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Abstract. The aim of this work is to deduce the existence of solution of a coupled problem arising in
elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds
equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation
phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of
solution to the variational problem presents some difficulties: the coupled character of the equations,
the nonlinear multivalued operator associated to cavitation and the fact of writing the elastic and
hydrodynamic equations on two different domains. In a first step, we regularize the Heaviside operator.
Additional difficulty related to the different domains is circumvented by means of prolongation and
restriction operators, arriving to a regularized coupled problem. This one is decoupled into elastic and
hydrodynamic parts, and we prove the existence of a fixed point for the global operator. Estimations
obtained for the regularized problem allow us to prove the existence of solution to the original one.
Finally, a numerical method is proposed in order to simulate a real journal-bearing device and illustrate
the qualitative and quantitative properties of the solution.
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Introduction

The journal-bearing is a lubricated device that takes part in thermal engines, compressors, turbomachinery
and gear boxes, for example. Briefly, it consists of a cylindrical journal which rotates inside a fixed cylindrical
bearing. The thin gap between them is filled with a lubricant which dumps heating and friction (see Fig. 1).
In this device, as in other lubricated devices, it is very important to consider a well suited mathematical model
in order to predict the behaviour of the lubricant pressure distribution, the formation of air bubbles near the
contact region as well as the gap profile which balances the hydrodynamic load and a given load vector which
is, eventually, imposed on the device. These previous facts have widely motivated an increasing study of thin
fluid film displacement as well as its coupled behaviour with the elastic deformation of the boundary surfaces,
concerning with the modelling, mathematical analysis and numerical simulation aspects [1,2,4,6,14,17,19–21].
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Figure 1. Journal bearing device.

In a previous work [2], we have presented a coupled model for simulating an elastohydrodynamic journal-
bearing device, the mathematical analysis being still an open problem. The small thickness of the gap occupied
by the fluid allows the introduction of the bidimensional Reynolds equation to approximate the three dimensional
Stokes equation, as it is rigurously justified [3]. In this way, we are considering a newtonian, incompressible,
isothermal and isoviscous lubricant. Indeed, following Reynolds approach, we assume that the pressure is
constant through the thickness of the film. Moreover, the converging-diverging geometry of the gap gives place
to pressure values below saturation pressure, so that air bubbles appear (cavitation). Therefore, as Reynolds
equation is no longer valid in the bubble region, a cavitation model must be introduced [4]. As in previous
works, the more realistic one (Elrod-Adams) introduces a saturation function as additional unknown.

Nevertheless, in some industrial cases the high pressure values can give place to elastic deformations in the
bearing. In [2], we assume that the bearing is thin enough to approximate its elastic behaviour by means of
a Koiter shell model (the bearing is thin, but not necessarily shallow). An important difference between the
present paper and [2] concerns with boundary conditions. Thus, we replace the Koiter formulation posed over
half of the device with a symmetry condition by a formulation on the whole device with clamped boundary
conditions at both ends. The coupled aspect of the model results from the fact that the lubricant pressure is
a normal force in the elastic Koiter model and the normal displacement of the bearing is a contribution to the
gap in the hydrodynamic Reynolds equation.

This paper is mainly devoted to the mathematical analysis of the new model, which differs from the one used
in [2] as explained before. Main difficulties arise from the nonlinearities and the presence of free boundaries
due to cavitation. In order to prove the existence of solution to the coupled problem, we have followed previous
works [6, 14], where the solution is the fixed point of a global operator. In the present case, the existence of a
fixed point results to be some more difficult to state, due to the fact that elastic and hydrodynamic equations
are not written in the same domain. An algorithm which essentialy adapts the one developed in [2] to the new
coupled model provides some numerical results.

In Section 1, the variational equations of the coupled model and the regularized problem are posed. In
Section 2, we prove the existence of solution to the regularized problem as a fixed point of a global operator,
which consists of the composition of four operators related to Koiter model, cavitation model for Reynolds
equation, and both restriction and prolongation operators in order to pass from one domain to another. In
Section 3, the existence of solution to the original coupled problem is proved as the limit of a sequence of
solutions to regularized problems. Finally, in Sections 4 and 5 we describe the approximation techniques we
have used in the simulations and some numerical results.
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1. The Reynolds-Koiter coupled problem

1.1. The continuous hydrodynamic problem

In this section, the mathematical coupled problem for the previously described elastic journal bearing device
is posed. Let us consider the sets

Ω = (0, 2πRm)×(0, L/2), Ω̃ = (0, 2πRm)×(0, L)

where L is the length of the device and Rm = 0.5(Rb + Rj) represents the mean radius, Rb and Rj being the
bearing and the journal radii, respectively. Thus, the set Ω̃ corresponds to the usual cylindrical parametrization
domain for the mean cylinder between the journal and the bearing. The same holds for the set Ω, which is
associated to half of the device. In terms of Ω, Ω̃ and the pressure we define the new sets:

Ω+ = {(x1, x2) ∈ Ω / p(x1, x2) > 0} Γa = {(x1, x2) ∈ ∂Ω / x2 = L/2}
Ω0 = {(x1, x2) ∈ Ω / p(x1, x2) = 0} Γb = {(x1, x2) ∈ ∂Ω / x2 = 0}
Σ = ∂Ω+ ∩ ∂Ω0 Γper = {(x1, x2) ∈ ∂Ω / x1 = 0 or x1 = 2πRm}

Γc = {(x1, x2) ∈ ∂Ω̃ / x2 = L}

(1.1)

where p is the lubricant pressure, and x1 and x2 represent the angular and longitudinal coordinates. The sets Γb
and Γc are the clamped boundaries of the bearing which are in contact with atmospheric pressure. The set Γa
represents the lubricant supply groove and the boundary Γper constitutes a periodic boundary for the pressure,
while it does not exist in the formulation of the elastic problem. Notice that the points (0, x2) and (2πRm, x2)
are identified in the 3−D real device.

In the hydrodynamic part of the problem (thin film lubricant displacement), the physical data are the constant
lubricant viscosity (νf ), the supply pressure (pa) and the journal rotation velocity (s). Moreover, in absence of
elastic deformations, the gap between the journal and the bearing is commonly approached in the form:

hr(x1) = c

(
1 + % cos

x1

Rm

)
, (1.2)

where the clearance c is the difference between the bearing and the journal radii and % ∈ (0, 1) represents the
journal-bearing eccentricity (see [10] for details about the device). Moreover, let us denote:

hr = min
x1∈[0,2πRm)

hr = c(1− %) hr = max
x1∈[0,2πRm)

hr = c(1 + %).

Nevertheless, in elastohydrodynamic regimes the lubricant pressure induces an elastic displacement of the sur-
faces in contact which modifies the gap. In the particular journal bearing device with rigid journal and elastic
thin bearing, the Koiter model for shells seems to be the most appropriate way to take into account the elastic
effects related to the cylindrical geometry.
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Thus, the Reynolds problem is posed in Ω as follows:
Find (p, θ, ~u) such that:

∂

∂x1

[
(hr + u3)3 ∂p

∂x1

]
+

∂

∂x2

[
(hr + u3)3 ∂p

∂x2

]
= 12νfs

∂(hr + u3)
∂x1

, p > 0, θ = 1 in Ω+ (1.3)

∂

∂x1
[θ(hr + u3)] = 0, p = 0, 0 ≤ θ ≤ 1, in Ω0 (1.4)

(hr + u3)3 ∂p

∂n
= 12νfs(1− θ)(hr + u3) cos(~n,~ı), p = 0 on Σ (1.5)

p = pa on Γa (1.6)

p = 0 on Γb (1.7)

p(0, x2) = p(2πRm, x2) if 0 < x2 < L/2 (1.8)

where ~ı is the unit vector in Ox1 direction and ~n is the unit normal vector to Σ pointing towards Ω0. In the
previous equations, the unknowns p, θ and ~u = (u1, u2, u3) represent the fluid pressure, the saturation variable in
the Elrod-Adams model for cavitation (see [4] for details about cavitation models) and the bearing displacement
generated by the lubricant pressure, respectively. Thus, conditions (1.3) correspond to Reynolds equation and
are verified in the fluid region, equation (1.4) corresponds to Elrod-Adams model for the cavitation region,
conditions (1.5) are imposed on the free boundary Σ and equations (1.6–1.8) are the boundary conditions for
the pressure. Notice that conditions (1.3–1.4) can be interpreted as a conservation law for the flux:

~F = (hr + u3)3∇p− 12νf (hr + u3)θ (s, 0)

so that (1.5) states the condition ~F · ~n = 0 on the free boundary.
The previous set of equations is completed with the Koiter model which is posed in its variational form in

next section and relates the fluid pressure and the thin bearing displacement.

1.2. The variational formulation

In this section we pose the weak formulation for an elastohydrodynamic Reynolds-Koiter problem in order
to obtain the existence of a weak solution. First, in view of the equations (1.3–1.8) and taking into account the
variational formulation for the Koiter model for shells, let us introduce the usual function spaces and sets:

Va = {ϕ ∈ H1(Ω) /ϕ(x1, L/2) = pa, ϕ(x1, 0) = 0, ϕ(0, x2) = ϕ(2πRm, x2) if 0 < x2 < L/2}
V0 = {ϕ ∈ H1(Ω) /ϕ(x1, L/2) = ϕ(x1, 0) = 0, ϕ(0, x2) = ϕ(2πRm, x2) if 0 < x2 < L/2}
Vt = {vt = vα ~aα / v

α ∈ H1(Ω̃) , vα = 0 on Γb ∪ Γc}
V ∗3 = {v ∈ H2(Ω̃) / v = v,α = 0 on Γb ∪ Γc}

W (Ω̃) = Vt × V ∗3

where Greek subscripts belong to {1, 2} and { ~a1, ~a2} is a basis of the tangent plane to the middle surface ω.
Let ~u = (ut, u3) be the displacement field of the bearing middle surface points, its components being referred

to the local orthogonal basis { ~a1, ~a2, ~a3}. A weak formulation for the coupled Reynolds-Koiter model can be
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written as follows:

Find (p, θ, ~u) ∈ Va × L∞(Ω)×W (Ω̃) such that:

(P)



∫
Ω

(hr + u3)3∇p∇ϕ = 12νfs
∫

Ω

(hr + u3)θ
∂ϕ

∂x1
, ∀ϕ ∈ V0

θ ∈ H(p) in Ω∫
eΩ

RM γt(~u) γt(~v)
√
g +

∫
eΩ

RF ρ(~u) ρ(~v)
√
g =

∫
eΩ

p̃v3
√
g, ∀~v ∈W (Ω̃)

where H represents the multivalued Heaviside operator:

H(s) =


0, if s < 0
[0, 1] , if s = 0
1, if s > 0,

p̃ is the symmetric extension of p to Ω̃ (see prolongation operator in Sect. 2.1) and g is the determinant of the
metric tensor; notice that g = 1 for the usual parametrization. The components of the plane deformation and
change of curvature tensors in Koiter model are given by:

γαβ(~u) =
1
2

(uα|β + uβ|α)− bαβu3

ραβ(~u) =
1
2

(ηα|β + ηβ|α) +
1
2

(bλβuα|λ + bλαuβ|λ)− bλαbβλu3,

the covariant derivative is

uα|β = uα,β − Γλαβuλ

(the same for ηα|β), and the normal rotation vector ~η is given by Kirchhoff-Love relation:

ηα = −u3,α − bλαuλ. (1.9)

In previous equations, bαβ are the components of the curvature tensor, while Γλαβ are Christoffel symbols.
Finally, RM and RF are the membrane and the flexion rigidity tensors [11].

Notice that the coupled feature arises from both the presence of the unknown p̃ in the second member of the
Koiter model and the contribution of the unknown u3 to the Reynolds equation coefficients.

When obtaining the existence of solution for the weak formulation in (P), several difficulties arise: the
coupled aspect of the problem, the multivalued nonlinearity associated to the Reynolds model and the presence
of different sets, namely Ω and Ω̃, in the involved variational identities.

Thus, as in other equations involving the nonlinear multivalued Heaviside operator, we will apply a regular-
ization procedure to the multivalued operator which leads to a regularized coupled problem. Next, the elastic
part (Koiter model) and the hydrodynamic part (Elrod-Adams model for Reynolds equation) of the problem
can be uncoupled to obtain the solution as a fixed point. This approach requires the mathematical analysis of
both problems in order to obtain the existence, the uniqueness and the estimates for their respective solutions.
An additional feature involved in the particular Reynolds-Koiter model here proposed is the formulation of the
elastic and hydrodynamic subproblems over different sets. This aspect is solved in next sections by using a
symmetric prolongation result for the pressure p and the restriction operator for the normal displacement u3.
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1.3. Regularized problem

As in other previously treated elastohydrodynamic journal bearing problems (see [6, 14]) we propose the
following regularization procedure to cope with the difficulty associated to the nonlinear multivalued relation
between pressure and saturation unknowns. Thus, for ε > 0 let us consider the ε–dependent Lipschitz function:

Hε(s) =


0, if s < 0
s/ε, if 0 ≤ s ≤ ε
1, if s > ε.

So, the regularized problem is posed as follows:
Find (pε, ~uε) ∈ Va ×W (Ω̃) such that:

(Pε)



∫
Ω

(hr + uε3)3∇pε∇ϕ = 12νfs
∫

Ω

(hr + uε3)Hε(pε)
∂ϕ

∂x1
, ∀ϕ ∈ V0

∫
eΩ

RM γt(~uε) γt(~v) +
∫
eΩ

RF ρ(~uε) ρ(~v) =
∫
eΩ

p̃εv3, ∀~v ∈W (Ω̃).

Notice that the ε-dependent regularized problem (Pε) remains to be a coupled problem with each variational
identity posed on a different domain. Section 2 is devoted to the mathematical analysis of problem (Pε) in order
to obtain an existence result and the appropriate estimates for the solution. This will allow to pass to the limit
in the regularization parameter and state the existence of solution for the problem (P) in Section 3.

2. Existence of solution for the regularized problem

2.1. Fixed point operator

In order to prove the existence of solution for the regularized problem (Pε), we use in this section a fixed
point technique. Thus, a solution is obtained as a fixed point for an appropriate compact operator. Although
this problem depends on ε, in most of this section we drop the ε index for simplicity.

First, for a given R to be determined, we define the set

BR = {ϕ ∈ L2(Ω) / 0 ≤ ϕ ≤ R},

and we introduce the operator T : BR −→ T (BR) as the composition operator:

T = T4 ◦ T3 ◦ T2 ◦ T1,

where the involved operators are:
(a) Prolongation operator T1:

T1 : BR −→ L2(Ω̃)
p −→ T1(p) = p̃,

with p̃ defined by

p̃(x1, x2) =

{
p(x1, x2) if x2 ∈ (0, L/2)
p(x1, L− x2) if x2 ∈ (L/2, L).

This operator extends by symmetry a function p to Ω̃.
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(b) Koiter operator T2:

T2 : T1(BR) −→ W (Ω̃)
p̃ −→ T2(p̃) = ~u

where ~u is the unique solution of the Koiter model:
Find ~u ∈W (Ω̃) such that:∫

eΩ

RM γt(~u) γt(~v) +
∫
eΩ

RF ρ(~u) ρ(~v) =
∫
eΩ

p̃v3 , ∀~v ∈W (Ω̃). (2.1)

Notice that the second member represents the external force, due to pressure p̃. More precisely, as ~a3

denotes the normal vector to the shell middle surface, we have:

(p̃ ~a3) · ~v = p̃( ~a3 · ~v) = p̃v3.

(c) Restriction to Ω of the normal displacement operator T3:

T3 : (T2 ◦ T1)(BR) −→ H2(Ω)
~u −→ T3(~u) = u3.

(d) Lubrication operator T4:

T4 : (T3 ◦ T2 ◦ T1)(BR) −→ L2(Ω)
u3 −→ T4(u3) = q

where, for a given p ∈ BR, the function q is the unique solution of the linear problem:
Find q ∈ Va such that:∫

Ω

(hr + u3)3∇q∇ϕ = C

∫
Ω

(hr + u3)Hε(p)
∂ϕ

∂x1
, ∀ϕ ∈ V0 (2.2)

with C = 12νfs a known constant.
The idea is to establish an appropriate hypothesis on the data of the regularized problem, so that a fixed point
for the operator T exists for a convenient choice of R. For this, an L∞ estimate for the solution of (2.2) is
required. In view of the definition of the previous operators, this estimate depends on the obtained estimates
for the solutions of the succesive problems which are posed in terms of p ∈ BR. Thus, we will proceed to the
study of the different operators to get the corresponding estimates at each step.

2.2. Operator splitting

In this section we analize the properties of the operators involved in the factorization of T . As a result we
obtain that under certain conditions T is a compact operator from BR into BR.

2.2.1. Prolongation operator

The operator T1 extends to L2(Ω̃) any function belonging to L2(Ω), by simmetry with respect to Γa. From
the classical prolongation result (see Lem. IX.2 in [9]) the inequality

‖T1(p)‖L2(eΩ) ≤ K1 ‖p‖L2(Ω)

follows. So, the following lemma states an L2 estimate for T1(p) when p ∈ BR.
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Lemma 2.1. If p ∈ BR then ‖T1(p)‖L2(eΩ) ≤ K2R, where K2 = |Ω|1/2 K1.

2.2.2. Koiter operator

For a given pressure p̃ defined in Ω̃, the operator T2 provides the bearing displacement field ~u. In order to
study operator T2, following the classical notation for Koiter model (see [11], for example) we introduce the
bilinear form

B(~u,~v) =
∫
eΩ

RM γt(~u) γt(~v) +
∫
eΩ

RF ρ(~u) ρ(~v) , ~u,~v ∈W (Ω̃) (2.3)

and the linear form

l(~v) =
∫
eΩ

p̃v3 , ~v ∈W (Ω̃). (2.4)

So, as B is a coercive bilinear form [7,8], there exists a positive constant β such that

B(~u, ~u) ≥ β ‖~u‖2W (eΩ) .

By using the previous inequality we can state the estimate for ~u in the usual norm of W (Ω̃) when p ∈ BR.
Notice that for simplicity we drop a rigorous notation including the dependence of ~u on p.

Lemma 2.2. If p ∈ BR, then ‖~u‖W (eΩ) ≤ β−1K2R.

Proof. It is straightforward from Hölder inequality.

2.2.3. Restriction operator

For a given displacement field ~u in Ω̃, the operator T3 assigns the restriction to Ω of the third component,
u3, of this displacement vector. So, the inequality

‖T3(~u)‖H2(Ω) ≤ ‖~u‖W (eΩ)

holds and we can conclude that T3 is continuous. Moreover we have the following result.

Lemma 2.3. If p ∈ BR then the L∞–estimate

‖u3‖L∞(Ω) ≤ Kβ−1R

holds with K = K(Ω).

Proof. It is straightforward for K = K2K3, being K3 the constant associated to the continuous inclusion
i : H2(Ω)→ L∞(Ω) (see [16], for the inclusion result).

Again the dependence u3 = u3(p) is not explicit in the notation.
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2.2.4. Lubrication operator

For p ∈ BR, the operator T4 associates to a given normal displacement, u3, the function q ∈ L2(Ω) which is
the solution of the problem:

Find q ∈ Va such that:∫
Ω

(hr + u3)3∇q∇ϕ = C

∫
Ω

(hr + u3)Hε(p)
∂ϕ

∂x1
, ∀ϕ ∈ V0. (2.5)

Proposition 2.4. For p ∈ BR such that hr−Kβ−1R > 0, the problem (2.5) has a unique nonnegative solution.
Moreover, this solution verifies the estimates:

‖∇q‖L2(Ω) ≤
[
C + 2paL−1(hr +Kβ−1R)2

(hr −Kβ−1R)2

]
|Ω|1/2 (2.6)

‖q‖L∞(Ω) ≤ pa +
CCr∗ |Ω|

1
2−

1
r∗ 2

r∗
r∗−2

(hr −Kβ−1R)2
(2.7)

where Cr∗ is the constant associated to the continuous inclusion V0 −→ Lr
∗
(Ω) for r∗ > 2.

Proof. First, we point out that the problem defined by equation (6) is posed for the prescribed functions p and u3.
So, it can be analyzed as the regularized problem for the hydrodynamic Elrod-Adams model associated to the
modified gap function hr + u3. Thus, the existence and uniqueness of a nonnegative solution can be obtained
by using the same techniques than those in [1] for an hydrodynamic regularized problem with circumferential
supply. Next, in order to obtain the H1(Ω) estimate (2.6), let us consider the test function ϕ = q − 2paL−1x2

in (2.5). Thus, we have∫
Ω

(hr + u3)3 |∇q|2 = C

∫
Ω

(hr + u3)Hε(p)
∂q

∂x1
+ 2paL−1

∫
Ω

(hr + u3)3 ∂q

∂x2

and, therefore

(hr −Kβ−1R)
∫

Ω

(hr + u3)2 |∇q|2 ≤
∫

Ω

(hr + u3)3 |∇q|2

= C

∫
Ω

(hr + u3)Hε(p)
∣∣∣∣ ∂q∂x1

∣∣∣∣+ 2paL−1

∫
Ω

(hr + u3)3

∣∣∣∣ ∂q∂x2

∣∣∣∣
≤ C

∫
Ω

|hr + u3| |∇q|+ 2paL−1(hr +Kβ−1R)2

∫
Ω

|hr + u3| |∇q|

≤
[
C + 2paL−1(hr +Kβ−1R)2

]
|Ω|1/2

[∫
Ω

|hr + u3|2|∇q|2
]1/2

,

where the last inequality follows from Holder’s one. So,[∫
Ω

|hr + u3|2|∇q|2
]1/2

≤
[
C + 2paL−1(hr +Kβ−1R)2

]
|Ω|1/2

(hr −Kβ−1R)

and the estimate (2.6) is easily concluded.
Next, in order to obtain the L∞(Ω) estimate for q, we use the technique previously developed in [14] for the

Reynolds-plate coupled model, which is based on L∞ estimates for elliptic variational equations, (see [18], for
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example). Thus, for k > pa > 0, we define the set Ωk = {(x1, x2) ∈ Ω / q(x1, x2) > k}, and we take ξk = (q−k)+

as test function in (2.5). So,

(hr −Kβ−1R)
∫

Ω

(hr + u3)2 |∇ξk|2 ≤ C
∫

Ωk

(hr + u3)
∣∣∣∣ ∂ξk∂x1

∣∣∣∣
≤ C |Ωk|1/2

[∫
Ωk

(hr + u3)2

∣∣∣∣ ∂ξk∂x1

∣∣∣∣2
]1/2

≤ C |Ωk|1/2
[∫

Ω

(hr + u3)2 |∇ξk|2
]1/2

and, finally, we have:

‖∇ξk‖L2(Ω) ≤ C
|Ωk|1/2

(hr −Kβ−1R)2
· (2.8)

Next, for k1 > k2 > pa > 0 we have Ωk1 ⊂ Ωk2 and then

(k1 − k2)r
∗ |Ωk1 | =

∫
Ωk1

(k1 − k2)r
∗ ≤

∫
Ωk1

(q − k2)r
∗ ≤

∫
Ω

|ξk2 |
r∗ .

Now, by choosing r∗ > 2, from the continuous inclusion ir∗ : V0 ↪→ Lr
∗
(Ω), we have

(k1 − k2)r
∗ |Ωk1 | ≤ ‖ξk2‖

r∗

Lr∗ (Ω) ≤ Cr
∗

r∗ ‖∇ξk2‖
r∗

L2(Ω) ≤
[
Cr∗

C |Ωk2 |1/2
(hr −Kβ−1R)2

]r∗
where Cr∗ is the Sobolev constant for the inclusion. So, we can state

|Ωk1 | ≤
[
Cr∗

C

(hr −Kβ−1R)2

]r∗ 1
(k1 − k2)r∗

|Ωk2 |
r∗/2

.

Now, applying Lemma B.1 of [18] we get the estimate (2.7).

2.3. Existence of the fixed point

In order to apply the Schauder fixed point theorem for operator T , we establish the following technical lemma.

Lemma 2.5. If the data of the coupled problem verify the hypotheses:

(H1) pa < K−1βhr,

(H2)
12hrpaKβ−1(hr − paKβ−1) + 27C1(Ω)Kβ−1

4
[
hr

3 − (paKβ−1)3
] < 1,

then there exists:

R1 =
β

3K
(2paKβ−1 + hr) ∈

(
0,K−1βhr

)
such that P (R1) > 0 for the polynomial

P (R) = K2β−2 R3 − (paK2β−2 + 2Kβ−1hr)R2 + (hr2 + 2Kβ−1pahr)R− (pahr2 + C1(Ω)),
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where C1(Ω) = C Cr∗ |Ω|
1
2−

1
r∗ 2

r∗
r∗−2 for clearness.

Proof. Notice that, from the hypotheses (H1) and (H2), the polynomial P ′ has two positive real roots. Let R1

be the smallest root, which is given by:

R1 =
β2

3K2

[
(paK2β−2 + 2Kβ−1hr)−

√
(paK2β−2 + 2Kβ−1hr)2 − 3K2β−2(h2

r + 2paKβ−1hr)
]

=
β2

3K2

[
(paK2β−2 + 2Kβ−1hr)−

√
(Kβ−1hr − paK2β−2)2

]
.

Moreover, from (H1), we have

R1 =
β

3K
(2paKβ−1 + hr) < hrK

−1β

and, from easy computations, we obtain that P (R1) > 0.
Next, under some hypotheses on the data of the coupled problem, we state the existence of solution for the

regularized problem.

Theorem 2.6. If the data of the coupled problem (P) verify the hypotheses:

(H1) pa < K−1βhr,

(H2)
12hrpaKβ−1(hr − paKβ−1) + 27C1(Ω)Kβ−1

4
[
hr

3 − (paKβ−1)3
] < 1,

with K = K(Ω) then there exists a fixed point, pε, for the operator T , which is the solution of the regularized
problem (Pε). Moreover, we have the estimates:

‖∇pε‖L2(Ω) ≤
9C + 2paL−1(3hr + hr + 2Kβ−1pa)2

4(hr −Kβ−1pa)2
|Ω|1/2 = A1 (2.9)

‖pε‖L∞(Ω) ≤ pa +
9CC

r∗ |Ω|
1
2−

1
r∗ 2

4−r∗
r∗−2

(hr −Kβ−1pa)2
= A2 (2.10)

where A1 and A2 are constants which do not depend on ε.

Proof. First, from hypothesis (H1), Proposition 2.4 implies that the operator T is well defined. Moreover, from
the hypotheses (H1) and (H2), the previous lemma states that

P (R1) = K2β−2R3
1 − (paK2β−2 + 2Kβ−1hr)R2

1 + (hr2 + 2Kβ−1pahr)R1 − (pahr2 + C1(Ω)) > 0

which is equivalent to the inequality

pa +
C1(Ω)

(hr −Kβ−1R1)2
< R1

so that T (BR1) ⊂ BR1 . Indeed, T is a continuous and compact operator (notice that, for example, T4 is
compact). From Schauder fixed point theorem there exists p ∈ BR1 such that p = T (p). So, the couple
(pε = p, ~uε = (T2 ◦ T1)(p)) provides a solution of the regularized problem (Pε).

Finally, from (2.6) and (2.7) in Proposition 2.4 for R = R1, we easily get the estimates (2.9) and (2.10).
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3. Existence of solution for the coupled problem

In this section, the main result of the paper is stated. Thus, under the hypotheses (H1) and (H2) on the
data, the existence of a solution for problem (P) is concluded as a limit of solutions for the problems (Pε).
Notice that the obtained solution is also characterized as the limit of a sequence of fixed points.

Theorem 3.1. If the data of the coupled problem (P) verify the hypotheses (H1) and (H2), then there exists a
solution (p, θ, ~u) of problem (P). Moreover, the estimates:

‖∇p‖L2(Ω) ≤
9C + 2paL−1(3hr + hr + 2Kβ−1pa)2

4(hr −Kβ−1pa)2
|Ω|1/2 (3.1)

‖p‖L∞(Ω) ≤ pa +
9CC

r∗ |Ω|
1
2− 1

r∗ 2
4−r∗
r∗−2

(hr −Kβ−1pa)2
(3.2)

hold.

Proof. First, notice that the operator T actually depends on ε, so that we have a sequence of fixed points {pε}ε.
For each ε > 0 let ~uε = T2(T1(pε)).

So, from estimates (2.9) and (2.10) and Lemma 2.2 we can deduce the existence of the subsequences of {pε}ε
and {~uε}ε, still noted as their respective sequences, such that:

∃p ∈ Va ∩ L∞(Ω), pε −→p in H1(Ω) weakly and L∞(Ω) weakly− ∗,
∃~u ∈W (Ω̃), ~uε −→~u in W (Ω̃) weakly and L∞(Ω̃) weakly− ∗.

Indeed, the last convergence implies that uε3 −→ u3 in H2(Ω) weakly.
On the other hand, as the trivial bound 0 ≤ Hε(pε) ≤ 1 holds, then

∃θ ∈ L∞(Ω), Hε(pε) −→ θ in L∞(Ω) weakly− ∗.

The set of the above convergences allows us to pass to the limit in the parameter ε in problem (Pε). More
precisely, we have ∫

Ω

(hr + uε3)3∇pε∇ϕ −→
∫

Ω

(hr + u3)3∇p∇ϕ (3.3)

∫
Ω

(hr + uε3)Hε(pε)
∂ϕ

∂x1
−→

∫
Ω

(hr + u3)θ
∂ϕ

∂x1
(3.4)

∫
eΩ

RM γt(~uε) γt(~v) +
∫
eΩ

RF ρ(~uε) ρ(~v) −→
∫
eΩ

RM γt(~u) γt(~v) +
∫
eΩ

RF ρ(~u) ρ(~v) (3.5)

∫
eΩ

p̃εv3 −→
∫
eΩ

p̃v3 (3.6)

where (3.3) follows from the convergences uε3 → u3 in H2(Ω) weakly and pε → p in H1(Ω) weakly, (3.4) from
the limits uε3 → u3 weakly and Hε(pε)→ θ in L∞ weakly, (3.5) follows from the convergence ~uε → ~u in H2(Ω̃)
weakly, and (3.6) is a consequence of the convergence p̃ε → p̃ in H1(Ω̃) weakly.

Moreover, if we consider that

0 ≤
∫

Ω

pε(1−Hε(pε)) dΩ =
∫
|pε<ε|

pε(1−Hε(pε)) dΩ ≤
∫
|pε<ε|

ε dΩ ≤ ε |Ω| ,

we can state that θ ∈ H(p). So, we have proved that the limit (p, θ, ~u) is a solution of the coupled problem (P).
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Remark 3.2. The hypothesis (H1) imposes a compatibility condition among the supply pressure (pa), the
rigidity of the shell (associated to constant β) and the minimum reference gap (hr) which prevents from the
appearance of regions where hr + u3 ≤ 0. Although, as in other elastohydrodynamic problems, uniqueness
remains to be an open question for this stationary model, the possible presence of unstable phenomena associated
to a not enough rigid shell is removed by the constraint (H1) on the parameter β. More precisely, under
hypothesis (H1) the parameter β cannot tend freely to zero.

4. Numerical solution for a Koiter mixed formulation

Although the main aim of this paper is to establish the existence of solution for problem (P), a numerical
method to approximate a solution and some real data simulations are summarized in this section. In a previous
paper [2], a slightly different Reynolds-Koiter coupled model has been first proposed to perform some numerical
simulation studies in the frame of imposed load problems. More precisely, in [2] the elastic Koiter problem is
posed in the domain Ω so that a symmetry condition for the normal displacement has to be considered at the
supply boundary Γa to obtain realistic simulations.

In the present paper, in order to compute a numerical approximation for the coupled problem (P), we propose
— as in other related elastohydrodynamic problems — an explicit iterative scheme which essentialy uncouples
the hydrodynamic and elastic parts of the coupled problem. In the particular case here treated, the operators
T2 and T4 represent the elastic and hydrodynamic problems, respectively. In our approach, the operators T1

and T3 are also numerically implemented. Thus, the numerical method reproduces the previously developed
theoretical techniques to obtain the existence result. In this way the approximation of the solution is computed
as a fixed point for the discretized operators.

First of all, as the unknown u3 belongs to H2(Ω̃), the discretization of the problem associated to operator
T4 requires at least the use of second order finite elements. In this paper, and only for numerical purposes, we
replace Koiter operator by the one associated to a mixed formulation developed by Destuynder and Salaün [12].
In this alternative mixed formulation the normal displacement lies in H1(Ω̃). The main numerical advantage is
the possibility of using P1 Lagrange finite elements for the approximation of ~u, although an additional degree
of freedom is needed to approximate the normal rotation vector. For clearness, the mixed formulation we use
for Koiter model is summarized in next paragraphs.

4.1. The mixed formulation for Koiter shell model

As in [2], in order to simulate the bearing displacements we replace Koiter model defined by operator T4 by
a mixed formulation developed in [12,13]. So, we introduce the functional space

V3 =
{
v ∈ H1(Ω̃) / v = v,α = 0 on Γb ∪ Γc

}
,

for the unknown u3. Notice that the regularity of u3 is relaxed. Moreover, let us introduce the following
functional spaces:

L2
0(Ω̃) =

{
ψ ∈ L2(Ω̃),

∫
eΩ

ψ = 0
}

Wt =
{
µ = µα ~aα/µ

α ∈ H1(Ω̃), µα = 0 on Γb ∪ Γc
}
·

Let us define the spaces V = Vt × V3 ×Wt and M = V3 × L2
0(Ω̃). Now, by introducing the notations X =

(uα, u3, ηα) ∈ V, Y = (vα, v3, ζα) ∈ V and Λ = (ψ1, ψ2) ∈ M, the mixed formulation associated to Koiter
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model (2.1) can be written as:
Find (X,Λ) ∈ V ×M such that:{

A(X,Y ) + B(Λ, Y ) = F (Y ), ∀Y ∈ V
B(Ξ, X) = 0, ∀Ξ ∈M,

(4.1)

where the involved bilinear and linear forms are the following:

A(X,Y ) =
∫
eΩ

RMαβλµγαβ(X)γλµ(Y ) +
∫
eΩ

RFαβλµραβ(X)ρλµ(Y )

B(Λ, Y ) =
ε2

3

[∫
eΩ

gαλψ1,λ(µα + bβαvβ + v3,α)−
∫
eΩ

ψ2

(
ζ2,1 + (bβ2vβ),1 − ζ1,2 − (bβ1vβ),2

)]
F (Y ) =

∫
eΩ

p̃v3.

For a given function p̃ ∈ L2(Ω̃), the existence and uniqueness of solution for the above formulation is stated
in [12].

4.2. Numerical solution of the coupled problem without imposed load

The numerically solved coupled model consists of problem (P) where the last (elastic) equation has been
replaced by the previously described mixed formulation. So, the numerical algorithm is sketched as follows:

• Step 0: Initialize p0, θ0 and ~u0 = 0.
• Step n+ 1: For given pn, θn and ~un:

– Hydrodynamic part: Let hn+1
t = hr + T3(un3 ).

Compute (pn+1, θn+1) ∈ Va × L∞(Ω) by solving∫
Ω

(hnt )3∇pn+1∇ϕ =
∫

Ω

hnt θ
n+1 ∂ϕ

∂x1
, ∀ϕ ∈ V0 (4.2)

θn+1 ∈ H(pn+1) in Ω (4.3)

– Elastic part: Let p̃n+1 = T1(pn+1).
Compute un+1

3 as part of the solution of the mixed formulation in Ω̃:{
A(Xn+1, Y ) +B(Λn+1, Y ) = F (Y ), ∀Y ∈ V
B(Ξ, Xn+1) = 0, ∀Ξ ∈M.

For the numerical solution of the free boundary problem (4.2–4.3) we have combined a characteristics algorithm
for the time semidiscretization of nonlinear convection problems (see [5], for its numerical analysis), Lagrange P1

finite elements for space discretization and a duality method for maximal monotone operators to approximate the
couple (pn+1, θn+1). This approach for the hydrodynamic part has been already succesfully used in previously
treated elastohydrodynamic problems [2, 15]. On the other hand, the mixed formulation allows the use of P1

finite elements to approximate ~un+1 and Λn+1, although a bubble function has to be chosen in order to perform
an appropriate approximation of ηn+1 (see [13], for further details).
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Figure 2. Pressure and concentration without imposed load.

4.3. Numerical results

In this section, we present a numerical test that shows the good performance of the previously described
algorithm. We simulate a journal-bearing device whose length is L = 0.15 m, mean radius Rm = 0.0375 m
and clearance c = Rb − Rj = 0.001 m. Its mechanical properties are E = 205 000 MPa and νb = 0.25 (which
correspond to a steel bearing) and its thickness is 2ε = 3 mm. The feeding pressure is pa = 275 000 N/m2, the
lubricant viscosity is νf = 0.03882 Pa.s and the velocity of the journal is s = 30 m/s. Finally, eccentricity (see
Eq. (1.2)) is % = 0.98.

An analogous test was presented in [2], with slightly different boundary conditions: both elastic and hydro-
dynamic equations were posed in Ω, a symmetry boundary condition being imposed on Γa. Neverthless, the
mechanical interpretation remains still valid for the present work.

We can see in Figures 2 and 3 the pressure, concentration and relative displacement1 distributions ob-
tained with a 1600 elements/900 nodes triangular mesh for the hydrodynamic subproblem, and a 3200 ele-
ments/1700 nodes triangular mesh for the elastic subproblem. First, we can appreciate the correlation between
the highest pressure and the largest normal displacement (minimum gap region). Notice that we recover the
symmetry of the normal displacement without imposing it, as was done in [2]. Moreover, due to convergent–
divergent geometry, the pressure values decay to zero, which identifies the cavitation region, this one being also
characterized by concentration values lower than one (see Eq. 1.4).

5. The coupled problem under imposed load

In previous works, the solution of some problems with imposed load were taken up; the elastic problem
involved a plate model [14], or a Koiter shell model with a symmetry condition on the feeding groove [2]. As
this kind of problems is more realistic from the mechanical engineering point of view, we show in this section the
use of the new formulation, and the comparison with the results obtained in [2] with the symmetry condition.

1We call relative displacement the quotient u3/(hr + u3).
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Figure 3. Relative displacement without imposed load.
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Figure 4. Load vector in the journal-bearing.

In the literature [10], the real gap between both cylinders is approximated by the expression

hr(x1) = c

[
1 + % cos

(
x1 − φ
Rm

)]
, (5.1)

the parameter φ ∈ [0, 2π] being the angle between the load vector and the line of centers (see Fig. 4).
In the imposed load problems framework, the additional unknowns % and φ have to be fitted by the additional

load balance equations:

W 2 = (W ∗1 )2 + (W ∗2 )2 (5.2)

tanφ = −W
∗
2

W ∗1
(5.3)
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Table 1. Comparison of two simulations.

Boundary Nr. Iter. Nr. Iter.
conditions φ W ∗ % (load) (pressure)

Symmetry – Clamped 22.2879 2482.61 0.9549 13 5261
Clamped – Clamped 22.2916 2481.65 0.9549 13 5266

where W = (W1,W2) is the given load vector, W is its modulus and the components of the hydrodynamic load
W∗ are given by:

W ∗1 =
∫

Ω

p(x1, x2) cos
(
x1 − φ
Rm

)
W ∗2 =

∫
Ω

p(x1, x2) sin
(
x1 − φ
Rm

)
·

In [2], we had presented a complex numerical algorithm to solve the coupled Reynolds-Koiter problem and two
numerical tests in order to validate its good performance. In both cases, we computed the pressure, concentration
and normal displacements in a cylindrical journal-bearing device with circumferential feeding, clamped in both
extremities. However, in order to reduce the time of calculus and taking into account the symmetry of the
problem, we had meshed one half of the total domain, applying a symmetry boundary condition on Γa for the
elastic subproblem: displacement and normal rotation components were imposed to zero in the cylinder axis
direction.

In the present work, we try to be as close as possible to the theoretical study we have developed in the
previous sections, where both extremities are clamped. So, we have solved the problem described in Section 4.3,
using the mesh of the total domain Ω̃ and the appropriate clamped boundary conditions for solving the elastic
subproblem, and letting the algorithm iterate until the values of % and φ allow the hydrodynamic load to
equilibrate the external load. A comparison between the two ways of resolution is summarized in Table 1.

In both cases, initial eccentricity, load modulus and load angle are % = 0.98, W = 2500 and φ = 30o,
respectively. After comparing the good fitting between the approximated solutions obtained by both methods,
the numerical results obtained with the clamped boundary conditions are shown in Figures 5 and 6. Once again,
the expected symmetry for the normal displacement is obtained.

6. Conclusions

The main goal of this paper is the proof of the existence of solution to a coupled problem that adequately
models the elastohydrodynamic behaviour of a journal-bearing lubricated device. Although the proof follows
the general scheme of previous works, as it is based on fixed point techniques, the coupling with an appropriate
shell bearing model had never been treated. An additional and important difficulty arises from the fact that
hydrodynamic and elastic equations are not written on the same domain.

This fact leads to a complex operator to be analyzed. Moreover, a numerical scheme is proposed to simulate
a more realistic load imposed problem in a real data setting and the results agree with those presented in [2].

The present paper represents a first step to address a further theoretical study where thermal effects of
load constraints are considered. To our knowledge, this kind of more complex coupled problems have not been
theoretically treated in lubrication literature.
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Figure 5. Pressure and concentration for the imposed load problem.
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Figure 6. Relative displacement for the imposed load problem.
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