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Abstract. Along with the classical requirements on B-splines bases (minimal support, positivity,
normalization) we show that it is natural to introduce an additional “end point property”. When
dealing with multiple knots, this additional property is exactly the appropriate requirement to obtain
the poles of nondegenerate splines as intersections of osculating flats at consecutive knots.
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1. Introduction

In any spline space, the expression “B-spline basis” commonly denotes a normalized basis consisting of
minimally supported functions which are positive on the interior of their supports. Such bases are of crucial
importance in geometric design for, their properties ensure spline curves to be located in the convex hull of
their control points, the influence of each control point being as local as possible.

In [2], Goodman established the existence of such bases in polynomial spline spaces of arbitrary degree with
regular one-banded lower triangular totally positive connection matrices. The result was generalized to arbitrary
regular lower triangular totally positive connection matrices by Dyn and Micchelli [1]. In [7, 8] Seidel used the
latter existence to prove the existence of blossoms [6] for geometrically continuous polynomial splines. The
values of the blossoms were defined by means of intersections of osculating flats. His paper was a fundamental
one, for the idea of using intersections of osculating flats originated the extension of the blossoming theory
outside the polynomial framework, in particular by Pottmann [5] (see also [3]).

However, we recently noticed that, unless we limit ourselves to the case of simple knots, the proof of existence
of blossoms given in [8] is not complete. This is due to the three classical axioms of B-spline bases (minimal
support, positivity, normalization) being insufficient to achieve the result in the case of multiple knots: indeed,
they do not guarantee the poles of nondegenerate splines to be obtained as intersections of osculating flats. Note
that in the case of multiple knots, they do not guarantee unicity of such a basis either. These few remarks led
us to wonder about the exact axioms to require on B-spline bases, and this is the object of the present paper.

The second section investigates the most general context of splines with sections in arbitrary spaces, and with
connections defined by arbitrary lower triangular matrices, with positive diagonal elements. It contains various
observations about minimally supported splines which justify the introduction of an additional requirement on
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B-spline bases to make the difference between two consecutive B-splines the supports of which have the same
left or right end point. A similar condition was actually used by Dyn and Micchelli to exhibit a B-spline basis
in the polynomial case. In Section 3, we show that the additional axiom is exactly what is needed to enable us
to define poles as intersections of a number of osculating flats at some knots. In particular, it is the finishing
touch to complete the proof of Seidel’s result.

2. B-spline bases

In order to guarantee the nice behaviour of a spline space for geometric design purposes, it is essential to have
at our disposal a B-spline basis. However, what exactly do we mean by a B-spline basis? This is the question
we shall address in the present section.

2.1. Basic requirements on B-spline bases

Throughout the paper, given a real number x and a nonnegative integer m, the notation x[m] will stand for
x repeated m times.

Consider a sequence of knots T = (t�)�∈Z, with t� < t�+1 and lim|l|→+∞ |t�| = +∞. To each knot t�, let
us allocate a multiplicity m� ∈ {0, . . . , n}. We suppose that the corresponding knot vector K :=

(
t�

[m�]
)
�∈Z

is
infinite, i.e. that infinitely many multiplicities are not equal to zero. When necessary we shall rewrite the knot
vector as K =

(
ξj

)
j∈Z

, with ξj ≤ ξj+1.
For each � ∈ Z, we denote by E� an (n + 1)-dimensional linear subspace of Cn([t�, t�+1]) containing the

constants, and by M� a lower triangular matrix of order n − m� with positive diagonal. Associated with these
data, we define the spline space S as the space of all continuous functions S : R → R the restrictions of which
to [t�, t�+1] belong to E� for any � ∈ Z, and which satisfy the connection conditions

(
S′(t�+), . . . , S(n−m�)(t�+)

)T = M� .
(
S′(t�−), . . . , S(n−m�)(t�−)

)T
, � ∈ Z. (2.1)

In this most general context, a B-spline basis is commonly meant as a sequence of functions N�, � ∈ Z, meeting
the following classical requirements:

(BSB)1 support condition: for all � ∈ Z the support of N� is equal to [ξ�, ξ�+n+1],
(BSB)2 decomposition condition: for any S ∈ Sd, d ≥ 1, there exists a sequence (T�)�∈Z of points of R

d such
that:

S(t) =
∑
�∈Z

N�(t) T�, t ∈ R. (2.2)

(BSB)3 positivity condition: for all � ∈ Z, N� is positive on the interior of its support,
(BSB)4 normalisation condition:

∑
�∈Z

N�(t) = 1 for all t ∈ R.

The knot vector K being infinite, for any k ∈ Z, we can consider the greatest integer q such that ξq ≤ tk.
Throughout the paper, we shall denote it by j(k). It is thus the only integer such that ξj(k) ≤ tk, ξj(k)+1 ≥ tk+1,
and, clearly, for all q ≥ 0, j(k + q) = j(k) +

∑k+q
i=k+1 mi.

Let us first state a few elementary consequences of the classical properties (BSB)i.

Proposition 2.1. Assume the sequence N�, � ∈ Z, to satisfy the two conditions (BSB)1 and (BSB)2. Then,
each function N� belongs to the space S, and for any spline function S : R → R

d, the decomposition (2.2) is
unique.
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Proof. Given two integers k, s, with s ≥ 0, denote by Sk,s the restriction of S to [tk, tk+s+1]. Each space E�

being (n + 1)-dimensional, due to the connection conditions (2.1), the space Sk,s is of dimension at least

(n + 1)(s + 1) −
k+s∑

i=k+1

(n − mi + 1) = n + 1 +
k+s∑

i=k+1

mi.

On account of the support condition (BSB)1, for t ∈ [tk, tk+s+1], the sum in (2.2) reduces to the indices �

such that j(k) − n ≤ � ≤ j(k) +
∑k+s

i=k+1 mi. We can thus conclude that the space Sk,s is of exact dimension
n + 1 +

∑k+s
i=k+1 mi, and that the restrictions of the functions N�, j(k) − n ≤ � ≤ j(k) +

∑k+s
i=k+1 mi, form a

basis of Sk,s. This observation readily proves the unicity of any decomposition (2.2).
On the other hand, for a given � ∈ Z, we can choose k, s so that tk < ξ� and tk+s+1 > ξ�+n+1. We know that,

restricted to [tk, tk+s+1], the function N� belongs to the space Sk,s. Its support being contained in ]tk, tk+s+1[,
the function N� is thus an element of the space S. �

As a consequence, as long as the two conditions (BSB)1 and (BSB)2 hold, conversely, any sequence T�, � ∈ Z,
of points in R

d, provides an element S ∈ Sd, defined by means of equality (2.2). We shall call the points T� the
poles of S.

Given S ∈ Sd, for any � ∈ Z, the affine flat spanned by the set {S(x) , x ∈ [t�, t�+1]} is of dimension at most
n since E� is (n+1)-dimensional. We say that the spline S is nondegenerate when this affine flat is of dimension
n whatever the integer �. Nondegenerate splines can be recognized from their poles as stated in the following
result.

Proposition 2.2. Assume the sequence N�, � ∈ Z, to satisfy the three conditions (BSB)1, (BSB)2 and (BSB)4.
Then, the spline S provided by equality (2.2) is nondegenerate iff, for all integer k ∈ Z, the (n + 1) points
Tj(k)−n, . . . , Tj(k) are affinely independent.

Proof. On account of the three conditions (BSB)1, (BSB)2 and (BSB)4, we can write:

S(x) =
j(k)∑

�=j(k)−n

N�(x) T�,

j(k)∑
�=j(k)−n

N�(x) = 1, x ∈ [tk, tk+1]. (2.3)

Therefore,

{S(x), x ∈ [tk, tk+1]} ⊂ aff
(
Tj(k)−n, . . . , Tj(k)

)
. (2.4)

If S is nondegenerate, then the left-hand side of (2.4) spans an n-dimensional affine space and the inclusion (2.4)
is thus an equality, which proves the affine independence of the n + 1 points Tj(k)−n, . . . , Tj(k). The converse
part follows from the fact that the functions N�, j(k) − n ≤ � ≤ j(k), form a basis of the space Sk,1 (see
the proof of Prop. 2.1). Indeed, this enables us to find n + 1 points x0, . . . , xn ∈ [tk, tk+1] so that the matrix(
Nj(k)−i(xq)

)
0≤i,q≤n

is regular. Due to the affine independence of the points Tj(k)−n, . . . , Tj(k), the correspond-
ing points S(x0), . . . , S(xn) are then affinely independent, which proves the affine space spanned by the set
{S(x) , x ∈ [tk, tk+1]} to be n-dimensional. �

2.2. Nondegenerate splines and osculating flats

The restriction of a spline S ∈ Sd to any interval [t�, t�+1] being Cn, we can consider its osculating flat
of order i ≤ n at any point x ∈ R, namely the affine flat OsciS(x), passing through the point S(x) and the
direction of which is spanned by the first i derivatives of S at x. At a knot t�, clearly we have to consider
both the left and right osculating flats OsciS(t−� ) and OsciS(t+� ) defined using the left and right derivatives
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respectively. However, for i ≤ n − m�, the connection condition (2.1) and our requirement on the matrix M�

guarantee that OsciS(t−� ) = OsciS(t+� ), and we shall simply denote it by OsciS(t�).
Once and for all, we select a nondegenerate spline S ∈ Sd. For any x ∈ R and any k ≤ n, the dimension

of the (possibly left or right) osculating flat OsckS(x) does not depend on S. Indeed, if S̃ denotes another
nondegenerate spline, then OsckS̃(x) is the image of OsckS(x) under an injective affine map. Hence, in particular
the following two properties:

(H) for all � ∈ Z, the osculating flat Oscn−m�
S(t�) is of dimension (n − m�),

(H)′ for all � ∈ Z, such that m� �= 0, the osculating flat Oscn−m�
S(t�) is of dimension (n − m�),

are independent of the chosen nondegenerate spline S. Note that (H) is satisfied as soon as each E� is what we
call a W-space on [t�, t�+1], that is, if the Wronskian of a basis of E� does not vanish on [t�, t�+1]. As a particular
example, it holds when each E� is the restriction to [t�, t�+1] of the polynomial space Pn of degree n. As for the
weaker condition (H)′, it is satisfied in particular when each E� is a what we call a quasi W-space on [t�, t�+1]:
this means that, at any point x ∈ [t�, t�+1], the determinant obtained by replacing, in the Wronskian of a basis,
all nth derivatives by the derivatives of some order r(x) is not equal to zero (see [4]).

Proposition 2.3. Assume the sequence N�, � ∈ Z, to satisfy the three conditions (BSB)1, (BSB)2 and (BSB)4,
and denote by T�, � ∈ Z, the poles of the nondegenerate spline S. Let us consider integers � ∈ Z, s ∈ N, such
that p := n −

∑�+s
i=�+1 mi ≥ 0. If condition (H) is satisfied, then we have:

�+s⋂
i=�+1

Oscn−miS(ti) = aff
(
Tj(�)−p, . . . , Tj(�)

)
. (2.5)

Proof. Suppose that mk �= 0. Since ξ� = tk iff j(k) − mk + 1 ≤ � ≤ j(k), exactly mk functions N� have tk as
the left end point of their support, namely those for which j(k)−mk + 1 ≤ � ≤ j(k). Equality (2.3) thus gives:

S(tk) =
j(k)−mk∑
�=j(k)−n

N�(tk) T�,

j(k)−mk∑
�=j(k)−n

N�(tk) = 1. (2.6)

According to Proposition 2.1, the mk functions N�, j(k) −mk + 1 ≤ � ≤ j(k), belong to S. Consequently, they
all vanish at least n − mk + 1 times at the point tk. From (2.3) we can thus derive:

S(i)(t+k ) =
j(k)−mk∑
�=j(k)−n

N�
(i)(t+k ) T�,

j(k)−mk∑
�=j(k)−n

N�
(i)(t+k ) = 0, 1 ≤ i ≤ n − mk. (2.7)

Note that relations (2.6) and (2.7) still hold if mk = 0. From (2.6) and (2.7) we can deduce that:

Oscn−mk
S(tk) = Oscn−mk

S(t+k ) ⊂ aff
(
Tj(k)−n, . . . , Tj(k)−mk

)
. (2.8)

The assumption (H) allows us to conclude that Oscn−mk
S(tk) = aff

(
Tj(k)−n, . . . , Tj(k)−mk

)
. Since, for all k ∈ Z,

j(k) − mk = j(k − 1), this is nothing but equality (2.5) corresponding to s = 1. Given s ≥ 1, suppose that
p := n −

∑�+s
i=�+1 mi ≥ m�+s+1, and that equality (2.5) is satisfied. We can then write:

�+s+1⋂
i=�+1

Oscn−miS(ti) = aff
(
Tj(�)−p, . . . , Tj(�)

)
∩ aff

(
Tj(�+s)+m�+s+1−n, . . . , Tj(�+s)

)
,

= aff
(
Tj(�+s)−n, . . . , Tj(�)

)
∩ aff

(
Tj(�+s)−n+m�+s+1, . . . , Tj(�+s)

)
.
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The spline S being nondegenerate, the (n+1) points Tj(�+s)−n, . . . , Tj(�+s) are affinely independent. Hence, the
latter equality gives:

�+s+1⋂
i=�+1

Oscn−miS(ti) = aff
(
Tj(�+s)−n+m�+s+1, . . . , Tj(�)

)
,

which is the equality (2.5) obtained when replacing s by s + 1. �
With the same kind of arguments, we can also state the following result.

Proposition 2.3bis. With the same assumptions as in Proposition 2.3, if condition (H)′ is satisfied, then

�+s⋂
i=�+1
mi �=0

Oscn−miS(ti) = aff
(
Tj(�)−p, . . . , Tj(�)

)
. (2.9)

Let us mention the following interesting particular case of the previous results.

Corollary 2.4. Under the same assumptions as in Proposition 2.3, for any integers � ∈ Z, s ∈ N, such that∑�+s
i=�+1 mi = n, if (H)′ is satisfied, we have:

{Tj(�)} =
�+s⋂

i=�+1
mi �=0

Oscn−miS(ti), (2.10)

and the condition mi �= 0 can be omitted in (2.10) under assumption (H).

Remark 2.5. If all knots are simple, that is if m� = 1 for all � ∈ Z, the previous result states that, under
assumption (H), all poles of a nondegenerate spline are obtained by intersecting osculating hyperplanes at n
consecutive knots. Indeed, taking ξ� := t� for all �, (2.10) yields:

{T�} =
�+n⋂

i=�+1

Oscn−1S(ti) , � ∈ Z. (2.11)

In contrast, if any multiplicities are allowed, the equality:

(ξq+1, . . . , ξq+n) =
(
t�+1

[m�+1], . . . , t�+s
[m�+s]

)
(2.12)

is reached only by exception. Therefore the classical properties of B-splines are not sufficient to ensure that
all poles are obtained as intersections of a number of osculating flats at consecutive knots. This suggests the
necessity of introducing additional axioms for B-splines to guarantee such a result.

Still, our arguments to prove (2.10) are similar to those used by Seidel in [8] to deduce from the existence of
B-spline bases in geometrically continuous polynomial spline spaces (proved in [1] by Dyn and Micchelli) that in
such spline spaces all poles could be constructed by intersecting osculating flats. Unfortunately, for his proof to
be valid, he did need the equality (2.12) to be satisfied, and he probably did not notice the exceptional feature
of such an equality.

2.3. What is a B-spline basis?

With the same assumptions as in Proposition 2.1, suppose that all multiplicities are equal to 1. Consider a
spline S ∈ Sd, given by (2.2), the support of which is contained in the interval [tk, tk+s+1]. From arguments
similar to those used in the proof of Proposition 2.1, we can deduce that Ti = 0 for all i ≤ k − 1 and for all i ≥
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k+s+1−n. In particular, applying this with s = n proves that, up to a multiplicative constant, the function Nk is
the only function in S the support of which is equal [tk, tk+n+1]. Therefore there exists at most one normalized
sequence of functions satisfying (BSB)1 and (BSB)2. On the opposite, if any multiplicities are allowed, the
support condition Supp(Nk) = [ξk, ξk+n+1] no longer characterizes the function Nk up to a multiplicative
constant since it may even happen that [ξk, ξk+n+1] = [ξk′ , ξk′+n+1] for k �= k′. Another observation of the
same nature: if the sequence N�, � ∈ Z, satisfies the support, decomposition, and normalization conditions
(BSB)1, (BSB)2, and (BSB)4 respectively, and if ξq = ξq+1, it is possible to replace the two functions Nq, Nq+1

respectively by αNq and (1−α)Nq +Nq+1, where α ∈]0, 1[, without altering any of the three properties above.
This does not alter the positivity condition either. Hence, as soon as there exists at least one multiple knot,
the existence of a sequence N�, � ∈ Z, satisfying (BSB)i, 1 ≤ i ≤ 4, there actually exist infinitely many such
sequences. This confirms the relevance of introducing additional axioms on the functions N� so as to make up
for this inconvenience.

Consider once more the case of simple knots. The support condition then makes it obvious that, for any �, as
x grows from −∞ to +∞, the quantity N�(x) leaves the x-axis “quicker” than the quantity N�+1(x) and also
returns to it “quicker”. We can formulate this as follows:

lim
x→t+�

N�+1(x)
N�(x)

= lim
x→t−�+n+1

N�−1(x)
N�(x)

= 0, � ∈ Z.

In the general case, we shall still require each N� to leave the x-axis “quicker” than N�+1 and to return to it
“quicker” too, in the sense that:

Definition 2.6. We say that a sequence N�, � ∈ Z, is a B-spline basis if it satisfies the four properties (BSB)i,
1 ≤ i ≤ 4, along with the following one:
(BSB)5 end point condition: for all � ∈ Z,

lim
x→ξ+

�

N�+1(x)
N�(x)

= 0, lim
x→ξ−

�+n+1

N�−1(x)
N�(x)

= 0. (2.13)

This additional end point property enables us to make the difference between two consecutive B-splines and it
guarantees the unicity of a possible B-spline basis.

Proposition 2.7. There exists at most one B-spline basis in the spline space S.

Proof. Assume that the two sequences N�, L�, � ∈ Z satisfy the properties (BSB)1, (BSB)2, and (BSB)5. For
all � let us write L� as

L�(x) =
∑
q∈Z

a�
q Nq(x), x ∈ R.

Let k be an integer such that mk �= 0. The support of L� is contained in [tk, +∞[ iff � ≥ j(k)−mk+1. Considering
the restriction of L� to any interval [tr, tr+1], with r < k, it follows that a�

q = 0 for all � ≥ j(k) − mk + 1 and
all q ≤ j(k) − mk. For j(k) − mk + 1 ≤ � ≤ j(k), we thus have:

L�(x) =
j(k)∑

q=j(k)−mk+1

a�
q Nq(x), x ∈ [tk, tk+1]. (2.14)

From (BSB)5 we can deduce that

lim
x→t+k

N�(x)
Nj(k)−mk+1(x)

= lim
x→t+k

L�(x)
Lj(k)−mk+1(x)

= 0, � > j(k) − mk + 1. (2.15)
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On the other hand, for x ∈ [tk, tk+1], and j(k) − mk + 2 ≤ � ≤ j(k), (2.14) yields:

L�(x)
Lj(k)−mk+1(x)

=

a�
j(k)−mk+1 +

j(k)∑
q=j(k)−mk+2

a�
q

Nq(x)
Nj(k)−mk+1(x)

a
j(k)−mk+1
j(k)−mk+1 +

j(k)∑
q=j(k)−mk+2

aj(k)−mk+1
q

Nq(x)
Nj(k)−mk+1(x)

·

Taking (2.15) into account, the latter equality yields:

a�
j(k)−mk+1 = 0 , j(k) − mk + 2 ≤ � ≤ j(k).

Considering successively limx→t+k
L�(x)/Lj(k)−mk+2(x) for j(k) − mk + 2 ≤ � ≤ j(k), then for j(k) − mk + 3 ≤

� ≤ j(k), limx→t+k
L�(x)/Lj(k)−mk+3(x), and so forth, we eventually obtain that a�

q = 0 for j(k)−mk + 1 ≤ q <

� ≤ j(k). Hence, we have proved that a�
q = 0 for all q, � ∈ Z, q < �. Similarly, using the right part of (2.13) it

will be possible to prove that a�
q = 0 for all q, � ∈ Z, q > �. Hence L� = a�

�N�. If the two sequences also satisfy
(BSB)4, the unicity of the decomposition of the constant function 1I proves that a�

� = 1 for all � ∈ Z. �

3. Obtaining poles as intersections of osculating flats

In this section we shall prove that the additional end point property is exactly what is needed to obtain all
poles of a nondegenerate spline as intersections of osculating flats at convenient knots.

Any n-tuple (ξq+1, . . . , ξq+n) composed of consecutive elements of the knot vector K can always be written
as follows:

(ξq+1, . . . , ξq+n) =
(
t�

[α], t�+1
[m�+1], . . . , t�+s

[m�+s], t�+s+1
[β]

)
, (3.1)

with m� �= 0, m�+s+1 �= 0, 0 ≤ α < m�, 0 ≤ β < m�+s+1.

Theorem 3.1. Let N�, � ∈ Z, be a sequence of functions satisfying the conditions (BSB)i, 1 ≤ i ≤ 4, and let
S ∈ Sd be a nondegenerate spline, with poles T�, � ∈ Z. Then the following four properties are equivalent:

(i) All poles of the spline S are obtained as intersections of osculating flats, as follows: if the n-tuple
(ξq+1, . . . , ξq+n) is given by (3.1), then the corresponding pole Tq satisfies:

{Tq} = Oscn−αS(t+� ) ∩
�+s⋂

i=�+1

Oscn−miS(ti) ∩ Oscn−βS(t−�+s+1). (3.2)

(ii) For any � ∈ Z, and any α, 0 ≤ α ≤ m�,

Oscn−αS(t−� ) = aff
(
Tj(�−1)−n+α, . . . , Tj(�−1)

)
, (3.3)

Oscn−αS(t+� ) = aff
(
Tj(�)−n, . . . , Tj(�)−α

)
. (3.4)

(iii) Condition (H) of Section 2 is satisfied, and, given � ∈ Z, if ξ� = tk and ξ�+n+1 = tk′ , the function N�

vanishes exactly n − mk + p + 1 at t+k and exactly n − mk′ + p′ + 1 at t−k′ , where

p := �{q < � | ξq = tk} , p′ := �{q > � + n + 1 | ξq = tk′} · (3.5)

(iv) For all � ∈ Z, the left and right osculating flats OscnS(t−� ) and OscnS(t+� ) are n-dimensional, and the
sequence Nq, q ∈ Z, satisfies the end point condition (BSB)5, i.e. it is a B-spline basis.



1184 M.-L. MAZURE

Proof.
•(i) ⇒ (ii). By Proposition 2.2, we know that, for all � ∈ Z, the n + 1 points Tj(�)−n, . . . , Tj(�) are affinely
independent.

According to (3.2), for any integer q such that j(�) − n ≤ q ≤ j(�) − m� (that is, for any q such that the
n-tuple (ξq+1, . . . , ξq+n) contains t�

[m�]), the point Tq belongs to Oscn−m�
S(t�). From the linear independence

of the (n − m� + 1) points Tj(�)−n, . . . , Tj(�)−m�
, we can thus conclude that

Oscn−m�
S(t�) = aff

(
Tj(�)−n, . . . , Tj(�)−m�

)
.

Now, (3.2) also implies that Tj(�)−α ∈ Oscn−αS(t+� ) and Tj(�−1)−n+α ∈ Oscn−αS(t−� ) for 0 ≤ α < m�. Hence, for
0 ≤ α < m�, Oscn−αS(t+� ) contains Oscn−m�

S(t�) and the points Tj(�)−m�+1, . . . , Tj(�)−α, while Oscn−αS(t−� )
contains Oscn−m�

S(t�) and the points Tj(�−1)−n+α, . . . , Tj(�−1)−n+m�−1 = Tj(�)−n−1. Again the affine indepen-
dence of the points Tj(�)−n, . . . , Tj(�) on the one hand, and of the points Tj(�−1)−n, . . . , Tj(�−1) = Tj(�)−m�

on
the other hand lead to (3.4) and (3.3).

•(ii) ⇒ (iii). For any � ∈ Z, the equality Oscn−m�
S(t�) = aff

(
Tj(�)−n, . . . , Tj(�)−m�

)
and the linear independence

of the points Tj(�)−n, . . . , Tj(�) proves that Oscn−m�
S(t�) is of dimension (n − m�). Hence condition (H) of

Section 2 is satisfied.
Consider an integer k such that mk �= 0. As already observed, the mk functions N�, j(k)−mk +1 ≤ � ≤ j(k),

have tk as the left end point of their support. Similarly, exactly mk functions N� have tk as the right end point
of their support, namely those for which j(k)− n−mk ≤ � ≤ j(k)− n− 1. In order to prove (iii) we thus have
to show that the following equalities hold:

N (i)
j(k)−mk+r(t

+
k ) = 0, 0 ≤ i ≤ n − mk + r − 1, N (n−mk+r)

j(k)−mk+r (t+k ) �= 0, 1 ≤ r ≤ mk, (3.6)

N (i)
j(k)−n−r(t

−
k ) = 0, 0 ≤ i ≤ n − mk + r − 1, N (n−mk+r)

j(k)−n−r (t−k ) �= 0, 1 ≤ r ≤ mk. (3.7)

Taking into account the affine independence of the points Tj(k)−n, . . . , Tj(k), equality (3.4) implies that, for
1 ≤ r ≤ mk, the two osculating flats Oscn−mk+rS(t+k ) and Oscn−mk+r−1S(t+k ) are not equal. Therefore, the
point S(tk) + S(n−mk+r)(t+k ) belongs to aff(Tj(k)−n, . . . , Tj(k)−mk+r), but it does not belong to aff(Tj(k)−n, . . . ,

Tj(k)−mk+r−1). Now, equality (2.6) is still valid, and by differentiation of (2.3) at t+k up to the order n−mk + r,
1 ≤ r ≤ mk, we obtain:

S(n−mk+r)(t+k ) =
j(k)∑

�=j(k)−n

N�
(n−mk+r)(t+k ) T�,

j(k)∑
�=j(k)−n

N�
(n−mk+r)(t+k ) = 0.

Therefore, due to the affine independence of the points Tj(k)−n, . . . , Tj(k), the fact that S(tk) + S(n−mk+r)(t+k )
belongs to aff(Tj(k)−n, . . . , Tj(k)−mk+r) \ aff(Tj(k)−n, . . . , Tj(k)−mk+r−1) implies that:

Nq
(n−mk+r)(t+k ) = 0, j(k) − mk + r + 1 ≤ q ≤ j(k), Nj(k)−mk+r

(n−mk+r)(t+k ) �= 0,

which is nothing but (3.6). Taking into account the affine independence of the points Tj(k)−mk−n, . . . , Tj(k)−mk
,

conditions (3.7) follow in a similar way from (2.6), and from the equality

S(n−mk+r)(t−k ) =
j(k)−mk∑

q=j(k)−mk−n

Nq
(n−mk+r)(t−k ) Tk,

j(k)−mk∑
q=j(k)−mk−n

Nq
(n−mk+r)(t−k ) = 0.

•(iii) ⇒ (ii). From (iii) it is easy to derive that the n right derivatives S′(t+� ), . . . , S(n)(t+� ) are linearly inde-
pendent. Hence, for 0 ≤ α ≤ m�, the osculating flat Oscn−αS(t+� ) is of dimension n − α. Taking into account
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the fact that, for j(�) − m� + 1 ≤ q ≤ j(�) all functions Nq vanish n − m� + 1 times at the knot t�, we can
also deduce from (iii) the inclusion Oscn−αS(t+� ) ⊂ aff

(
Tj(�)−n, . . . , Tj(�)−α

)
, which is thus an equality. Similar

arguments work for Oscn−αS(t−� ).

•(iii) ⇒ (iv). As seen in the proof of (iii) ⇒ (ii), (iii) implies that the osculating flat OscnS(t+� ) is n-dimensional.
Moreover condition (iii) also clearly implies (2.13) by using Taylor expansions at the knot t� of consecutive
functions Nq having this knot as the left or right end point of their support.

•(iv) ⇒ (iii). The space E� is composed of Cn functions on [t�, t�+1], and we know that Nj(�)−m�+1 vanishes at
least n − m� + 1 times at t�. By induction, the left part of (2.12) implies that, for 1 ≤ r ≤ m�, the function
Nj(�)−m�+r vanishes at least n − m� + r times at t�. Taking additionally into account the linear independence
of the first n derivatives at t+� proves that it cannot vanish more than n − m� + r times at t�. Using the right
equality in (2.12), similar arguments can be used to prove (3.7).

•(ii) ⇒ (i). From (3.3) or (3.4) applied with α = m�, we can derive in particular that condition (H) of the
previous section is satisfied. Therefore, since n −

∑�+s
i=�+1 mi = α + β, the corresponding equality (2.5) can be

written as follows:

�+s⋂
i=�+1

Oscn−miS(ti) = aff(Tq−β , . . . , Tq+α). (3.8)

On the other hand, here equality (3.4) gives:

Oscn−αS(t+� ) = aff(Tj(�)−n, . . . , Tq) = aff(Tq−n+α, . . . , Tq). (3.9)

The points Tj(�)−n, . . . , Tj(�) are affinely independent. The indices of all points Tr involved in the right-hand
sides of (3.8) and (3.9) satisfy j(�) − n ≤ r ≤ q + α = j(�). We thus have:

Oscn−αS(t+� ) ∩
�+s⋂

i=�+1

Oscn−miS(ti) = aff(Tq−β , . . . , Tq). (3.10)

Similarly, from (3.3) we obtain:

Oscn−βS(t−�+s+1) = aff(Tq, . . . , Tq+n−β). (3.11)

The affine independence of the points Tj(�+s)−n, . . . , Tj(�+s) and the fact that the indices of all points Tr involved
in the right-hand sides of (3.10) and (3.11) satisfy j(� + s) − n = q − β ≤ r ≤ j(� + s) = q + n − β, eventually
lead to (3.2). �

Note that we can also express the condition on the zeros of each N� stated in (iii) by saying that N� is
exactly Cn−mk+p at ξ� and exactly Cn−mk′+p′

at ξ�+n+1. On the other hand, observe that we did not make
any use of the positivity condition (BSB)3 in the proof of Theorem 3.1. This condition allows us to make the
statements (3.6) and (3.7) more precise. For all integer k such that mk �= 0, we actually have:

N (n−mk+r)
j(k)−mk+r (t+k ) > 0, (−1)n−mk+rN (n−mk+r)

j(k)−n−r (t−k ) > 0, 1 ≤ r ≤ mk. (3.12)

When writing the n-tuple (ξq+1, . . . , ξq+n) as in (3.1), among the knots t�+1, . . . , t�+s, those which have a zero
multiplicity do not appear in the sequence ξq+1, . . . , ξq+n. Hence it can be considered artificial to take them into
account in the equality (3.2). This observation is also valid for t�

[α] when α = 0, and for t�+s+1
[β] when β = 0.

For this very reason, we shall still write (ξq+1, . . . , ξq+n) as in (3.1), but we shall now assume that 1 ≤ α ≤ m�,
1 ≤ β ≤ m�+s+1. This is always possible provided that we allow the integer s to be greater than or equal to −1.
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By slightly adapting the arguments used in the previous proof, and in particular by using Proposition 2.3bis
instead of Proposition 2.3, one can obtain the following result.

Theorem 3.1bis. Let N�, � ∈ Z, be a sequence of functions satisfying the conditions (BSB)i, 1 ≤ i ≤ 4, and
let S ∈ Sd be a nondegenerate spline, with poles T�, � ∈ Z. Then the following four properties are equivalent:

(i) All poles of the spline S are obtained as intersections of osculating flats, as follows: if (3.1) is satisfied,
with 1 ≤ α ≤ m�, 1 ≤ β ≤ m�+s+1, and s ≥ −1, then the pole Tq satisfies:

{Tq} = Oscn−αS(t+� ) ∩
�+s⋂

i=�+1
mi �=0

Oscn−miS(ti) ∩ Oscn−βS
(
t−�+s+1

)
. (3.13)

(ii) For any � ∈ Z, and any α, 1 ≤ α ≤ m�,

Oscn−αS(t−� ) = aff
(
Tj(�−1)−n+α, . . . , Tj(�−1)

)
, (3.14)

Oscn−αS(t+� ) = aff
(
Tj(�)−n, . . . , Tj(�)−α

)
. (3.15)

(iii) Condition (H)′ of Section 2 is satisfied, and, if ξ� = tk and ξ�+n+1 = tk′ , and if p and p′ are defined as
in (3.5), then the function N� vanishes exactly (resp. at least) n − mk + p + 1 at tk if p < mk − 1 (resp.
if p = mk − 1), and it vanishes exactly (resp. at least) n − mk′ + p′ + 1 at tk′ if p′ < mk′ − 1 (resp. if
p′ = mk′ − 1),

(iv) For any integer � ∈ Z such that m� �= 0, the right and left osculating flats Oscn−1S(t−� ) and Oscn−1S(t+� )
are (n− 1)-dimensional, and the sequence Nq, q ∈ Z, satisfies the end point condition (BSB)5, i.e. it is a
B-spline basis.

In [1], Dyn and Micchelli considered the case of polynomial splines with connection matrices on a closed
bounded interval. When all connection matrices are totally positive (i.e. all their minors are nonnegative),
they constructed a basis which satisfied the support, positivity, and normalization conditions [1] (Th. 4.6),
and this is the result used by Seidel in [7, 8] to prove that all poles of what he called a universal spline (a
particular nondegenerate spline) were obtained as intersections of osculating flats as in (3.2). Actually, in order
to construct their basis, in their proof, the authors of [1] did require it to satisfy the conditions on zeros stated
in (iii) of our Theorem 3.1. According to the latter proposition, this validates Seidel’s result.

More generally, if for any � ∈ Z, the space E� is a W-space on [t�, t�+1] (see Sect. 2.1), existence of a B-spline
basis in the space S automatically implies that all poles of a nondegenerate spline are given by (3.2). Using
Theorem 3.1, existence of B-spline bases in a given W-spline space S and also in any spline space obtained
from S by knot insertion, implies existence of blossoms in the space S, and in particular it therefore implies
that each E� is an extended Chebyshev space on [t�, t�+1]. Actually, we shall prove in another paper that the
converse property holds too, which will mean that existence of blossoms and existence of B-spline bases are
equivalent in the context of W-splines. Using Theorem 3.1bis instead of Theorem 3.1 the result can be extended
to the more general context of quasi-W-splines (see [4]).
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