined improving the perfor-
mance of the primal-dual interior-point methods by redefining the statement of the semidefinite program, and
M. Nayakkankuppam [53] has explored the use of a first-order spectral bundle algorithm. Further advances in
large-scale semidefinite programming will have an important impact on the variational 2-RDM method, and
similarly, the problems in electronic structure offer fertile ground for testing and benchmarking new large-scale
algorithms. Advances will also have a broad impact on many other scientific problems in areas like control
theory, combinatorial optimization, quantum information, and finance. Although still in its early stages, the
2-RDM method for computing energies and properties without the many-electron wavefunction offers a new
approach to computing the electronic structure of atomic and molecular systems.
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